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1

The role of gravity

The view of physics that is most generally accepted at the moment is
that one can divide the discussion ofthe universe into two parts. First,
there is the question of the local laws satisfied by the various physical
fields. These are usually expressed in the form ofdifferential equations.
Secondly, there is the problem of the boundary conditions for these
equations, and the global nature of their solutions. This involves
thinking about the edge of space-time in some sense. These two parts
may not be independent. Indeed it has been held that the local laws
are determined by the large scale structure of the universe. This view
is generally connected with the name of Mach, and has more recently
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle
and Narlikar (1964), and others. We shall adopt a less ambitious
approach: we shall take the local physical laws that have been experi­
mentally determined, and shall see what these laws imply about the
large scale structure of the universe.

There is of course a large extrapolation in the assumption that the
physical laws one determines in the laboratory should apply at other
points of space-time where conditions may be very different. If they
failed to hold we should take the view that there was some other
physic,al field which entered into the local physical laws but whose
existence had not yet bl'.m detected in our experiments, because it
varies very little over a region such as the solar system. In fact most of
our results will be independent of the detailed nature of the physical
laws, but will merely involve certain general properties such as the
description of space-time by a pseudo-Riemannian geometry and the
positive definiteness of tlnt.tgy density.

The fundamental interactions at present known to physics can be
divided into four classes: the strong and weak nuclear interactions,
electromagnetism, and gravity. Of these, gravity is by far the weakest
(the ratio Gm2/e2 of the gravitational to electric force between two
electrons is about 10-40). Nevertheless it plays the dominant role in
shaping the large scale structure of the universe. This is because the



Preface

The subject of this book is the structure of space-time on length­
scales from 10-13 em, the radius of an elementary particle, up to
1028 em, the radius of the universe. For reasons explained in
chapters 1 and 3, we base our treatment on Einstein's General
Theory of Relativity. This theory leads to two remarkable pre­
dictions about the universe: first, that the final fate of massive
stars is to collapse behind an event horizon to form a 'black hole'
which will contain a singula.rity; and secondly, that there is a
singularity in our past which constitutes, in some sense, a begin­
ning to the universe. Our discussion is principally aimed at developing
these two results. They depend primarily on two areas of study: first,
the theory of the behaviour of families of timelike and null curves in
space-time, and secondly, the study of the nature of the various
causal relations in any space-time. We consider these subjects in
detail. In addition we develop the theory of the time-development
of solutions of Einstein's equations from given initial data. The ·dis­
cussion is supplemented by an examination of global properties of
a variety of exact solutions of Einstein's field equations, many of
which show some rather unexpected behaviour.

This book is based in part on an Adams Prize Essay by one of us
(S. W. H.). Many of the ideas presented here are due to R. Penrose
and R. P. Geroch, and we thank them for their help. We would refer
our readers to their review articles in the Battelle Rencontres (Penrose
(196R)), Midwest Relativity Conference Report (Geroch (1970c)),
Varcnna Summer School Proceedings (Geroch (1971)), and Pittsburgh
Conference Report (Penrose (1972b)). We have benefited from dis­
cussions and suggestions from many of our colleagues, particularly
B. Carter and D. W. Sciama. Our thanks are due to them also.

Oambridge
January 1973

[xi]

S. W. Hawking
G. F. R. Ellis



2 THE ROLE OF ORAVITY

strong and weak interactions have a very short range ('" 10-13 cm or
less), and although electromagnetism is a long range interaction, the
repulsion of like charges is very nearly balanced, for bodies of macro­
scopic dimensions, by the attraction of opposite charges. Gravity on
the other hand appears to be always attractive. Thus the gravitational
fields of all the particles in a body add up to produce a field which, for
sufficiently large bodies, dominates over all other forces.

Not only is gravity the dominant force on a large scale, but it is a
force which affects every particle in the same way. This universality
was first recognized by Galileo, who found that any two bodies fell
with the same velocity. This has been verified to very high precision
in more recent experiments by Eotvos, and by Dicke and his collabo­
rators (Dicke (1964)). It has also been observed that light is deflected
by gravitational fields. Since it is thought that no signals can travel
faster than light, this means that gravity determines the causal
structure ofthe universe, i.e. it determines which events ofspace-time
can be causally related to each other.

These properties of gravity lead to severe problems, for if a suffi­
ciently large amount of matter were concentrated in some region, it
could deflect light going out from the region so much that it was in fact
dragged back inwards. This was recognized in 1798 by Laplace, who
pointed out that a body of about the same density as the sun but
250 times its radius would exert such a strong gravitational field that
no light could escape from its surface. That this should have been
predicted so early is so striking that we give a translation ofLaplace's
essay in an appendix.

One can express the dragging back of light by a massive body more
precisely using Penrose's idea of a closed trapped surface. Consider
a sphere fT surrounding the body. At some instant letfT emit a flash
of light. At some later time t, the ingoing and outgoing wave fronts
from fT will form spheres.9'i. and S; respectively. In a normal situa­
tion, the area of.9'i. will be less than that offT (because it represents
ingoing light) and the area of S; will be greater than that of fT
(because it represents outgoing light; see figure 1). However if a suffi­
ciently large amount of matter is enclosed within fT, the areas of .9'i.
and S; will both be less than that offT. The surfacefT is then said to
be a closed trapped surface. As t increases, the area of S; will get
smaller and smaller provided that gravity remains attractive, i.e. pro­
vided that the energy density of the matter does not become negative.
Since the matter inside fT cannot travel faster than light, it will be
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trapped within a region whose boundary decreases to zero within a
finite time. This suggests that something goes badly wrong. We shall
in fact show that in such a situation a space-time singularity must
occur, if certain reasonable conditions hold.

One can think of a singularity as a place where our present laws of
physics breakdown. Alternatively, one can think of it as representing
part of the edge of space-time, but a part which is at a finite distance
instead ofat infinity. On this view, singularities are not so bad, but one
still has the problem of the boundary conditions. In other words, one
does not know what will come out of the singularity.

FIGURE 1. At some instant, the sphere9" emits a flash of light. At a later time,
the light from a point p forms a sphere sP around p, and the envelopes51 and
9". fo:r;-m the ingoing and outgoing wavefronts respectively. If the areas of both
9"1 and 9". are less than the area of5, then 9" is a closed trapped surface.

There are two situations in which we expect there to be a sufficient
concentration of matter to cause a closed trapped surface. The first is
in the gravitational collapse of stars of more than twice the mass of
the sun, which is predicted to occur when they have exhausted their
nuclear fuel. In this situation, we expect the star to collapse to a singu­
larity which is not visible to outside observers. The second situation is
that of the whole universe itself. Recent observations of the microwave
background indicate that the universe contains enough matter to
cause a time-reversed closed trapped surface. This implies the exist­
ence of a singularity in the past, at the beginning of the present epoch
of expansion of the universe. This singularity is in principle visible to
us. It might be interpreted as the beginning of the universe.
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In this book we shall study the large scale structure of space-time
on the basis of Einstein's General Theory of Relativity. The predic­
tions of this theory are in agreement with all the experiments so far
performed. However our treatment will be sufficiently general to cover
modifications of Einstein's theory such as the Brans-Dicke theory.

While we expect that most of our readers will have some acquain­
tance with General Relativity, we have endeavoured to write this
book so that it is self-contained apart from requiring a knowledge of
simple calculus, algebra and point set topology. We have therefore
devoted chapter 2 to differential geometry. Our treatment is reason­
ably modern in that we have formulated our definitions in a manifestly
coordinate independent manner. However for computational con­
venience we do use indices at times, and we have for the most part
avoided the use of fibre bundles. The reader with some knowledge of
differential geometry may wish to skip this chapter.

In chapter 3 a formulation of the General Theory of Relativity is
given in terms of three postulates about a mathematical model for
space-time. This model is a manifold J( with a metric g of Lorentz
signature. The physical significance of the metric is given by the first
two postulates: those of local causality and of local conservation of
energy-momentum. These postulates are common to both the General
and the Special Theories of Relativity, and so are supported by the
experimental evidence for the latter theory. The third postulate, the
field equations for the metric g, is less well experimentally established.
However most of our results will depend only on the property of the
field equations that gravity is attractive for positive matter densities.
This propertyis common to General Relativityandsome modifications
such as the Brans-Dicke theory.

In chapter 4, we discuss the significance of curvature by considering
its effects on families of timelike and null geodesics. These represent
the paths of small particles and of light rays respectively. The curva­
ture can be interpreted as a differential or tidal force which induces
relative accelerations between neighbouring geodesics. If the energy­
momentum tensor satisfies certain positive definite conditions, this
differential force always has a net converging effect on non-rotating ,
families ofgeodesics. One can show by use ofRaychaudhuri's equation
(4.26) that this then leads to focal or conjugate points where neigh­
bouring geodesics intersect.

To see the significance of these focal points, consider a one-dimen­
sional surface.9' in two-dimensional Euclidean space (figure 2). Let p
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be a point not on.9'. Then there will be some curve from.9' to p which
is shorter than, or as short as, any other curve from.9' to p. Clearly
this curve will be a geodesic, Le. a straight line, and will intersect.9'
orthogonally. In the situation shown in figure 2, there are in fact three
geodesics orthogonal to.9' which pass throughp. The geodesic through
the point r is clearly not the shortest curve from.9' to p. One way of
recognizing this (Milnor (1963)) is to notice that the neighbouring

u
r

FIGURE 2. The line pr cannot be the shortest line from p to.9', because there is
a focal point q between p and r. In fact either px or py will be the shortest line
from p to .9'.

geodesics orthogonal to .9' through u and v intersect the geodesic
through r at a focal point q between.9' and p. Then joining the segment
uq to the segment qp, one could obtain a curve from.9' to p which had
the same length 118 11 straight line rp. However as uqp is not 11 strl1ight
line, one could round off the corner at q to obtain a curve from.9' to p
which was shorter than rp. This shows that rp is not the shortest curve
from.9' to p. In fact the_ shortest curve will be either xp or yp.

One can carry these ideas over to the four-dimensional space-time
manifold J( with the Lorentz metric g. Instead of straight lines, one
considers geodesics, and instead of considering the shortest curve one
considers the longest timelike curve between a point p and a spacelike
surface.9' (because of the Lorentz signature of the metric, there will
be no shortest timelike curve but there may be a longest such curve).
This longest curve must be a geodesic which intersects.9' orthogonally.
and there can be no focal point of geodesics orthogonal to.9' between
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f/ and p. Similar results can be proved for null geodesics. These results
are used in chapter 8 to establish the existence of singularities under
certain conditions.

In chapter 5 we describe a number of exact solutions of Einstein's
equations. These solutions are not realistic in that they all possess
exact symmetries. However they provide useful examples for the suc­
ceeding chapters and illustrate various possible behaviours. In
particular, the highly symmetrical cosmological models nearly all
possess space-time singularities. For a long time it was thought that
these singularities might be simply a result of the high degree of
symmetry, and would not be present in more realistic models. It will
be one of our main objects to show that this is not the case.

In chapter 6 we study the causal structure ofspace-time. In Special
Relativity, the events that a given event can be causally affected by,
or can causally affect, are the interiors of the past and future light
cones respectively (see figure 3). However in General Relativity the
metric g which determines the light cones will in general vary from
point to point, and the topology of the space-time manifold Jt need
not be that ofEuclidean space R4. This allows many more possibilities.
For instance one can identify corresponding points on the surfaces
f/1 and f/2 in figure 3, .to produce a space-time with topology R3 x SI.
This would contain closed timelike curves. The existence of such a
curve would lead to causality breakdowns in that one could travel into
one's past. We shall mostly consider only space-times which do not
permit such causality violations. In such a space-time, given any
spacelike surface f/, there is a maximal region of space-time (called
the Cauchy development off/) which can be predictedfrom knowledge
of data onf/. A Cauchy development has a property ('Global hyper­
bolicity ') which implies that if two points in it can be joined by a time­
like curve, then there exists a longest such curve between the points.
This curve will be a geodesic.

The causal structure of space-time can be used to define a boundary
or edge to space-time. This boundary represents both infinity and the
part of the edge of space-time which is at a finite distance, i.e. the
singular points.

In chapter 7 we discuss the Cauchy problem for General Relativity.
We show that initial data on a spacelike surfaCe determines a unique
solution on the Cauchy development of the surface, and that in a
certain sense this solution depends continuously on the initial data.
This chapter is included for completeness and because it uses a number
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Past light cone

,-------1~----~-------~9j

Time

J-s-
Spacc

FIGURE '3. In Special Relativity, the light cone of an event p is the set of all
light r~ys through p. The past of p is the interior ofthe past light cone, and the
future of p is the interior of the future light cone.

of results ofthe previous chapter. However it is not necessary to read
it in order to understand the fOllowing chapters.

In chapter 8 we discuss the definition of space-time singularities.
This presentscertain diffi~mltiesbecauseone cannot regard thesingular
points as being part of the space-time manifold JI.

We then prove four theorems which establish the occurrence of
space-time singularities under certain conditions. These conditions
fall into three categories. First, there is the requirement that gravity
shall be attractive. This can be expressed as an inequality on the
energy-momentum tensor. Secondly, there is the requirement that
there is enough matter present in some region to prevent anything
escaping from that region. This will occur if there is a closed trapped
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surface, or if the whole universe is itself spatially closed. The third
requirement is that there should be no causality violations. However
this requirement is not necessary in one of the theorems. The basic
idea of the proofs is to use the results of chapter 6 to prove there must
be longest timelike curves between certain pairs of points. One then
shows that if there were no singularities, there would be focal points
which would imply that there were no longest curves between the pairs
of points.

We next describe a proceduresuggested by Schmidtfor constructing
a boundary to space-time which represents the singular points of
space-time. This boundary may be different from that part of the
cl1llRal boundl1ry (defined in ohl1pter 6) whieh represents singularitios.

In oI11~pt,(1r n, we IIhow t111~t tho IIClCom! (1ondition of thoormn 2 of
chaptor 8 should be satisfied ncar stars ofmore than 1i times the solar
mass in the final stages oftheir evolution. The singularities which occur
are probably hidden behind an event horizon, and 80 are not visible
Ihull uul.l:lhltl. Tu ItII tlxl.tll'llItI uLI:lt1l'Vt1l', tht1l'tl It!'l'tlltl'l:l tu Ltl It • Lllwk

hole' where the star once was. We discuss the properties of such black
holes, and show that they probably settle down finally to one of the
Kerr family of solutions. Assuming this to be the case, one can place
certain upper bounds on the amount ofenergy which can be extracted
from black holes. In chapter 10 we show that the second conditions of
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed
sense, in the whole universe. In this case, the singularities are in our
past and constitute a beginning for all or part ofthe observed universe.

The essential part of the introductory material is that in §3.1, §3.2
and § 3.4. A reader wishing to understand the theorems predicting the
existence of singularities in the universe need read further only chap­
ter 4, §6. 2-§ 6.7, and §8.1 and §8.2. The application of these theorems
to collapsing stars follows in § 9.1 (which uses the results of appen­
dix B); the application to the universe as a whole is given in § 10.1, and
relies on an understanding of the Robertson-Walker universe models
(§ 5.3). Our discussion of the nature of the singularities is contained
in §8.1, §8.3-§ 8.5, and § 10.2; the example ofTaub-NUT space (§ 5.8)
plays an important part in this discussion, and the Bianchi I universe
model (§ 5.4) is also of some interest.

A reader wishing to follow our discussion df black holes need read
only chapter 4, §6.2-§6.6, §6.9, and §9.1, §9.2 and §9.3. This discus­
sion relies on an understanding of the Schwarzschild solution (§ 5.5)
and of the Kerr solution (§ 5.6).



TilE ROLE OF GRAVITY l)

Finally a reader whose main interest is in the time evolution
properties of Einstein's equations need read only §6.2-§ 6.6 and
chapter 7. He will find interesting examples given in §5.1, §5.2 and
§5.5.

We have endeavoured to make the index a useful guide to all the
definitions introduced, and the relations between them.



2

Differential geometry

The space-time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in §2.1 the concept of a manifold and
in §2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. A discussion of maps of manifolds in §2.3
leads to the definitions of the induced maps of tensors, and of sub­
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes' theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec­
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss-Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss' theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu­
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[ 10]
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2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined. but does not distinguish intrin­
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold. after some preliminary definitions.

Let R'" denote the Euclidean space of n dimensions. that is. the set
of all n-tuples (Xl. x2• •••• x... ) (- 00 < xi < (0) with the usual topology
(open and closed sets are defined in the usual way). and let IRn denote
the 'lower half' ofRn. Le. the region ofRn for which Xl ~ O. A map ¢ of
an open set (!) c Rn (respectively IRn) to an open set (!)' c R"" (respec­
tivelYIRm) is said to be of class Crifthe coordinates (X'l. X'2••.•• x'm) of
the image point ¢(P) in (!)' are r-times continuously differentiable
functions (the rth derivatives exist and are continuous) of the co­
ordinates (Xl. x2• •••• xn) ofpin (!). If a map is Cr for all r ~ O. then it is
said to be coo. By a CO map. we mean a continuous map.

A function f on an open set (!) of Rn is said to be locally Lipschitz if
for each open set tilf c (!) with compact closure. there is some constant
K su~h that for each pair ofpointsp:qetilf, If(p)-f(q)j ~ Klp-ql.
where by Ipl we mean

{(Xl (p))2+ (X2(p))2+ ... + (xn (p))2}1.

A map ¢ will be said to be locally Lipschitz, denoted by Cl-. if the
coordinates of ¢(p) are locally Lipschitz functions of the coordinates
ofp. Similarly, we shall say that a map ¢ is Cr- if it is Cr-l and if the
(r-l)th derivatives of the coordinates of ¢(p) are locally Lipschitz
functions ofthe coordinates ofp. In the following we shall usually only
mention cr, but similar definitions and results hold for Or-.

If fl/ is an arbitrary set in Rn (respectively IRn), a map ¢ from fl/ to
a set fl/' c R"" (respectively IR"") is said to be a Or map if ¢ is the
restriction to fl/ and fl/' of a Cr map from an open set (!) containing fl/
to an open set (!)' containing fl/'.

A or n-dimensional manifold JI is a set JI together with a Cr atlas
{tilfa•¢a}, that is to say a collection of charts (tilfa•¢a) where the tilfa are
subsets ofJI and the ¢a are one-one maps of the corresponding tilfa to
open sets in Rn such that

(1) the tilfa cover JI, Le. JI = U tilfa ,
/I
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(2) if %'", n%'p is non-empty, then the map

¢",O¢p-l: ¢p(%'", n%'p)-+¢",(%'", n%'p)

is a Or map ofan open subset ofRn to an open subset ofRn (see figure 4).
Each %'", is a local coordinate neighbourhood with the local coordinates

xa (a = 1to n) defined by the map ¢'" (Le. ifp e%'"" then the coordinates
ofp are the coordinates of¢",(P) in Rn). Condition (2) is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are Or functions of the coordinates
in the other neighbourhood, and vice versa.

FIGURE 4. In the overlap of coordinate neighbourhoods %'a. and %'p, coordinates
are related by a Or map ¢J",O¢Jp-l.

Another atlas is said to be compatible with a given Or atlas if their
union is a Or atlas for all J/. The atlas consisting of all atlases com­
patible with the given atlas is called the complete atlas ofthe manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering J/.

The topology of J/ is defined by stating that the open sets of J/
consist ofunions ofsets ofthe form %''" belonging to the complete atlas.
This topology makes each map ¢'" into a homeomorphism.

A Or differentiable manifold with boundary is defined as above, on
replacing' Bn' by 'iBn'. Then the boundary of J/, denoted by oJ/, is
defined to be the set ofall points ofJ/whose image under a map,p", lies
on the boundary ofiBn in Rn. oJ{is an (n - 1)-dimensional or manifold
without boundary.
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These definitions may seem more complicated than necessary. How­
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Eudidean plane R2 is clearly a manifold. Rectangular coordinates
(x, y; -00 < x < 00, -00 < y < 00) cover the whole plane in one
coordinate neighbourhood, where ¢ is the identity. Polar coordinates
(r,O) cover the coordinate neighbourhood (r> 0, 0 < 0 < 211); one
needs at least two such coordinate neighbourhoods to cover R2. The
two-dimensional cylinder 0 2is the manifold obtained from R2 by identi­
fying the points (x, y) and (x + 211, y). Then (x, y) are coordinates in
a neighbourhood (0 < x < 211, -00 < Y < 00) and one needs two
such coordinate neighbourhoods to cover 0 2• The Mobius strip is the
manifold obtained in a similar way on identifying the points (x, y) and
(x + 211, - y). The unit two-sphere 8 2 can be characterized as the surface
in R3 defined by the equation (XI)2 + (X2)2+ (x3)2 = 1. Then

(x2 ,x3; -1 < x 2 < 1, -1 < x3 < 1)

are coordinates in each of the regions Xl > 0, Xl < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover 8 2 by a single coordinate neighbourhood. The
n-sphere 8" can be similarly defined as the set of points

(XI)2 + (X2)2 +... + (Xft+I)2 = 1
in Rn+l.

A manifold is said to be orientable if there is an atlas {%'", ¢,,} in the
complete atlas such that in every non-empty intersection %'" n%'p, the
Jacobian loxi/ox'JI is positive, where (xl, ... ,x") and (x'I, ... ,x''') are
coordin.ates in %'" and %'p respectively. The Mobius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that JI is Hausdorff
and that JI is paracompact, which will ensure reasonable local
behaviour.

A topological space Jlis said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: wheneverp, q are two distinct points
in JI, there exist disjoint open sets %', fin Jlsuch thatpe%', qef.
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points b, b' on the two lines ifand only ifXb = Yb' < O. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset ofRI. However there are no disjoint open neighbourhoods
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b
•

b'
•

(y = W)

(I

•
(x = 0)

a'

•
(y=O)

)0 y

FIGURE 5. An example of a non-Hausdorff manifold. The two lines above are
identical rot' x =y < O. However the two points a (x =0) and a' (y =0) are
not identified.

%', "f/ satisfying the conditions a E%', a' E"f/, where a is the point x = 0
and a' is the point y = O.

An atlas {%',., ¢,.} is said to be locally finite if every point p Evii has
an open neighbourhood which intersects only a finite number of the
sets %',.. JI is said to be paracompact if for every atlas {%',., ¢,.} there
exists a locally finite atlas {rp, 'I/J'p} with each "Jfl contained in some %',..
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this
collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected 0 00 Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on JI (the
existence of an affine connection, see §2.4) the requirement of para­
compactness will be automatically satisfied because of the other
restrictions.

A function f on a Ok manifold vii if> a map from JI to RI. It is said to
be of class Or (r ~ k) ata pointp of JI, if the expressionfo¢,.-I off on
any local coordinate neighbourhood %',. is a Or function of the local
coordinates at p; and f is said to be a Or function on a set "f/ of JI if
fis a Or function at each pointpE"f/.

A property of paracompact manifolds we will use later, is the fol­
lowing: given any locally finite atlas {%',., ¢,.} on a paracompact Ok
manifolu, one can always (sce e.g. Kobayashi anu Nomizu (1963),
p. 272) find a set of Ok functions get such that

(1) 0 ~ get ~ 1 on vii, for each a;
(2) the support ofg,., i.e. the closure of the set {p EJI: g".<p) of: O}, is

contained in the corresponding %',.;
(3) Lg,.(p) = 1, for all pE vii.,.
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Such a set of functions will be called a partition ofunity. The result
is in particular true for Oao functions. but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood ofeach point p e .A. and so is zero
everywhere ifit is zero on any open neighbourhood).

Finally. the Oartesian product d x PA of manifolds d. PA is a mani­
fold with a natural structure defined by the manifold structures of
d. PA: for arbitrary points p Ed. qePA. there exist coordinate neigh­
bourhoods%'. "f/ containingp. qrespectively. so the point(p. q) ed xPA
is contained in the coordinate neighbourhood %' x "f/ in d x PA which
assigns to it the coordinates (xi. yi). where xi are the coordinates ofp
in %' and yi are the coordinates of q in "f/.

2.2 Vectors and tensors
Tensor fields are the set ofgeometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold. so we first define
tensors at a point of the manifold. starting from the basic concept of
a vector at a point.

A Ok curve A(t) in .Ais a Ok map ofan interval of the real line RI into
vii. The vector (contravariant vector) (Ofot).\lto tangent to the Q1 curve
A(t) at the point A(to) is the operator which maps each 0 1 functionfat
A(to) into the number (oflot).\lto; that is. (ofIOt).\ is the derivative offin
the direction of A(t) with respect to the parameter t. Explicitly.

( Oft) I= lim !{f(A(t+s»-f(A(t»)}.
v .\ I 8 .....0 S

(2.1)

The curve parameter t clearly obeys the relation (olotht = 1.
If (Xl••••• x") are local coordinates in a neighbourhood ofP.

(~ I = i dXi(A(t»! of 1 = dx
i

Of!
atJ.\Io j-l dt t_lo·oxi.\(tO> dtoxi.\(IO>·

(Here and throughout this book. we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point p can be expressed as
a linear combination of the coordinate derivatives

(Ofoxl)lp• ...• (olox")lp·

Conversely. given a linear combination Vi(oloxi)lp of these operators.
where the VJ are any numbers. consider the curve A(t) defined by
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xi(A(t» = x1(p) +tYi, for t in some interval [ -e,e]; the tangent vector
to this curve at pis Y1(OjOxi)!p. Thus the tangent vectors at p form
a vector space over RI spanned by the coordinate derivatives (Ojoxi)lp,

where the vector space structure ill defined by the relation

(aX +PY)f = a(Xf) +P( Yf)

which is to hold for all vectors X, Y, numbers a, Pand functions f.
The vectors (%xf)p are independent (for if they were not, there
would exist numbers yi such that yi(%xi>!p = 0 with at least one yi

non-zero; applying this relation to each coordinate xk shows

Yi()xk/Oxi = yk = 0,

a contradiction), so the space of all tangent vectors Lo Jr Itt p, uenoteu
by Tp(....K) or simply Tp, is an n-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to ....K at p. One may think of a vector V e 1;, as an arrow at p,
pointing in the direction of a curve A(t) with tangent vector Vat p,
the' length' of V being determined by the curve parameter t through
the relation Yet) = 1. (As V is an operator, we print it in bold type;
its components Yi, and the number y(n obtained by V acting on a
functionf, are numbers, and so are printed in italics.)

If {Ea} (a = 1 to n) are any set of n vectors at p which are linearly
independent, then any vector V e Tp can be written V = yaEa where
the numbers {va} are the components of V with respect to the basis
{Ea} of vectors atp. In particular one can choose the Ea as the coordi­
nate basis (%xi)lp; then the components Yi = Y(xi ) = (dxi/dt>!p are
the derivatives of the coordinate functions xi in the direction V.

A one-form (covariant vector) w atp is a real valued linear function
on the space 1;, of vectors at p. IfX is a vector at p, the number into
which w maps X will be written (w, X); then the linearity implies that

(w,aX+pY) = a(w,X)+P(w, Y)

holds for all a,peRI and X, Y eTp • The subspace of Tp defined by
(w, X) = (constant) for a given one-form w, is linear. One may there­
fore think of a one-form at p as a pair of planes in Tp such that if
(w,X) = 0 the arrow X lies in the first plaIl;e, and if (w,X) = 1 it
touches the second plane.

Given a basis {Ea} of vectors at p, one can define a unique set of
none-forms {Ea} by the condition: Ei maps any vector X to the
number Xi (the ith component of X with respect to the basis {Ea}).
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Then in particular, (Ea, Eb) = 8a
b• Defining linear combinations of

one-forms by the rules

(aw+p'tj,X) = a(w, X) +P('tj, X)

for anyone-forms w, 'tj and any a, p"eR!, XeTp, one can regard {Ea}
as a basis of one-forms since anyone-form w at p can be expressed as
W = Wi Ei where the numbers Wi are defined by Wi = (w, Ei). Thus the
set of all one forms at p forms an n-dimensional vector space at p, the
dual space T*p of the tangent space Tp. The basis {Ea} of one-forms is
the dual basis to the basis {Ea } of vectors. For any weT*p' X e Tp one
can express the number (w,X) in terms of the components Wi' Xi of
W, X with respect to dual bases {Ea}, {Ea} by the relations

Each fl.':action f on JI defines a one-form df at p by the rule: for

each vector X, (df,X) = Xf.

dfis called the differential off. If (Xl, ... , x") are local coordinates, the
set of differentials (dx!, dx2, ••• , dx") at p form the basis of one-forms
dual to the basis (O/ox!, %x2, •••• a/Ox") of vectors at P. since

(dxi ,%x1) = oxi / Oxl = 8i
1•

In terms of this basis, the differential df of an arbitrary function f is

given by df = (of/ox i ) dxi •

If df is non-zero, the surfaces {f = constant} are (n - 1)-dimensional
manifolds. The subspace of Tp consisting of all vectors X such that
(df, X) = 0 consists of all vectors tangent to curves lying in the
surface {f = constant} through p. Thus one may think of df as a
normal to the surface {f = constant} at p. If a of: 0, a df will also he
a normal to this surface.

From the space 1;, of vectors at p and the space T*p of one-forms
at p. we can form the Cartesian product

n~ = T*p x T*p x '" x T*p x Tp x Tp x '" x Tp,
, J , J

r factors s factors

i.e. the ordered set of vectors and one-forms ('tj\ ... ,'tjr, YI , ... , YB)

where the Ys and 'tjS are arbitrary vectors and one-forms respectively.
A tensor aftype (r, s) at p is a function on n~ which is linear in each

argument. 1fT is a tensor of type (r.s) atp, we write the number into
which T maps the element ('tjI, ... , 'tjr, Yl' ... , Y B) of n~ as

T('tjI, ... ,'tjr, YI , ... , VB)'
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Then the linearity implies that, for example,

T('I)I, ... ,'I)r,aX+pY, YB, ... , YB) = a. T('I)1, ... ,'I)r,X, YB, ... ,YB)

+p. T('I)I, ... , 'l)r, Y, YB, ... ,Y B )

holds for all a, peRI and X, Y e Tp •

The space of all such tensors is called the tens01' product

T~(P) = ~p® ...®; ®,T*p® ... ®T*}'

r factors s factors

In particular, TA(P) = Tp and T~(P) = T*p.
Addition oftens01's of type (r, s) is defined by the rule: (T +T') is the

tensor of type (r,s) atp such that for all Y,eTp, YjieT*p,

(T+T')('I)I, ... ,'I)r, YI, ... , YB) = T('I)I, ... ,'I)r, YI , , VB)

+T'('I)1, ,'I)r, YI, ... , VB)'

Similarly, multiplication of a tensor by a scalar aeRI is defined by the
rule: (aT) is the tensor such that for all Y,eTp, 'l)ieT*p,

(aT) ('1)1, ... , 'l)r, YI, ... , YB) = a. T('I)I, ... , 'l)r, YI, ... ,VB)'

With these rules of addition and scalar multiplication, the tensor
product T~(P) is a vector space of dimension nr+B over RI.

Let ~eTp (i = 1 to r) and wieT*p (j = 1 to s). Then we shall
denote by XI ® ... ® Xr ® WI ® ... ® wBthat element of T~(P)which
maps the element ('1)1, ... ,'I)r, YI, ''', Y

B
) of n~ into

('1)1, XI) (YjB, Xg) ... ('I)r, x,.) (WI, YI) ... (WS, VB)'

Similarly, if ReT~(p) and S eT~(p), we shall denote by R ® S that
element of Ttt:(P) which maps the element ('1)1, ... ,'I)r+p, YI, ... , YB+q)
of n:t~ into the number

R('I)I, ... ,'I)B, YI, ... ,Yr)S('I)B+l, ... ,'I)B+ll, Yr+l' ... , Y r+p)'

With the product ®, the tensor spaces at p form an algebra
over R.

If{Ea}, {Ea} are dual bases of Tp, T*p respectively, then

{Ea, ® ... ® Ea,. ® Eb1 ® ... ® Eb.}, (ai' bi run from 1 to n),

will be a basis for T~(P). An arbitrary tensor T E T~(P) can be expressed
in terms of this basis as
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where {Tal'" a,. bl ... b,} are the components of T with respect to the dual
bases {Ea}, {Ea} and are given by

Tal· .. a,.bl ... b, = T(Eal , ••• , Ea,., Ebl , •.• , Eb.>-
Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

(T +T')al ..·a,.bl...b, = Tal'"a,.bl'" b, +T'al ..·a,.bl... b,.

(aT)al···a,.bl... b, = a. Tal'"a'bl ... b,'

(T ® T')a..··a,.+Pbl ... b....q = Tal ···a,.bl ... b,T'a,.+1···a,.+Pb,u ... bHq'

Because of its convenience, we shall usually represent tensor relations
in this way.

If{Ea,} and {Ea'} are another pair of dual bases for Tp and T*p' they
can be represented in terms of {Ea}and {Ea} by

Ea, = lPa,a Ea

where lPa,a is an n x n non-singular matrix. Similarly'

Ea' = lPa'aEa

(2.2)

(2.3)

where lPa'a is another n x n non-singular matrix. Since {Ea'}' {Ea'} are
dual bases,

Le. lPa,a, lPa'a are inverse matrices, and 8a
b = lPab,lP!>'b'

The components Ta'l ... a"b'l"'!>" of a tensor T with respect to the
dual bases {Ea,}, {Ea'} are given by

They are related to the components Tal···a,.bl ... b, of T with respect to
the bases {Ea}, {Ea} by

The contraction of a tensor T of type (r, s), with components
Tab... dej..•o with respect to bases {Ea}, {Ea}, on the first contravariant
and first covariant indices is defined to be the tensor Oi(T) of type
(r-l,s-l) whose components with respect to the same basis are
Tab... d i eaj... o' ..
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1'1""1 = ..!. {1'"'' - 1'1m}21 .

If {Ea'}' {Ea'} are another pair of dual bases, the contraction Gl(T)
defined by them is

G'l(T) = Ta·b·... d·a'/' ..•o· Eb• ® ® Ed' ® W' ® ... ® E)"

= fPa'a fPah• Th·b·•.. d'a'r rt cf)b.b '" cf)d·d cf)r/ ••• cf)ItII

. Eb ® ® Ed ® EJ ... ® Eo

= Tab ... da/...o~ ® ... ® Ed ® E/® ® Eo = GieT),

so the contraction Oi of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra­
variant and covariant indices. (Ifwe were to contract over two contra­
variant or covariant indices, the resultant tensor would depend on the
basis used.)

The symmetric part of a tensor T of type (2,0) is the tensor SeT)
defined by

for all '1)1' '1)2 E T*p' We shall denote the components S(T)ab of SeT) by
T(ab). then, 1

T<ab) = 21 {Tab + pba}.

Similarly, the components of the skew-symmetric part of T will be
denoted by

In general, the components ofthe symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

Tra1... a,}···/

= fr{sum over all permutations of the indices at to a,(Ta1 ... a,b ..• /)}

and

= ~ {alternating sum over all permutations of the indices
r. a to a (T. b ••• /)}.

1 r 01 ... Or

For example,

Ka1bcd1 = MKabcd +Kadbc +Kacdb - KaMe - KacM - Kadeb}'
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A tensor is symmetric in a given set of contravariant or covariant
indices if it is equal to its symmetrized part on these indices, and is
antisymmetric if it is equal to its antisymmetrized part. Thus, for
example, a tensor T of type (0,2) is symmetric if Tab = l(Tab + Too),
(which we can also express in the form: l1ab) = 0).

A particularly important subset of tensors is the set of tensors of
type (O,q) which are antisymmetric on all q positions (so q ~ n); such
a tensor is called a q-form. IfA and Bare p- and q-forms respectively,
one can define a (p +q)-form A" B from them, where" is the skew­
symmetrized tensor product ®; that is, A" B is the tensor of type
(0, p +q) with components determined by

(A" B)a... bc•••/ = A[a...bBc.../)·

This rule implies (A" B) = (- )Pll (B "A). With this product, the
space of forms (Le. the space of all p-forms for all p, including one­
forms and defining scalars as zero-forms) constitutes the Grassmann
algebra of forms. If {Ea} is a basis of one-forms, tIren the forms
Eal" ... " Eap (airun from 1 ton) are a basisofp-forms, as anyp-form
A can be written A = Aa... I>Ea" ... " Eb, where Aa... l> = A la ...b).

So far, we have considered the set of tensors defined at a point on
the manifold. A set of local coordinates {xi} on an open set "lI in JI
defines a basis {(OjOxi>lp} of vectors and a basis {(dxi)lp} of one-forms
at each point p of "lI, and so defines a basis of tensors of type (r,8) at
nn,nh point; of 41/. RlInh n, lIn,HiR of t;nnRorR will hI' nn,lInrl n, noorrlinfll,n

basis. A Ok tensor field T aftype (r, s) on a set '1'" c JI is an assignment
of an element of ~(p) to each point pe'1'" such that the components
of T with respect to any coordinate basis defined on an open subset
off are Ok functions.

In general one need not use a coordinate basis of tensors, Le. given
any basis of vectors {Ea} and dual basis offorms {Ea} on f, there will
not necessarily exist any open set in f on which there are local
coordinates {xa} such that Ea = o/Oxa and Ea = dxa• However if one
does use a coordinate basis, certain specializations will result; in parti­
cular for any functionf, the relations Ea(Ebf) = Eb(EJ) are satisfied,
being equivalent to the relations o2f/oxa Oxb = o2f/Oxboxo. If one
changes from a coordinate basis Ea = o/Oxa to a coordinate basis
Ea, = OjOxa', applying (2.2), (2.3) to xa, xa' shows that

'" a _ oXO ,If,n' _ oXO'
'Va' - oXO" 'V-a - oXO'

Clearly a general basis {Ea} can be obtained from a coordinate basis
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{%xi } by giving the functions E a' which are the components ofthe Ea
with respect to the basis{%xi}; then (2.2)takestheformE.. = Eai%xi
and (2.3) takes the form Eo = EOidxi , where the matrix EOi is dual to
the matrix Eai.

2.3 Maps of manifolds

In this section we define, via the general concept ofa Ok manifold map,
the concepts of 'imbedding', 'immersion', and of associated tensor
maps, the first two being useful later in the study ofsubmanifolds, and
the last playing an important role in studying the behaviour of
families of curves as well as in studying symmetry properties of
manifolds.

A map ¢ fwm a (}k n-dimensional manifold.A to a Ok' n'-dimensional
manifold .A' is said to be a Or map (r ~ k, r ~ k') if, for any local
coordinate systems in .A and .A', the coordinates of the image point
¢(p) in .A' are or functions of the coordinates ofp in .A. As the map
wiII in general be many-one rather than one-one (e.g. it cannot be
one-one if n > n'), it will in general not have an inverse; and if a Or
map does have an inverse, this inverse will in general not be Or (e.g.
if¢ is the map Rl-.+-Rl given by x-.+-x3, then ¢-l is not differentiable at
the point x = 0).

Iffis a function on.A', the mapping ¢ defines the function ¢*fon.A
as t.he function whose value at the point p of.A is the value ofl at
¢(p), l.e. ¢*f(P) = f(¢(p». (2.5)

Thus when ¢ maps points from .A to .A', ¢* maps functions linearly
from .A' to .A.

If A(t) is a curve through the point p e.A, then the image curve
¢(A(t» in .A' passes through the point ¢(P). If r ~ 1, the tangent
vector to this curve at ¢(P) will be denoted by ¢*(%t).~.I!6<p);one can
regard it as the image, under the map ¢, ofthe vector (o/Oth-Ip. Clearly
¢* is a linear map of Tp(.A) into T~(p)(.A').From (2.5) and the defini­
tion (2.1) of a vector as a directional derivative, the vector map ¢*
can be characterized by the relation: for each Or (r ~ 1) functionf at
¢(P) and vector X at p,

X(¢*f)lp = ¢*X(f)I~(p)' (2.6)

Using the vector mapping ¢* from.A to J(', we can if r ~ 1 define
a linear one-form mapping ¢* from T*!6<p)(.A') to T*p(.A) by the
condition: vector-one-form contractions are to be preserved under the
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(2.7)

maps. Then the one-form A e T* \6<p) is mapped into the one-form
¢*A eT*p where, for arbitrary vectors X eTp,

(¢*A,X)lp = (A,¢*X)II6(p)'

A consequence of this is that

¢*(df) = d(¢*f)·

The maps ¢* and ¢* can be extended to maps of contravariant
tensors from JI to JI' and covariant tensors from JI' to JI respec­
tively, by the rules ¢*: TeT~(p)-+-¢*TeT~(¢(p» where for any

TJ
i
eT*\6<p), T(.I.. 1 .I.*-r)1 _.I. T( 1 r)1't' TJ , ••• , 't' " p - 't'* TJ, ••• , TJ 16(P)

and ¢*: Te T~(¢(P»)-+-¢*TeT~(p),

where for any X. e Tp ,

¢*T(X1, ••• , Xs)lp = T(¢*X1, "', ¢.Xs )II6(P)·

When r ~ 1, the Or map ¢ from JI to JI' is said to be of rank s at p
if the dimension of ¢.(1;,(JI)) is s. It is said to bc injective at p if 8 = n
(and so n ~ n') at p; then no vector in Tp is mapped to zero by ¢*.It
is said to be 8urjective if 8 = n' (so n ~ n').

A Or map ¢ (r ~ 0) is said to be an immersion if it and its inverse
are Or maps, i.e. if for each point peJl there is a neighbourhood
o/J of p in JI such that the inverse ¢-l restricted to ¢(tlIl) ill also
n, (!r map. Thill implil"'11 11. < 11'. "fly 1.llI"' implir.it. fllnr.t.ion t.hl"'nrl"'m
(Spivak (1965), p. 41), when r ~ 1, ¢ will be an immersion ifand only if
it is injective at every point peJl; then ¢* is an isomorphism of Tp
into the i:p1age ¢*(Tp) C T16(p)' The image ¢(JI) is then said to be an
n-dimensional immersed 8ubmanifold in JI'. This submanifold may
intersect itself, i.e. ¢ may not be a one-one map from JI to ¢(JI)
although it is one-onewhen restricted to a sufficientlysmallneighbour­
hood of JI. An immersion is said to be an imbedding if it is a homeo­
morphism onto its imag~ in the induced topology. Thus an imbedding
is a one-one immersion; however not all one-one immersions are
imbeddings, cf. figure 6. A map ¢ is said to be a proper map if the
inverse image ¢-I(:>f") of any compact set:>f" c JI' is compact. It can
be shown that a proper one-one immersion is an imbedding. The
image ¢(JI) ofJI under an imbedding ¢ is said to be an n-dimensional
imbedded 8ubmanifold of JI'.

The map ¢ from JI to JI' is said to be a Or diffeomorphism if it is
a one-one or map and the inverse ¢-1 is a Or map from JI' to JI. In
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this case. n = n', and ¢> is both injective and surjective if r ~ 1; con­
versely, the implicit function theorem shows that if¢>* is both injective
and surjective at P. then there is an open neighbourhood 0/1 ofP such
that 9: 0/1 -+- 9(0/1) is a diffeomorphism. Thus ¢> is a local diffeomorphism
near p if ¢>* is an isomorphism from Tp to Tf>(p)'

y

FIGURE 6. A one-one immersion ofRl in R2 which is not an imbedding. obtained
by joining smoothly part of the curve y =sin (l/x) to the curve

((y,O); - C() < y < I}.

When the map if> is a Cr (r ~ 1) diffeomorphism, ¢>* maps Tp(..A) to
T¢(p)(..A') and (¢>-l) * 'maps T*p(..A) to T*¢(P)(..A'). Thus we can define

a map 9* ofT~(p)toT~(9(P»for any r. 8, by

T(ljl•...• ljB, Xl' ...• Xr)lp

= 9*T((¢>-1)*ljl•... , (¢>-l )*ljB, ¢>*Xl.... , ¢>*x,>! ¢(p)

for any XieTp , ljieT*p. This map of tensors of type (r. 8) on..A to
tensors of type (r, 8) on..A' preserves symmetries and relations in the
tensor algebra; e.g. the contraction of ¢>* T is equal to ¢>* (the con­
traction of T).

2.4 Exterior differentiation and the Lie derivative

We shall study three differential operators on manifolds, the first two
being defined purely by the manifold structure while the third is
defined (see §2.5) by placing extra structure on the manifold.
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The exterior differentiation operator d maps r-form fields linearly to
(r+ 1)-form fields. Acting on a zero-form field (Le. a function) f, it
gives the one-form field df defined by (cf. §2.2)

(df, X) = Xffor all vector fields X (2.8)

and acting on the r-form field

A = Aob...ddx"" dxb " ... "dxd

it gives the (r+ I)-form field dA defined by

dA = dAob••• d " dx"" dxb" ... "dxd
• (2.9)

To show that this (r + 1)-form field is independent of the coordinates
{xa} used in its definition, consider another set of coordinates {xa'}.
Then A A .:I ...n' .:I...h' d-A'= a'I>' d' u;(;- "u;(;- "..." ;c- •

where the components Aa'/f d' are given by

Oxa axl> oxd
Aa·/f... d' = ax'" axl>' '" axd,Aob...d.

Thus the (r+ I)-form dA defined by these coordinates is

dA = dAa'/f ... d' dx'" " dxb' " '" " dxd'

d (ax" axl> axd A ) d . dxl>' d-
= axa' Oxl>' ..• axd' al> ... d " x"" " ... " ;c-

Oxa axl> Oxd dA d'.:I ...h' .:I -d'
= ax<' axl>' ... axd' ob ... d" x"" u;(;- " ••• " u;(;-

a2x
a

()xb Oxd A M d 'dxb' .:I-d'
+ ax<' a~ axlf'" axd' al> d "x" " " ... "u;(;- + ... + ...

= dAob... d " dx"" dxb" "dxd

as a2xa/ax'" axe' is symmetric in a' and e', but M" dx'" is skew. Note
that this definition only works for forms; it would not be independent
of the coordinates used if the " product were replaced by a tensor
product. Using the relation d(fg) = gdf+fdg, which holds for arbi­
trary functions f, g, it follows that for any r-form A and form B,
d(A" B) = dA" B +(- )TA" dB. Since (2.8) implies that the local
coordinate expression for df is df= (af/Oxi)dxi, it follows that
d(df) = (a2j/Oxi axJ) dxi " dxJ = 0, as the first term is symmetric and
the second skew-symmetric. Similarly it follows from (2.9) that

d(dA) = 0
holds for any r-form field A.
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d(¢>*A) = ¢>*(dA)

The operator d commutes with manifold maps. in the sense: if
¢>: JI -:,.JI' is a Or (r ~ 2) map and A is a Ok (k ~ 2) form field on JI'.
then (by (2.7»

(which is equivalent to the chain rule for partial derivatives).
The operator d occurs naturally in the general form of Stokes'

theorem on a manifold. We first define integration of n-forms: let JI
be a compact. orientable n-dimensional manifold with boundary oJl
and let {fa} be a partition of unity for a finite oriented atlas {o/Ia' ¢>a}.
Then ifA is an n-form field on JI. the integral ofA overJI is defined as

f A = (n!)-l L r faAu ... ndxldx2 ... dxn• (2.10)
.If a )9a('IIa)

where A u ...n are the components of A with respect to the local co­
ordinates in the coordinate neighbourhood 0/1a' and the integrals on
the right-hand side are ordinary multiple integrals over open sets
¢>a(o/Ia) of R". Thus integration of forms on JI is defined by mapping
the form. by local coordinates. into Rn and performing standard
multiple integrals there. the existence of the partition of unity
ensuring the global validity ofthis operation.

The integral (2.10) is well-defined. since if one chose another atlas
{'~p, tJrp} and partition of unity {gp} for this atlas. one would obtain
the integral

(nl)-lL r gpA1'2, ... ".dx1·dx2' ... dx..••
p )'iIl<7"Il)

where xi' are the corresponding local coordinates. Comparing these
two quantities in the overlap (o/Ia n'tp) of coordinate neighbourhoods
belonging to two atlases. the first expression can be written

and the second can be written

Comparing the transformation laws for the form A and the multiple

integrals in R". these expressions are equal at each point. so f.H A is

independent of the atlas and partition of unity chosen.
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Similarly, one can show that this integral is invariant under
diffeomorphisms:

if 1> is a Or diffeomorphism (r ~ 1) from JI to JI'.
Using the operator d, the generalized Stokes' theorem can now be

written in the form: ifB is an (n-1)-form field on JI, then

J B =f dB,
iJJI JI

which can be verified (see e.g. Spivak (1965» from the definitions
above; it is essentially a .general form of the fundamental theorem of
calculus. To perform the integral on the left, one has to define an
orientation on the boundary oJl ofJI. This is done as follows: if '11.. is
a coordinate neighbourhood from the oriented atlas of JI such that
'11.. intersects oJl, then from the definition of oJl, 1>..(fJlI.. noJl) lies in
the plane Xl = 0 in Jl'B and 1>..('11.. nJI) lies in the lower half Xl ~ o.
The coordinates (x!, x3 , ••• , xll.) are then oriented coordinates in the
neighbourhood '11.. noJl of oJl. It may be verified that this gives an
oriented atlas on oJl.

The other type of differentiation defined naturally by the manifold
structure is Lie differentiation. Consider any Or (r ~ 1) vector field X
on JI. By the fundamental theorem for systems ofordinary differential
equations (BurkiIl (1956» there is a unique maximal curve A(t) through
each point p ofJI such that A(O) = p and whose tangent vector at the
point A(t) is the vector XIAw. If {xi} are local coordinates, so that the
curve A(t) has coordinates xi(t) and the vector X has components Xi,

then this curve is locally a solution of the set of differential equations

This curve is called the integral curve ofX with initial point p. For each
point q ofJI, there is anppen neighbourhood '11 ofq and an E > 0 such
that X defines a family of diffeomorphisms 1>,: '11 -:,..JI whenever
ItI < E, obtained by taking each point p in fJlI a parameter distance t
along the integral curves of X (in fact, the 1>, form a one-parameter
local group of diffeomorphisms, as 1>1+8 = 1>,01>8 = 1>801>, for
Itl, 181, It+81 < E, so 1>_, = (1),)-1 and 1>0 is the identity). This
diffeomorphism maps each tensor field T at p of type (r,8) into

1>,* TI 9,(p)·

The Lie derivative LxT of a tensor field T with respect to X is
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defined to be minus the derivative with respect to t of this family of
tensor fields, evaluated at t = 0, i.e.

From the properties of ¢>*, it follows that
(1) Lx preserves tensor type, i.e. if T is a tensor field of type (r,8),

then LxT is also a tensor field of type (r,8);

(2) Lx maps tensors linearly and preserves contractions.
As in ordinary calculus, one can prove Leibniz' rule:
(3) ForarbitrarytensorsS, T,Lx(S (8) T) = LxS (8)T+S (8) LxT.
Direct from the definitions:
(4) Lxf = Xf, where f is any function.
Under the map ¢>" the point q = ¢>_,(P) is mapped into p. Therefore

¢>,* is a map from Til to T1J' Thus, by (2.6),

(¢>,* Y)fl1J = Y(¢>,*J>IIl'

If {xi} are local coordinates in a neighbourhood ofp, the coordinate
components of ¢>,* Y at pare

(¢>,* Y)il 1J = ¢>,* YI1JXi = yJ11l &~(q) (xi(p»

= &i(¢>,(q» YJI
&J(q) 11'

Now dxi(¢>,(q» _ Xii
dt - tJkh

therefore ~ (&i(¢>,(q»)1 _ aXil
dt axl (q) t-O - &J 1J'

d aYi aXi
so (LXY)i = - dt(¢>'* Y)il,_o = &1 XJ- &1 YJ. (2.11)

One can rewrite this in the form

(Lx Y)f = X(Yf)- Y(Xf)

for all 0 2 functionsJ. We shall sometimes denote LxY by [X, Y], i.e.

LxY = -LyX = [X, Y] = -[V,X].

If the Lie derivative of two vector fields X, Y vanishes, the vector
fields are said to commute. In this case, if one starts at a point p, goes
a parameter distance t along the integral curves of X and then a
parameter distance 8 along the integral curves ofY, one arrives at the
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Same point as if one first went a distance 8 along the integral curves
of Y and then a parameter distance t along the integral curves of X
(see figure 7). Thus the set of all points which can be reached along
integral curves of X and Y from a given point p will then form an
immersed two-dimensional submanifold through p.

P.v(p,x(p»
=IIrx(lI.v(p»

FIGURE 7. The transformations generated by commuting vector fields X, Y
move a point P to points ¢i,X(P). ¢i.y(p) respectively. By successive applications
of these transformations. P is moved to the points of a two-surface.

The components of the Lie derivative ofa one-form w may be found
by contracting the relation

Lx(w (8)Y) = Lxw (8)V+w (8)LxY

(Lie derivative property (3» to obtain

Lx(w, Y) = (Lxw, Y) + (w, LxV)

(by property (2) of Lie derivatives), where X, Yare arbitrary 0 1

vector fields, and then ~hoosingV as a basis vector E,. One finds the
coordinate components (on choosing E i = olaxi ) to be

(LXW)i = (Owilaxi)Xi+wi(oXilaxi)

because (2.11) implies
(Lx(olaxi))i = - oXilaxi.

Similarly, one can find the components of the Lie derivative of any
Or (r ~ 1) tensor field T of type (r,8) by using Leibniz' rule on

L x(T(8)Ea(8) ... (8)Ed(8)Ee(8) '" (8) Eo)'
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d(Lxw) = Lx(dw).

and then contracting on all positions. One finds the coordinate com­
ponents to be

( T. T)ab...d = (oTab ... d /oXi)Xi_Tib ... d:f oxa/8xi
AJX r,f...o e/ o e ... 0

- (all upper indices) + Tab di/ ...0 oXi/oxe + (all lower indices).
(2.12)

Because of (2.7), any Lie derivative commutes with d, Le. for any
p-form field w,

From these formulae, as well as from the geometrical interpretation,
it follows that the Lie derivative LxTip of a tensor field T of type
(r,8) depends not only on the direction of the vector field X at the
point p, but also on the direction of X at neighbouring points. Thus
the two differential operators defined by the manifold structure are
too limited to serve as the generalization of the concept ofa partial
derivative one needs in order to set up field equations for physical
quantities on the manifold; d operates only on forms, while the
ordinary partial derivative is a directional derivative depending only
on a direction at the point in question, unlike the Lie derivative. One
obtains such a generalized derivative, the covariant derivative, by
introducing extra structure on the manifold. We do this in the next
section.

2.5 Covariant differentiation and the curvature tensor

The extra structure we introduce is a (affine) connection on JI.
A connection V at a point p ofJI is a rule which assigns to each vector
field X at p a differential operator Vx which maps an arbitrary
Or (r ~ 1) vector field Y into a vector field VxY, where:

(1) VxY is a tensor in the argument X, Le. for any functions f, g,
and 0 1 vector fields X, Y, Z,

VfX+oyZ =fVxZ+gVyZ;

(this is equivalent to the requirement that the derivative Vx at p
depends only on the direction of X at p);

(2) VxYislinearin Y, i.e. for any Ql vector fields Y, Zanda,pe Rl,

Vx(aY + PZ) = aVxY + PVxZ;

(3) for any 0 1 functionfand Ql vector field Y,

Vx(fY) = X(f)Y +fVxY'



2.5] COVARIANT DIFFERENTIATION 31

Then VxY is the covariant derivative (with respect to V) of Y in the
direction X at p. By (1), we can define VY, the covariant derivative ofY,
as that tensor field of type (1, 1) which, when contracted with X,
produces the vector Vx Y. Then we have

(3)~V(jY)=df(8)Y +fVY.

A Or connection V on a Ok manifold .A (k ~ r + 2) is a rule which
assigns a connection V to each point such that ifY is a Or+l vector field
on .A, then VY is a Or tensor field.

Given any Or+l vector basis {Ea} and dual one-form basis {Ea} on
a neighbourhood 0/1, we shall write the components ofVY as ya;I>' so

VY = ya; I> EI>(8)Ea.

The connection is determined on 0/1 by n3 Or functions rabe defined by

rabe = (Ea, VEbEc)~VEc= r abe EI>(8)Ea.

For any Ql vector field Y,

VY = V(ycEc) = dye(8)Ec+ y crabe EI>(8)E
Q

•

Thus the components of VY with respect to coordinate bases {%xa},
{dxl>} are ya;1> = oya/oxl>+ rabe yc.

The transformation properties of the functions rabe are determined by
connection properties (i), (2), (3); for

ra'w = (Ea', VEb.Ec') = (<1>a'aEa, V~b'I>Eb(<1>c,CEc»

= <1>a'a <1>I>,I>(EI>(<1>c.a) + <1>c'c ral>e>

ifEQ , = <1>",a E", Ea' = <1>a'" Ea. One can rewrite this as

ra'!>'c' = <I>a'a(EI>,(<1>c,a) + <1>1>,1> <1>c'c rabe)'

In particular, if the bases are coordinate bases defined by coordinates
{xa}, {xa'}, the transformation law is

, ox'" (02xa Oxl> axe )
r

a
I>'c' = Oxa axil oxc' +oxl>' oxc' r

abe •

Because of the term EI>.(<1>c,a), the r abe do not transform as the compo-
"nents of a tensor. However if VY and VY are covariant derivatives

obtained from two different connections, then

VY - ~y = crabe- rabe) YCEI>(8)Ea

will be a tensor. Thus the difference terms crabe - rabe) will be the
components of a tensor.
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The definition of a covariant derivative can be extended to any
Or tensor field ifr ~ 1 by the rules (cf. the Lie derivative rules):

(1) ifT is a or tensor field oftype (g, s), then VT is a Or-l tensor field
of type (g, s+ 1);

(2) V is linear and commutes with contractions;
(3) for arbitrary tensor fields S, T, Liebniz' rule holds, i.e.

V(S®T) = VS®T+S®VT;

(4) Vf= dffor any functionj.
We write the components of VT as (VEhT)a...de•.•o = Ta...de•.. D;h. As

a consequence of (2) and (3),

VEb Ec = - :reba Ea,

where {Ea} is the dual basis to {Ea}, and methods similar to those used
in deriving (2.12) show that the coordinate components of VT are

TaIJ...d = oTab...d /ox1' +ra
h Tib...d

ef•.•D;h ef••.o i ef•••D

+ (all upper indices) - rfheTaIJ...dif...D - (all lower indices). (2.13)

As a particular example, the unit tenso~ Ea®Ea, which has compo­
nents 8a

b, has vanishing covariant derivative, and so the generalized
unit tensors with components 8<llJ.b18a'b

2
'" 8a'>b" 8[alb18aobl ... 8aplbp

(p ~ n) also have vanishing covariant derivatives.
If T is a Or (r ~ 1) tensor field defined along a Or curve A(t), one can

define DT/ot, the covariant derivative ofT along A(t), as ViJliJt T where T
is any Or tensor field extending T onto an open neighbourhood of A.
DT/ot is a or-I tensor field defined along A(t), and is independent of
the extension T. In terms of components, if X is the tangent vector
to A(t), then DTa...de•••%t = Ta...de. .•D;hXh. In particular one can choose
local coordinates so that A(t) has the coordinates xa(t), Xa = dxa/dt,
and then for a vector field Y

Dya/ot = oya/ot+ ra
bc ycw;bJdt. (2.14)

The tensor T is said to be parallelly transported along AifDTlot = O.
Given a curve A(t) with endpoints p, g, the theory of solutions of
ordinary differential equations shows that if the connection V is at
least 0 1- one obtains a unique tensor at g by parallelly transferring
any given tensor from p along A. Thus parallel transfer along A is a
linear map from T;(p) to T;(g) which preserves all tensor products and
tensor contractions, so in particular if one parallelly transfers a basis
of vectors along a given curve from p to g, this determines an iso­
morphism of Tv to Til. (If there are self-intersections in the curve,
p and g could be the same point.)
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A particular case is obtained by considering the covariant deriva­
tive of the tangent vector itself along A. The curve A(t) is said to be

a geodesic curve if D ( 8 )
VxX= - -

8t at A

is parallel to (8/8th, i.e. ifthere is a functioni (perhaps zero) such that
Xa;bXb = iXa. For such a curve, one can find a new pammeter v(t)
along the curve such that

~(:vt = 0;

such a parameter is called an affine parameter. The associated tangent
vector V = (8/8vh is parallel to X but has its scale determined by
V(v) = 1; it obeys the equations

d2xa dxb dxC
Va;b Vb = 0<:> dv2 +ra

bc dv dv :;:: 0, (2.15)

the second expression being the local coordinate expression obtainable
from (2.14) applied to the vector V. The affine parameter of a geodesic
curve is determined up to an additive and a multiplicative constant,
Le. up to transformations v' = av+b where a, b are constants; the
freedom of choice of b corresponds to the freedom to choose a new
initial point A(O), the freedom of choice in a corresponding to the
freedom to renormalize the vector V by a constant scale factor,
V' = (l/a) V. The curve parametrized by any ofthese affine parameters
is said to be a geodesic.

Given a Or (r ~ 0) connection, the standard existence theorems for
ordinary differential equations applied to (2.15) show that for any
point p ofJI and any vector Xp at p, there exists a maximal geodesic
Ax(v) in JI with starting point p and initial direction X p , Le. such that
Ax(O) = p and (8/8vhltl~o= X p • Ifr ~ 1-, this geodesic is unique and
depends euiitinuously on p and X p • If r ~ 1, it depends differentiably
on p and Xp . This means that if r ~ 1, one can define a Or map exp:
Tp ~ JI, where for each X e Tp , exp (X) is the point in JI a unit para­
meter distance along the geodesic Ax from p. This map may not be
defined for all XeTp , since the geodesic Ax(V) may not be defined for
all v. If v does take all values, the geodesic A(V) will be said to be a
complete geodesic. The manifold JI is said to be geodesically complete
if all geodesics on JI are complete, that is ifexp is defined on all Tp for
every point p ofJI.

WhetherJI is complete or not, the map expp is ofrank n at p. There­
fore by the implicit function theorem (Spivak (1965» there exists an
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open neighbourhood~ of the origin in Tp and an open neighbourhood
.A-; of p in J! such that the map exp is a (Jr diffeomorphism of O/V0

onto.A-;. Such a neighbourhood.A-; is called a normal neighbourhood
ofp. Further, one can choose.A-; to be convex, Le. to be such that any
point q of .A-; can be joined to any other point r in .A-; by a unique
geodesic starting at q and totally contained in.A-;. Within a convex
normal neighbourhood.Al" one can define coordinates (Xl, ... ,x1l ) by
choosing any point qe.Al", choosing a basis {Ea} of Tq, and defining the
coordinates of the point r in.K by the relation r = exp (xaEa ) (Le. one
assigns to r the coordinates, with respect to the basis {Ea}, of the point
exp-1 (r) in Tq.) Then (8/axi )lq = E i and (by (2.15») J'i{Jkllq = O. Such
coordinates will be called normal coordinates based on q. The existence
of normal neighbourhoods has been used by Geroch (1968c) to prove
that a connected OS Hausdorff manifold J! with a 0 1 connection has
a countable basis. Thus one may infer the property ofparaeompactness
ofa 0 8 manifold from the existence ofa 0 1 connection on the manifold.
The' normal' local behaviour of geodesics in these neighbourhoods is
in contrast to the behaviour ofgeodesics in the large in a general space,
where on the one hand two arbitrary points cannot in general be
joined by any geodesic, and on the other hand some of the geodesics
through one point may converge to 'focus' at some other point. We
shall later encounter examples of both types of behaviour.

Given a Or connection V, one can define a Or-1 tensor field T of
type (1, 2) by the relation

T(X, Y) = Vx Y - VyX - [X, Y],

where X, Yare arbitrary Or vector fields. This tensor is called the
torsion tensor. Using a coordinate basis, its components are

T'sk = r iSk - r'kS'

We shall deal only with torsion-free connections, Le. we shall assume
T = O. In this case, the coordinate components of the connection obey
riSk = r'kj, so such a connection is often called a symmetric connec­
tion. A connection is torsion-free if and only if !:ij = !:ji for all func­
tions f. From the geodesic equation (2.15) it follows that a torsion-free
connection is completely determined by a knowledge of the geodesics
onJ!.

When the torsion vanishes, the covariant derivatives ofarbitrary 0 1

vector fields X, Yare related to their Lie derivative by

[X, Y] = VxY - VyX<:> (LxYr = ya:bXb-xa:bP, (2.16)
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and for any 0 1 tensor field T of type (r, s) one finds

( T. T)ab...d = Tab...d Xh _ Tib...d Xa
.6.JX ef...g ef...g; h ef...g;1

- (all upper indices) +Tab...dif...gXi:e+ (all lower indices). (2.17)

One can also easily verify that the exterior derivative is related to the
covariant derivative by

dA = Aa...c;ddxd" dxa" ... "dxC<:> (dA)a...cd = (- )J'Ara...c;dl'

where A is any p-form. Thus equations involving the exterior deriva­
tive or Lie derivative can always be expressed in terms of the co­
variant derivative. However, because of their definitions, the Lie
derivative and exterior derivative are independent of the connection.

If one starts from a given point p and parallelly transfers a vector
Xp along a curve y that ends at p again, one will obtain a vector X'"
which is in general different from X p ; if one chooses a different curve
y', the new vector one obtains at p will in general be different from
Xp and X'p ' This non-integrability of parallel transfer corresponds to
the fact that the covariant derivatives do not generally commute. The
Riemann (curvature) tensor gives a It\easure of tliis non-commutation.
Given Or+l vector fields X, Y, Z, a Or-l vector field R(X, Y) Z is defined
by a Or connection V by

R(X, Y)Z = Vx(VyZ)- Vy(VxZ)- VlX.YJZ, (2.18)

Then R(X, Y) Z is linear in X, Y, Z and it may be verified that the
'value of R(X, Y) Z at p depends only on the values of X, Y, Z at p, i.e.
it is a Or-l tensor field of type (3,1). To write (2.18) in component
form, we define the second covariant derivative VVZ of the vector Z
as the covariant derivative V(VZ) of VZ; it has components

Za;bC = (Za;b);C'

Then (2.18) can be written

RabcdxcYdZb = (za; d ~d);cXC- (za:dXd);c ye

_za: d(Yd:cxc_Xd;c YC)
= (za;dc-za;Cd)XCYd,

where the Riemann tensor components Rabcd with respect to dual
bases {Eah {Ea} are defined by Rabcd = (Ea, R(Ec' Ed) Eb). As X, Yare

arbitrary vectors, za;dc-za;Cd = RabcdZb (2.19)

expresses the non-commutation of second covariant derivatives of Z
in terms of the Riemann tensor.
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Since

VX(l'J®VyZ) = Vxl'J®VyZ+l'J®VxVyZ

=> (l'J, VxVyZ) = X«l'J, VyZ»- (Vxl'J, VyZ)

holds for any 02 one-form field l'J and vector fields X, Y, Z, (2.18)
implies

(2.21a)

(Ea,R(Ee, Ed)Eb) = Ee«Ea, VEdEb»-Ed«Ea, VEcEb»

- (VEcEa, VEdEb)+ (VEdEa, VEcEb)- (Ea, VlEc.~lEb)'

Choosing the bases as coordinate bases, one finds the expression

Rabecl = aradb/8xC - ara
eb/8xd + rae/rl db - r ad/r/eb (2.20)

for the coordinate components of the Riemann tensor, in terms of the
coordinate components of the connection.

It can be verified from these definitions that in addition to the
symmetry

Rabecl = - RaMe <:> Rab<cdJ = 0

the curvature tensor has the symmetry

Ba[bed) = O<:>Rabecl+Radbc+Raedb = O. (2.21b)

Similarly the first covariant derivatives of the Riemann tensor satisfy
Bianchi'8 identities

Rab[ed;cl = O<:>Rabecl;c+Rabec;d+Rabdt;e = O. (2.22)

It now turns out that pamllel transfer of an arbitrary vector along
an arbitrary closed curve is locally integrable (i.e. X 'p is necessarily the
same as Xz, for eachpE.A') only if Rabed = 0 at all points of.A'; in this
case we say that the connection isflat.

By contracting the curvature tensor, one can define the Ricci tensor
as the tensor of type (0,2) with components

R M = Rabad·

2.6 The metric

g(X,Y)

A metric tensor g at a point p E.A' is a symmetric tensor of type (0, 2)
at p, so a Or metric on.A' is a Or symmetric tensor field g. The metric g
at p assigns a <magnitude' (Jg(X, X)j)t to each vector X ETp and
defines the <cos angle' --

(jg(X, X) . g(Y, Y>!>l

between any vectors X, Y ETp such that g(X, X) . g(Y, Y) =1= 0; vectors
X, Y will be said to be orthogonal if g(X, Y) = O.
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The components of g with respect to a basis {Ea} are

gab = g(Ea, Eb) = g(Eb, Ea ),

i.e. the components are simply the scalar products of the basis vectors
Ea. Ifa coordinate basis {8/8xa} is used, then

g = gab dxa®dxb• (2.23)

Tangent space magnitudes defined by the metric are related to
magnitudes on the manifold by the definition: the path length between
points p = y(a) and q = y(b) along a 0 0, piecewise 0 1 curve y(t) with
tangent vector 8/8t such that g(8/8t, 8/8t) has the same sign at all points
along y(t), is the quantity

L = f: <Ig(8/8t, 8/at)l)* dt. (2.24)

We may symbolically express the relations (2.231 (2.24) in the form

ds2 = gi;dxidx;

used in classical textbooks to represent the length of the •infinitesimal'
arc determined by the coordinate displacement xC+-x'+dx'.

The metric is said to be non-degenerate at p if there is no non-zero
vector X E Tp such that g(X, Y) = 0 for all vectors Y E Tp • In terms of
components, the metric is non-degenerate if the matrix (gab) of com­
ponents ofg is non-singular. We shall from now on always assume the
metric tensor is non-degenerate. Then we can define a unique sym­
metric tensor of type (2, 0) with components gab with respect to the
basis {Ea} dual to the basis {Ea}, by the relations

gabgbe = 8a
e,

i.e. the matrix (gab) of components is the inverse of the matrix (gab).
It follows that the matrix (gab) is also non-singular, so the tensors
gab, gab can be used to give an isomorphism between any covariant
tensor argument and aIlY contravariant argument, or to •raise and
lower indices'. Thus, if Xa are the components of a contravariant
vector, then X a are the components ofa uniquely associated covariant
vector, where X a = gabXb, Xa = gabXb; similarly, to a tensor Tab of
type (0,2) we can associate unique tensors Tab = gac~b' Tab = gbeTac,
Tab = gacgbd~d. We shall in general regard such associated covariant
and contravariant tensors as representations of the same geometric
object (so in particular, gab' 8aband gab may be thought ofas representa­
tions (with respect to dual bases) of the same geometric object g),
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although in some cases where we have more than one metric we shall
have to distinguish carefully which metric is used to raise or lower
indices.

The signature of g at p is the number of positive eigenvalues of the
matrix (gab) at p, minus the number of negative ones. If g is non­
degenerate and continuous, the signature will be constant on JI; by
suitable choice of the basis {Ea}, the metric components can at any
point p be brought to the form

gab = diag (+ 1, + 1, ... , + 1, -1, ... , -1),

't(n+s)terms
J

t(~-s)ter~
where s is the signature ofg and n is the dimension of JI. In this case
the basis vectors {Ea} form an orthonormal set at p, Le. each is a unit
vector orthogonal to every other basis vector.

A metric whose signature is n is called a positive definite metric; for
such a metric, g(X, X) = 0 => X = 0, and the canonical form is

gab = diag( + 1, ... , + 1).
" ",

nterms

A positive definite metric is a 'metric' on the space, in the topological
sense of the word.

A metric whose signature is (n - 2) is called a Lorentz metric; the
canonical form is

gab = diag(+1, ... , +1, -1).
'" ...

(n-1)terms

With a Lorentz metric on JI, the non-zero vectors at p can be divided
into three classes: a vector XeTp being said to be timelike, null, or
spacelike according to whether g(X, X) is negative, zero, or positive,
respectively. The null vectors form a double cone in Tp which separates
the timelike from the spacelike vectors (see figure 8). IfX, Yare any
two non-spacelike (i.e. timelike or null) vectors in the same half of the
light cone at p, then g(X, Y) ~ 0, and equality can only hold if X and
Yare parallel null vectors (Le. if X = aY, g(X, X) = 0).

Any paracompact Or manifold admits a Or-l positive definite metric
(that is, one defined on the whole ofJI). To see this, let {fa} be a parti­
tion of unity for a locally finite atlas {Olia, ~a}' Then one can define g by,

g(X, Y) = "i:.Ja«~a)* X, (~a)*V),
a

where < , ) is the natural scalar product in Euclidean space Rn;
thus one uses the atlas to determine the metric by mapping the
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FIGURE 8. The null cones defined by a. Lorentz metric.

Euclidean metric into.L. This is clearly not invariant under change of
atlas, so there are many such positive definite metrics on .L.

In contrast to this, a Or paracompact manifold admits a Or-J
Lorentz metric if and only if it admits a non-vanishing or-I line
element field; by a line element field is meant an assignment of a pair
of equal and opposite vectors (X, - X) at each point p of.L, i.e. a line
element field is like a vector field but with undetermined sign. To see
this, let g be a Or-l positive definite metric defined on the manifold.
Then one can define a Lorentz metric g by

(y Z)'= :l(Y Z)_2 g(X, Y)g(X,Z)
g, II' g(X,X)

at each point p, where X is one of the pair (X, - X) at p. (Note that as
X appears an even number of times, it does not matter whether X or
-X is chosen.) Then g(X,X) = -g(X,X), and ifY, Z are orthogonal
to X with respect to g, they are also orthogonal to X with respect to
g and g(Y,Z) = g(Y,Z). Thus an orthonormal basis for g is also an
orthonormal basis for g. As g is not unique, there are in fact many
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Lorentz metrics on .L if there is one. Conversely, if g is a given
Lorentz metric, consider the equation gabXb = A§abXb where g is any
positive definite metric. This will have one negative and (n-l)
positive eigenvalues. Thus the eigenvector field X corresponding to
the negative eigenvalue will locally be a vector field determined up to
a sign and a normalizing factor; one can normalize it by gabXaXb = - 1,
so defining a line element field on.L.

In fact, any non-compact manifold admits a line element field,
while a compact manifold does so if and only if its Euler invariant is
zero (e.g. the torus T2 does, but the sphere 8 2 does not, admit a line
element field). Itwill later turn out that a manifold can be a reasonable
model ofspace-time only if it is non-compact, so there will exist many
Lorentz metrics on .L.

So far, the metric tensor and connection have been introduced as
separate structures on.L. However given a metric g on.L, there is
a unique torsion-free connection on.L defined by the condition: the
covariant derivative of g is zero, Le.

gab;c = O. (2.25)

With this connection, parallel transfer of vectors preserves scalar
products defined by g, so in particular magnitudes of vectors are
invariant. For example if8/at is the tangent vector to a g~desic, then
g(8/8t, 8/8t) is constant along the geodesic.

From (2.25) it follows that

X(g(Y,Z)) = Vx(g(Y,Z)) = Vxg(Y,Z)+g(VxY,Z)

+g(Y, Vx Z) = g(VxY, Z) +g(Y, Vx Z)

holds for arbitrary 0 1 vector fields X, Y, Z. Adding the similar expres­
sion for Y(g(Z, X)) and subtracting that for Z(g(X, V)) shows

g(Z, VxY) = H- Z(g(X, V)) + Y(g(Z, X)) +X(g(Y, Z))

+g(Z, [X, V]) +g(Y, [Z, X]) - g(X, [Y, Z])}.

Choosing X, Y, Z as basis vectors, one obtains the connection

components r = g(E V E) = g r dabc Q' Bb c ad be

in terms of the derivatives of the metric components gab = g(Ea, Eb),

and the Lie derivatives of the basis vectors. In particular, on using
a coordinate basis these Lie derivatives vanish, so one obtains the
usual Christoffel relations

r abc = H8gQ,,/8xC+8gacl8xl' - 8gbc/8xa}

for the coordinate components of the connection.

(2.26)
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From now on we will assume that the connection onJI is the unique
0'-1 torsion-free connection determined by the 0" metric g. Using this
connection, one can define normal coordinates (§2.5) in a neighbour­
hood of a point q using an orthonormal basis of vectors at q. In these
coordinates the components gab of g at q will be ± 8ab and the compo­
nents r a

be of the connection will vanish at q. By 'normal coordinates',
we shall in future mean normal coordinates defined using an ortho­
normal basis.

The Riemann tensor of the connection defined by the metric is a
0'-2 tensor with the symmetry

(2.27a)

(2.27b)

in addition to the symmetries (2.21); as a consequence of (2.21) and
(2.27 a), the Riemann tensor is also symmetric in the pairs of indices
{ab}, {cd}, Le.

This implies that the Ricci tensor is symmetric:

R ab = R ba·

The curvature 8calar R is the contraction of the Ricci tensor:

(2.27c)

R = Raa = Rabadgbd.

With these symmetries, there are hn2(n2 - 1) algebraically inde­
pendent components of Rabcd, where n is the dimension ofM; in(n + 1)
of them Olin be represented by the components of the Ricci tensor. If
n = 1, R abed = 0; if n = 2 there is one independent component of
R abed, which is essentially the function R. If n = 3, the Ricci tensor
completely determines the curvature tensor; if n > 3, the remaining
components of the curvature tensor can be represented by the Weyl
tensor 0abcd' defined by

2 2
°abcd = R abed +n- 2 {g~dRcJb+gb[cRdla}+ (n-1)(n- 2) Rga[cgdlb'

As the last two terms on the right-hand side have the curvature tensor
symmetries (2.21), (2.27), it follows that Oabed also has these sym­
metries. One can easily verify that in addition,

Le. one can think of the Weyl tensor as that part of the curvature
tensor such that all contractions vanish.
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(2.28)g=n~

An alternative chamcterization of the Weyl tensor is given by the
fact that it is a conformal invariant. The metrics g and g are said to
be conformal if

for some non-zero suitably differentiable function n. Then for any
vectors X, Y, V, W at a point p,

g(X, Y) _ D(X, Y)
g(V, W) - D(V, w)'

so angles and ratios of magnitudes are preserved under conformal
transformations; in particular, the null cone structure in Tp is pre­
served by conformal transformations, since

g(X,X) > 0, = 0, < 0 =>D(X,X) > 0, = 0, < 0,

respectively. As the metric components are related by

Dab = n2gab, Dab = n-2gnb,

(2.29)

the coordinate components of the connections defined by the metrics
(2.28) are related by

" l( an an dan)r a
bc = r a

bc +.0- 8a
b axC+8acaxb - gbcga axd .

Calculating the Riemann tensor of g, one finds

J1abcd = n-2.Rabcd+8[atenbldl>

where

the covariant derivatives in this equation are those determined by the
metric g. Then (assuming n > 2)

J1bd = n-2.Rbd+ (n- 2) .0-1(.0-1): dcgbC- (n- 2).-ln-n(nn-2);acgac8bd

and tJabcd = Cabcd,

the last equation expressing the fact that the Weyl tensor is con­
formally invariant. These relations imply

b. = n-2R- 2(n-1) n-3n;cdgcd- (n-1)(n-4) n-4.n;cn;difd. (2.30)

Having split the Riemann tensor into a part represented by the
Ricci tensor and a part represented by the Weyl tensor, one can use
the Bianchi identities (2.22) to obtain differential relations between
the Ricci tensor and the Weyl tensor: contracting (2.22) one obtains

(2.31)
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(2.32)

and contracting again one obtains

Rac:a = iR:c·

From the definition of the Weyl tensor, one can (if n > 3) rewrite
(2.31) in the form

n-3( 1 )Ca
bcd;a=2 n _2 Rb[d:cl-2(n_1)gb[dR ;cJ) •

H n ~ 4, (2.31) contain all the information in the Bianchi identities
(2.22), so if n = 4, (2.32) are equivalent to these identities.

A diffeomorphism cp: JI-7 JI will be said to be an isometry if it
carries the metric into itself, that is, if the mapped metric CP. g is equal
to g at every point. Then the map CP.: T p -7 T¢(p) preserves scalar
products, as

g(X, Y>lp = CP.g(CP.X,cp. Y)I¢(p) = g(cp.X,cp.Y)I¢(p)·

If the local one-parameter group of diffeomorphisms cp, generated
by a vector field K is a group of isometries (Le. for each t, the trans­
formation cp, is an isometry) we call the vector field K a Killing vector
field. The Lie derivative of the metric with respect to K is

since g = ep,.g forI each t. But from (2.17), Lxgab = 2K(a;b)' so a
Killing vector field K satisfies Killing's equation

K a: b +K b ; a = O. (2.33)

Conversely, if K is a vector field which satisfies Killing's equation,
then Lxg = 0, so

cp,.glp = glp+ I~d~,(CP".g)lpdt'

= gJp +I~ :s (cpt'. CP8. g)s-o Ipdt'

=glp+f'(CPr.:
S

CP8.g) I dt'
o 8-0 P

= glp - I~ CP". (Lxgl ¢-t"(p» dt' = glp'

Thus K is a Killing vector field if and only if it satisfies Killing's equa­
tion. Then one can locally choose coordinatesX' = (XV, t) (v = 1ton -1)
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such that Ka = &a/at = 8a1\; in these coordinates Killing's equation
takes the form

A general space will not have any symmetries, and so will not admit
any Killing vector fields. However a special space may admit 'I'

linearly independent Killing vector fields Ka (a = 1, ... , '1'). It can be
shown that the set of all Killing vector fields on such a space forms a
Lie algebra of dimension 'I' over R, with the algebra product given by
the Lie bracket [ , ] (see (2.16», where 0 ~ 'I' ~ in(n+ 1). (The
upper limit may be lessened if the metric is degenerate.) The local
group of diffeomorphisms generated by these vector fields is an
r-dimensional Lie group of isometries of the manifold JI. The full
group of isometries of JI may include some discrete isometries (such
as reflections in a plane) which are not generated by Killing vector
fields; the symmetry properties of the space are completely charac­
terized by this full group of isometries.

2.7 Hypersurfaces

If fl7is an (n-1)-dimensional manifold and 8: fI7~JIis an imbedding,
the image 8(fI7) of fI7 is said to be a hypersurface in JI. If p e fI7, the
image ofT p in T(I(p) under the map 8* will be a (n - 1)-dimensional plane
through the origin. Thus there will be some non-zero form neT*(I(p)
such that for any vector X e Tp , (n, 8* X) = o. The form n is unique
up to a sign and a normalizing factor, and if 8(fI7) is given locally by
the equation f = 0 where df =to 0 then n may be taken locally as df.
If 8(fI7) is two-sided in JI, one can choose n to be a nowhere zero
one-form field On 8(fI7). This will be the situation if fI7 and JI are both
orientable manifolds. In this case, the choice of a direction of n will
relate the orientations of 8(.9') and of JI: if {XI} are local coordinates
from the oriented atlas ofJI such that locally 8(fI7) has the equation
Xl = 0 and n = exdxl where ex> 0, then (x2, ••• ,x") are oriented local
coordinates for 8(fI7).

Ifg is a metric on JI, the imbedding will induce a metric 8*g On fI7,
where if X, YeTp, 8*g(X, Y)lp = g(8*X,8* Y>I(I(p). This metric is
sometimes called the first fundamental form of fI7. If g is positive
definite the metric 8*g will be positive definite, while if g is Lorentz,
8*g will be

(a) Lorentz if gabnanb > 0 (in this case, 8(fI7) will be said to be a
timelike hypersurface),
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(b) degenerate if yabnanb = 0 (in this case. 8(9"') will be said to be a
null hypersurface).

(c) positive definite if yabnanb < 0 (in this case. 8(9"') will be said to
be a spacelike hypersurface).

To see this. consider the vector Nb = nayab. This will be orthogonal
to all the vectors tangent to 8(9"'). i.e. to all vectors in the subspace
H = 8*(Tp) in T(I(p). Suppose first that N does not itself lie in this
subspace. Then if (E2••••• En) are a basis for Tp , (N. 8*(E2) ••••• 8*(En»
will be linearly independent and so will be a basis for T(I(p). The compo­
nents of g with respect to this basis will be

(
g(N. N) 0 ) (g(N. N) 0)

gab = 0 g(8*(E i ). 8*(Ej » = 0 8*g(Ei • E j ) •

As the metric g is assumed to be non-degenerate. this shows that
g(N. N) =to o. If g is positive definite. g(N. N) must be positive and so
the induced metric 8*g must also be positive definite. If g is Lorentz
and g(N. N) = yabnanb < O. then 8*g must be positive definite since
the matrix of the components of g has only one negative eigenvalue.
Similarly if g(N. N) = yabnanb > O. then 8*g will be a Lorentz metric.
Now suppose that N is tangent to 8(9"'). Then there is some non-zero
vector XETp such that 8*(X) = N. But g(N.8*Y) = 0 for all YETp •

which implies 8* g(X. Y) = o. Thus 8*g is degenerate. Also. taking
Y to be X. g(N. N) = yabnanb = o.

If yabnanb =to O. one can normalize the normal form 0 to have unit
magnitude. i.e. yabnanb = ± 1. In this case the map 8*: T*(I(p)~T*p
will be one-one on the (n-1)-dimensional subspace H*(I(p) of T*(I(p)
consisting of all forms w at 8(p) such that yabnaltJb = O. because
8*0 = 0 and 0 does not lie in H*. Therefore the inverse (8*)-1 will be
a map B* of T*p onto H*(I(p). and sO into T*(I(p).

This map can be extended in the usual way to a map of covariant
tensors on 9'" to covariant tensors on 8(9"') in JI; as there already is
a map 8* of contravariant tensors on 9'" to 8(9"'), one can extend 8* to
a map B* of arbitrary tensors on 9"'to 8(9"'). This map has the property
that B*T has zero contraction with 0 on all indices. i.e.

(B*T)a...bc...dna = 0 and (B*T)a...bc...dgccnc = 0

for any tensor TET~(9"').

The tensor h on 8(9"') is defined by h = B*(8*g). In terms of the
normalized form 0 (remember yabnanb = ± 1).

hab = gab +nanb
since this implies 8*h = 8*g and habgbCnc = o.
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The tensor hab = gachcb is a projection operator, i.e. habhbc = hac' It
projects a vector X ET(I(p) into its part lying in thesubspaceH = 8*(~)

of T(I(p) tangent to 8(9"'),

Xa = habXb ± n"nbXb,

where the second term represents the part of X orthogonal to 8(9"').
Also ha

b projects a form wET*(I(p) into its part lying in the subspace
H*(I(p): b bCJ)a = h aCJ)b ± nan CJ)b'

Similarly one can project any tensor T ET~(O(p» into its part in

H~(8(P» = !!fJ{p)® ... ®H(I(Pj®I!t(p)® ... ®H1xy h

'I' fa~tors s factors

i.e. its part which is orthogonal to n on all indices.
The map 8* is one-one from Tp to H(I(p). Therefore one can define

a map B* from T(I(p) to Tp by first projecting with ha
b into HfJ{p) and then

using the inverse (8)*-1. As one already has a map 8* offorms on 8(9"')
to forms on 9"', one can extend the definition of 0* to a map B* of
tensors ofany type on 8(9"') to tensors on 9"'. This map has the property
that B*(B*T) = T for any tensor TET~(p) and B*(B*T) = T for any
tensor T Em(O(p». We shall identify tensors on 9'" with tensors in
H~ on 0(9"') if they correspond under the maps B*, B*. In particular,
h can then be regarded as the induced metric on 0(9"').

If ii is any extension of the unit normal n onto an open neighbour­
hood of 8(9"') then the tensor X defined on 8(9"') by

Xab = hCahdbnc;d

is called the second fundamental form of 9"'. It is independent of the
extension, since the projections by ha

b restrict the covariant deriva­
tives to directions tangent to8(9"'). Locally the field ii can be expressed
in the form ii = ex df where f and ex are functions on JI and f = 0 on
0(9"'). ThereforeXabmustbesymmetric,since!;ab = !;baand!:ahab = O.

The induced metric h = 8*g on 9'" defines a connection on 9"'. We
shall denote covariant differentiation with respect to this connection
by a double stroke, ". For any tensor T E H~,

T a...b - T-i ...1 ha hb hk h' hm
c..•due - k •• .I;m i'" 1 C'" d e'

where T is any extension of T to a neighbourhood of 8(9"'). This
definition is independent of the extension, as the hs restrict the
covariant differentiation to directions tangential to 8(9"'). To see this
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is the correct formula, one has only to show that the covariant deriva­
tive of the induced metric is zero and that the torsion vanishes. This
follows because

habuc = (Ycf+ 1i,}i/);ghCahlbhfJc = 0,

and Juab = hCahfJJ:C(J = hcahfJJ:fJc = JUba·

The curvature tensor R'abcd of the induced metric h can be related
to the curvature tensor Rabcd on 8(9"') and the second fundamental
form X as follows. If Y E H is a vector field on 8(9"'), then

Now

yaudc = (yaud)uc = (¥C:fhfJchfi):khaghidhkC

= ¥c:/khachldhkc +¥C;/iic1iU: khfd haghk
c+¥C;/ii/ni;khachidhkc

and ¥c:/nchf
d = (¥c1iC):/hld- ¥c1ic;/hld = - ¥c1iC:/hld,

since ¥c1ic = 0 on 8(9"'), therefore

R'abcd yb = (Rcbk/hachkchfd ± XbdXac +XbcXad) Yb.

Since this holds for all Y E H,

(2.34)

This is known as Gauss' equation.
Contracting this equation on a and c and multiplying by hbd, one

obtains the curvature scalar R' of the induced metric:

(2.35)

One can derive another relation between the second fundamental
form and the curvature tensor Rabcd on 8(9"') by subtracting the
expressions

(xaa)ub = (na:dhda);chCb

and (Xab)ua = (fiC;dhachdc):/hlahcb'

finding (2.36)

This is known as Codacci's equation.

2.8 The volume element and Gauss' theorem

If {Ea} is a basis of one-forms, one can form from it the n-form

E = n!El/\E2/\ ... /\ En.
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(2.37)

1)ab... d;e = 0 = 1)ab... d;e'

If {Ea"}, related to {Ea} by Ea' = (})a"aEa, is another basis, the n-form
£' defined by this basis will be related to £ by

£' = det ((})a'a) £,

so this form is not unique. However, one can use the existence of the
metric to define (in a given basis) the form

l'J = IgII£

where g == det (gab)' This form has components

1)ab••.d = n! Ig/181
Ca 82

11 '" 8n
dj•

The transformation law for g will just cancel the determinant,
det «(})a'a), provided that det «(})a'a) > O. Therefore if JI is orientable
the n-forms l'J defined by coordinate bases of an oriented atlas will be
identical, i.e. given an orientation of JI, one can define a unique
n-form field l'J, the canonical n1orm, on JI.

The contravariant antisymmetric tensor

1)ab...d - ,.,aerobJ ,.,dh'1l
- If II '" II '/et...h

has components

1)ab...d = (- )1<n-8)n! Igil 8Ca18b2'" 8d1
n ,

where 8 is the signature of g (so !(n-8) is the number of negative
eigenvalues of the matrix of metric components (gab»' Therefore these
tensors satisfy the relations

1)ab...tL.. = (- )1<n-8)n' ~c HI ~d I'/et...h .0- eo·t ... 0 ".

The Christoffel relations imply that the covariant derivatives of
1)011••• d and 1)all... d with respect to the connection defined by the metric
vanish, i.e.

Using the canonical n-form, one can define the volume (with respect

to the metric g) of an n-dimensional submanifold %' as .!..f l'J.
n! ...

Thus l'J Can be regarded as a pOsitive definite volume measure on JI.
We shall often use it in this sense, and shall denote it by dv. Note that
d is not meant to represent the exterior differential operator here; dv
is simply a measure on JI. Iff is a function on JI, One can define its
integral over %' with respect to this volume measure as

f fdv = -.!.f fl'J·
... n! ...
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With respect to local oriented coordinates {XI}, this can be expressed
as the multiple integral

which is invariant under a change of coordinates.
IfX is a vector field on JI, its contraction with Yj will be an (n - 1)­

form field X .Yj, where
(X·Yj)b•.• d = Xa1Jab ... d·

This (n-1)-form may be integrated over any (n-1)-dimensional
compact orientable submanifold 1'. We write this integral as

I.y Xaduu = (n~ 1)! I.y X. Yj.

where the canonical form Yj is regarded as defining a measure-valued
form dUa on the submanifold 1'. If the orientation ofl' is given by
the direction of the normal form na' then dua can be expressed as
nadu where du is a positive definite volume measure on the sub­
manifold 1'. The volume measure du is not unique unless the normal
na is normalized. Ifna is normalized to unit magnitude in a metric g
on JI, i.e. nanbyab = ± 1. then duisequal to the volume measure on l'
defined by the induced metric on l' (to see this, simply choose an
orthonormal basis with nayab as one of the basis vectors).

Using the canonical form, one can derive Gauss' formula from
Stokes' theorem: for any compact n-dimensional submanifold %' ofJI,

J,,,,xa dUa = (n~1)!Ia",X.Yj = (n~1)!I~d(X.Yj).
But

(d(X. Yj»a..• de = { - )n-l ( Xo1Jo[a •.. d);eJ

= (- )n-1 8s[a .•• 8td8"eJ1JoS...tXO;u

1= (- )(n-l)-!(n-s)_",s...t"1J 'l1 Xo.n!'/ a... de os· ..t ."

= 1Ja... de 8s[s ••• 8 t
t 8"olXo; u

= n-1 1Ja ... de X";".

on using relation (2.37) twice. Therefore

f Xadua = f XO·odv
M/ '" •
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holds for any vector field X; this is Gauss' theorem. Note that the
orientation on ~ for which this theorem is valid is that given by the
normal form 1) such that (n, X) is positive ifX is a vector which points
out of~. If the metric g is such that gOOnanb is negative, the vector
gabnb will point into ~.

2.9 Fibre bundles

Some of the geometrical properties of a manifold JI can be most
easily examined by constructing a manifold called a fibre bundle,
which is locally a direct product of JI and a suitable space. In this
section we shall give the definition of a fibre bundle and shall consider
four examples that will be used later: the tangent bundle T(JI), the
tensor bundle ~(JI), the bundle of linear frames or bases L(JI), and
the bundle of orthonormal frames O(JI).

A Ok bundle over a Oa (8 ~ k) manifold JI is a Ok manifold G and
a Ok surjective map 17: G-7 JI. The manifoldG is called the total space,
JI is called the base space and 17 the projection. Where no confusion
can arise, we will denote the bundle simply by G. In general, the
inverse image 17-1(P) of a point p e JI need not be homeomorphic to
17-1(q) for another point qeJl. The simplest example of a bundle is
a product bundle (JI x .91, JI, 17) where .91 is some manifold and the
projection 17 is defined bYl7(P, v) = p for allpeJl, ved. For example,
if one chooses JI as the circle 8 1 and .91 as the real line Rl, one con­
structs the cylinder 0 2 as a product bundle over 8 1•

A bundle which is locally a product bundle is called a fibre bundle.
Thus a bundle is afibre bundle with fibre F if there exists a neighbour­
hood~ofeach point q ofJI such that l7-l(~)is isomorphic with~ x F­
in the sense that for each pointpe~ there is a diffeomorphism ¢p of
17-1(p) onto F such that the map ljr defined by \fr(u) = (l7(U), ¢.,{w) is
a diffeomorphism ljr: l7-l(~) -7~ x F. Since JI is paracompact, we
can choose a locally finite covering of JI by such open sets ~... If
~.. and ~p are two members of such a covering, the map

is a diffeomorphism ofF onto itself for each p e (~.. n~pl. The inverse
images 17-1(p) of points peJi are therefore necessarily all diffeo­
morphic to F (and so to each other). For example, the Mobius strip
is a fibre bundie over 8 1 with fibre Rl; we need two open sets ~1' ~2
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to give a covering by sets of the form ~i x RI. This example shows that
if a manifold is locally the direct product of two other manifolds, it is
nevertheless not, in general, a product manifold; it is for this reason
that the concept of a fibre bundle is so useful.

The tangent bundle T(.A) is the fibre bundle over a Ok manifold .A
obtained by giving the set 8 = U Tp its natural manifold structure

peJi

and its natural projection into .A. Thus the projection 17 maps each
point of Tp into p. The manifold structure in 8 is defined by local
coordinates {z.d} in the following way. Let {xi} be local coordinates in
an open set ~ of .A. Then any vector VETp (for any pE~) can be
expressed as V = Vi 8/8xilp, The coordinates {z.d} are defined in
l7-I(~) by {z.d} = {xi, va}. On choosing a covering of.A by coordinate
neighbourhoods ~a' the corresponding charts define a Ok-I atlas on 8
which turn it into a Ok-I manifold (ofdimension n2); to check this, one
needs only note that in any overlap (~.. () ~p) the coordinates {xi..} of
a point are Ok functions of the coordinates {xip} of the point, and the
components {Va..} of a vector field are Ok-I functions of the compo­
nents {yap} of the vector field. Thus in l7-I(~.. ().~p), the coordinates
{z.d..}are Ok-I functions of the coordinates {z.dp}.

The fibre l7-I (P) is ~, and so is a vector space of dimension n. This
vector space structure is preserved by the map ¢..,p: Tp~Rn., which
is given by ¢..,p(u) = Va(u), Le. ¢..,P maps a vector at p into its com­
ponents with respect to the coordinates {xa..}. If {xap} are another set
of local coordinates then the map (¢..,p) 0 (¢p,p-1) is a linear map of
Rn. onto itself. Thus it is an element of the general linear group
GL(n, R) (the group of all non-singular n x n matrices).

The bundle of tensors of type (r,s) over .A, denoted by T~(.A), is
defined in a very similar way. One forms the set 8 = U T~(P), defines

peJi

the projection 17 as mapping each point in T~(P) into p, and, for any
coordinate neighbourhood ~ in .A, assigns local coordinates {z.d} to
l7-I(~) by {z.d} = {xi, Ta ... be... d} where {Xi} are the coordinates of the
point p and {Ta...be... d} are the coordinate components of T (that is,
T = Ta... be•.. d8/8xa® .,. ®dxdlp). This turns 8 into a Ok-I manifold of
dimension nr+8+1; any point u in T~(.A) corresponds to a unique
tensor T of type (r, s) at l7(U).

The bundle of linear frames (or bases) L(.A) is a Ok-I fibre bundle
defined as follows: the total space 8 consists of all bases at all points
of .A, that is all sets of non-zero linearly independent n-tuples of
vectors {Ea}, EaETp , for each p E.A (a runs from 1to n). The projection
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17 is the natural one which maps a basis at a point p to the point p. If
{xi} are local coordinates in an open set~ c .,II. then

{z-A} = {xa.E/.El•...• Enm}

are local coordinates in l7-I(~).-whereEaf is thejth components of the
vector Ea with respect to the coordinate bases a/axi . The general
linear group GL(n. R) acts on L(J) in the following way: if {Ea} is
a basis at pEJI. then A EGL(n,R) maps u = {p.Ea} to

A(u) = {p.AabEb}.

When there is a metric g of signature s on .,II. one can define a sub­
bundle of L(J1). the bundle of orthonormal frames 0(.,11). which con­
sists of orthonormal bases (with respect to g) at all points of .,II.

0(.,11) is acted on by the subgroup O(i(n+s). l(n-s» of GL(n.R).
This consists of the non-singular real matrices A ab such that

A ab GbcAdc = Gad.
where Gbc is the matrix

diag(+1. +1•...• +1. -1. -1•...• -:1).
, , , J

l(n+s) terms l(n-s) terms

It maps (p. Ea ) E 0(.,11) to (p, A ab Eb) E 0(.,11). In the case of a Lorentz
metric (i.e. s = n - 2). the group O(n - 1. 1) is called the n-dimensional
Lorentz group.

A Or cross-section ofa bundle is a Or map {}>: .,II -7 tC such that 17 0 {}>

is the identity map on .,II; thus a cross-section is a or assignment to
each point p of .,II of an element (}>(p) of the fibre 17-1(p). A cross­
section of the tangent bundle T(J1) is a vector field on .,II; a cross­
section of T~(J1) is a tensor field of type (r. s) on .,II; a cross-section of
L(J1) is a set of n non-zero vector fields {Ea} which are linearly inde­
pendent at each point. and a cross-section of 0(.,11) is a set of ortho­
normal vector fields on .,II.

Since the zero vectors and tensors define cross-sections in T(J1) and
~(J1). these fibre bundles will always admit cross-sections. If .,II is
orienta-ble and non-compact. or is compact with vanishing Euler
number. there will exist nowhere zero vector fields. and hence cross­
sections of T(J1) which are nowhere zero. The bundles L(J1) and
0(.,11) mayor may not admit cross-sections; for example L(S2) does
not. but L(Rn) does. If L(J1) admits a cross~section• .,II is said to be
parallelizable. R. P. Geroch has shown (1968c) that a non-compact
four-dimensional Lorentz manifold JI admits a spinor structure if
and only if it is parallelizable.
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One can describe a connection on .,II in an elegant geometrical way
in terms ofthe fibre bundle L(J1). A connection on .,II may be regarded
as a rule for parallelly transporting vectors along any curve yet) in .,II.

Thus if {Ee} is a basis at a point p = y(to), i.e. {p, Ee} is a point u in
L(J1), one can obtain a unique basis at any other point y(t), Le. a
unique pointY(t) in the fibre 1T-1(y(t», by parallelly transporting {Ee}
along yet). Therefore there is a unique curve yet) in L(J1), called the
lift of y(t), such that:

(1) y(to) = u,
(2) 1T(Y(t» = y(t),
(3) the basis represented by the point Y(t) is parallelly transported

along the curve yet) in .,II.

In terms of the local coordinates {z..f}, the curve Ht) is given by
{x"(y(t», Em'(t)}, where

dEm'(t) E Jr' dx"(y(t» = 0
dt+ m ej dt .

Consider the tangent space T,,(L(J1» to the fibre bundle L(J1) at
the point u. This has a coordinate basis {o!az..fl,,}. The n-dimensional
subspace spanned by the tangent vectors {(o!ot);;<t>I,,} to the lifts of all
curves yet) through p is called the horizontal subspace H" of Tu(L(~K».
In terms of local coordinates,

(~) = dx"(y(t» ° dEmi_o_
ot :y dt ox" + dt oEmi

= dx"(y(t» (~-E jr' _0_)
dt ox" m ej oEm' '

so a coordinate basis of H" is {o!ox"-EmJr'ajO/oEmi}. Thus the con­
nection in .,IIdetermines the horizontal subspaces in the tangentspaces
at each point of L(J1). Conversely, a connection in .,II may be defined
by giving an n-dimensional subspace of T,,(L(J1» for each ueL(J1)
with the properties:

(1) If AeGL(n,Rl), then the map A.: T,.(L(J1»~T~(w(L(J1»

maps the horizontal subspace H" into H..f(w;
(2) H" contains no non-zero vector belonging to the vertical sub­

space v,..
Here, the vertical subspace v,. is defined as the n2-dimensional

subspace of T,,(L(J1» spanned by the vectors tangent to curves in the
fibre 1T-1(1T(U»; in terms of local coordinates, V" is spanned by the



54 DIFFERENTIAL GEOMETRY [2.9

vectors {%Em'}. Property (2) implies that T,. is the direct sum of Hu
and v,..

The projection map 17: L(.L) -")O.L induces a surjective linear map
17.: T,.(L(.L» -")0 T,,(,.)(.L), such that 17. (v,,) = 0 and 17. restricted to H ..
is 1-1 onto T"l")' Thus the inverse 17.-1 is a linear map of T,,(,.)(.L)
onto H... Therefore for any vectorXE Tp(.L) and point UE17-1(P), there
is a unique vector XEBu ' called the horizontal lift of X, such that
17.(X) = X. Given a curve yet) in.L, and an initial point uin 17-1(y(to))'
one can construct a unique curve yet) in L(.L), wherey(t) is the curve
through u whose tangent vector is the horizontal lift of the tangent
vector of yet) in .L. Thus knowing the horizontal subspaces at each
point in L(.L), one can define parallel propagation of bases along any
curve yet) in .L. One can then define the covariant derivative along
yet) of any tensor field T by taking the ordinary derivatives with
respect to t. of the components of T with respect to a parallelly
propagated basis.

If there is a metric g on .L whose covariant derivative is zero, then
orthonormal frames are parallelly propagated into orthonormal
frames. Thus the horizontal subspaces are tangent to O(.L) in L(.L),
and define a connection in O(.L).

Similarly a connection on .L defines n-dimensional horizontal sub­
spaces in the tangent spaces to the bundles T(.L) and ~(.L), by
parallel propagation of vectors and tensors. These horizontal sub­
spaces ha.ve coordinate bases

and

{o~- (TI... bc... df'ae,+ (all upper indices)

- Ta... b, ... dr/ec- (all lower indiCeS»)oTa.~b }
c... d

respectively. As with L(.L), 17. maps these horizontal subspaces
one-one onto T,,(,.)(.L); thus again 17. can be inverted to give a unique
horizontal lift XET.. of any vector X ET,,(,.). In the particular case of,
T(.L) , u itself corresponds to a unique vector WE T,,(,.)(.L). and so
there is an intrinsic horizontal vector field Wdefined on T(.L) by the
connection. In terms of local coordinates {xl', Vb},

- ( 0 0 )W= Va -- VerI -oxa aeoV' .
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This vector field may be interpreted as follows: the integral curve ofW
through u = (p, X) e T(~K) is the horizontal lift of the geodesic in J(

with tangent vector X at p. Thus the vector field W represents all
geodesics on "II. In particular, the family of all geodesics through
peJl is the family of integral curves of W through the fibre
1r1(p) c T(J1); the curves in "II have self intersections at least at p,
but the curves in T(J1) are non-intersecting everywhere.



3

General Relativity

In order to discuss the occurrence of singularities and the possible
breakdown of General Relativity, it is important to have a precise
IItnt.ement of the theory and to indicate to what extent it is unique.
W., nllllH L1IllI'ufu""l'f.,nl'llI. 1.11(\ I.h.'OI'y IllIlI, 11111111"·.,,,1' I'ORI.IIII1,t"'IlIl,hnllt.
a mathematical model for space-time.

In §3.1 we introduce the mathematical model and in §3.2 the first
two postulates, local causality and local energy conservation. These
postulates are common to both Special and General Relativity, and
thus may be regarded as tested by the many experiments that have
been performed to check the former. In §3.3 we derive the equations
of the matter fields and obtain the energy-momentum tensor from a
Lagrangian,

The third postulate, the field equations, is given in §3.4. This is not
so well established experimentally as the first two postulates, but we
shall see that any alternative equations would seem to have one or
more undesirable properties, or else require the existence of extra
fields which have not yet been detected experimentally-.

3.1 The space-time manifold

The mathematical model we shall use for space-time, i.e. the collection
ofall events, is a pair (.L, g) where .L is a connected four-dimensional
Hausdorff C<rJ manifold and g is a Lorentz metric (i.e. a metric of
signature + 2) on .L.

Two models (~K,g) and (.L',g') will be taken to be equivalent if
they are isometric, that is if there is a diffeomorphism ():.L -+.L'
which carries the metric g into the metric g', i.e. ().g = g'. Strictly
speaking then, the model for space-time is not just one pair (.L, g) ,
but a whole equivalence class ofall pairs (.L'. ,g') which are equivalent
to (.L, g). We shall normally work with just one representative mem­
ber (.L, g) ofthe equivalence class, but the fact that this pair is defined
only up to equivalence is important in some situations, in particular
in the discussion of the Cauchy problem in chapter 7.

[56 ]
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The manifold .,II is taken to be connected since we would have no
knowledge ofany disconnected component. It is taken to be Hausdorff
since this seems to accord with normal experience. However in
chapter 5 we shall consider an example in which one might dispense
with this condition. Together with the existence of a Lorentz metric,
the Hausdorff condition implies that .,II is paracompact (Geroch
(1968c)).

A manifold corresponds naturally to our intuitive ideas of the con­
tinuity of space and time. So far this continuity has been established
for distances down to about 10-16 cm by experiments on pion scat­
tering (Jl~oley el al. (1967». It may be difficult to extend this to much
Rmn.lIl1r Ifll1~I.llI'I nil 1.11 do RO wouJc) rOCjuiro n pnrticl)tl offluoh high onorgy
that several other lJarticles might lJe crel1teu I1UU cuufutie the t:lxlJt:ll'i­
ment. Thus it may be that a manifold model for space-time is inap­
propriate for distances leBB than 10-16 cm and that we should use
theories in which space-time has some other structure on this scale.
However such breakdowns of the manifold picture would not be
expected to affect General Relativity until the typical gravitational
length scale became ofthat order. This would happen when the density
became about 1068 gm cm-s, which is a condition so extreme as to be
completely beyond our present knowledge. Nevertheless, by adopting
a manifold model for space-time, and making certain other reasonable
assumptions, we shall show in chapters 8-10 that some breakdowns
of General Relativity must occur. It may be the field equations that
go wrong, or it may be that quantization of the metric is needed, or it
may be a breakdown of the manifold structure itself that occurs.

The metric g enables the non-zero vectors at a point peJl to be
divided into three classes: a non-zero vector XeTp being said to be
timelike, spacelike or null according to whether g(X, X) is negative,
positive or zero respectively (cf. figure 5).

The order of differentiability, r, of the metric ought to be sufficient
for the field equations to be defined. They can be defined in a distribu­
tional sense if the metric coordinate components gab and gab are con­
tinuous and have locally square integrable generalized first derivatives
with respect to the local coordinates. (A set offunctionsf:a on R" are
said to be the generalized derivatives of a function! on Rn. if, for any
C<rJ function ljr on Rn. with compact support,
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However this condition is too weak, since it guarantees neither the
existence nor the uniqueness of geodesics, for which a 0 2- metric is
required. (A 0 2- metric is one for which the first coordinate derivatives
of the metric coordinate components satisfy a local Lipschitz condi­
tion, see §2.1.) We shall in fact aSsume for most of the book that the
metric is at least 0 2• This allows the field equations (which involve the
second derivatives of the metric) to be defined at every point. In § 8.4
we shall weaken the condition on the metric to 0 2- and show that this
does not affect the results on the occurrence of Singularities.

In chapter 7, we use a different kind of differentiability condition
in order to show that the time development of the field equations is
determined by suitable initial conditions. We require there that the
metric components and their generalized first derivatives up to order
m(m ~ 4) are locally square integrable. This would certainly be true if
the metric were 0'.

In fact, the order of differentiability of the metric is probably not
physically significant. Since one can never measure the metric exactly,
but only with some margin of error, one could never determine that
there was an actual discontinuity in its derivatives of any order. Thus
one can always represent one's measurements by a 0 00 metric.

If the metric is assumed to be Or, the atlas of the manifold must be
Or+!. However, one can always find an analytic subatlas in any O· atlas
(8 ~ 1) (Whitney (1936); cf. Munkres (1954)). Thus it is no restriction
to assume from the start that the atlas is analytic, even though one
could physically determine only a Or+! atlas if the metric were Or.

We have to impose some condition on our model (.L, g) to ensure
that it includes all the non-singular points ofspace-time. We shall say
that the Or pair (.L', g') is a Or-extension of (.L, g) if there is an iso­
metric Or imbedding p,: .L-+.L'. If there were such an extension
(.L', g') we should have to regard points of.L' as also being points of
space-time. We therefore require that the model (.L, g) is Or­
inextendible, that is there is no Or extension (.L', g') of (.L, g) ~here
p,(.L) does not equal .L'.

As an example ofa pair (.Ll' gl) which is not inextendible, consider
two-dimensional Euclidean space with the x-axis removed between
Xl = - 1 and Xl = + 1. The obvious way to extend this would simply
be to replace the missing points, but one could also extend it by taking
another copy (.L2, g2) of the space, and identifying the bottom side
of the Xl-axis for Ixll < 1 with the top side of the x2-axis for Ix21 < 1,
and also identifying the top side of the xcaxis for Ixll < 1 with the
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bottom side of the x2-axis for Ix21 < 1. The resultant space (..la, ga) is
inextendible but not complete as we have left out the points Xl = ± 1,

YI = O. We cannot put these points back in because we were perverse
enough to extend the top and bottom sides of the x-axis on different
sheets. Ifhowever one takes the subset tW of..ladefined by 1 < Xl < 2,
-1 < YI < 1, then one could extend the pair (tW, gallf{) and put back
the point Xl = 1, YI = O. This motivates a rather stronger definition of
inextendibility: a pair (..I, g) is said to be Or-locally inextendible if
there is no open set 0/.1 c ..I with non-compact closure in..l, such that
the pair (tW, gllf{) has an extension (tW', g') in which the closure of the
image of tW is compact.

3.2 The matter fields

There will be various fields on..l, such as the electromagnetic field, the
neutrino field, etc., which describe the matter content of space-time.
These fields will obey equations which can be expressed as relations
between tensors on ..I in which all derivatives with respect to position
are covariant derivatives with respect to the symmetric connection
defined by the metric g. This is so because the only relations defined
by a manifold structure are tensor relations, and the only connec­
tion defined so far is that given by the metric. If there were another
connection on ..I,the difference between the two connections would
be a tensor and could be regarded as another physical field. Similarly
another metric on ..I could be regarded as a further physical field.
(The equations of the matter fields are sometimes expressed as
relations between spinors on..l. We do not deal with such relations
in this book, as they are not needed for the problems we wish to
consider. In fact, allspinor equations can be replaced by rather more
complicated tensor equations; see e.g. Ruse (1937).)

The theory one obtains depends on what matter fields one incorpo­
rates in it. One should ofcourse include all such fields which have been
experimentally observed: but one might postulate the existence of as
yet undetected fields. Thus for example Brans and Dicke (Dicke
(1964), appendix 7) postulate the existence ofa long range scalar field
which is weakly coupled to the trace ofthe energy-momentum tensor.
In the form given in Dicke (1964) appendix 2, the Brans-Dicke theory
can be regarded simply as General Relativity with an extra scalar
field. Whether this scalar field has been experimentally detected or
not is at present under dispute.
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We shall denote the matter fields included in the theory by
'I'1i)<I···bc... d, where the subscript (i) numbers the fields considered. The
following two postulates on the nature of the equations obeyed by the
'I'1i)<I···bc... d are common to both the Special and the General Theories
of Relativity.

Postulate (a): Local causality

The equations governing the matter fields must be such that if tW is
a convex normal neighbourhood and p and q are points in tW then a
signal can be sent in tW between p and q if and only ifp and q can be
joined by a 0 1 curve lying entirely in tW, whose tangent vector is every­
where non-zero and is either timelike or null; we shall call such a curve,
non-spacelike. (Our formulation of relativity excludes the possibility
of particles such as tachyons, which move on spacelike curves.)
Whether the signal is sent from p to q or from q to P will depend on the
direction of time in tW. The problem of whether a consistent direction
of time can be assigned at all points of space-time will be considered
in §6.2.

A more precise statement of this postulate can be given in terms of
the Cauchy problem of the matter fields. Let p E 0/.1 be such that every
non-spa.celike curve through p intersects the spacelike surface x4 = 0
within tW. LetFbe the set ofpoints in the surfacex4 = 0 which can be
reached by non-spa.celike curves in tW from p. Then we require that the
values of the matter fields at p must be uniquely determined by the
values of the fields and their derivatives up to some finite order on F,
and that they are not uniquely determined by the values on any
proper subset of F to which it can be continuously retracted. (For
a fuller discussion of the Cauchy problem, see chapter 7.)

It is this postulate which sets the metric g apart from the other
fields on .,II and gives it its distinctive geometrical character. If{xa} are
normal coordinates in tW about p, it is intuitively fairly obvious (and
is proved in chapter 4) that the points which can be reached from p by
non-spacelike curves in tW are those whose coordinates satisfy

(Xl )2 + (X2)2+ (x3)2 _ (xt)2 ~ O.

The boundary of these points is formed by t~e image of the null cone
of p under the exponential map, that is the set of all null geodesics
through p. Thus by observing which points can communicate with p,
one can determine the null cone Np in Tp • Once Np is known, the metric
at p may be determined up to a conformal factor. This may be seen as
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follows: let X, Y E Tp be respectively timelike and spacelike vectors.
The equation

g(X+AY,X+AY) = g(X,X)+2Ag(X, Y)+A2g(Y, Y)

=0

will have two real roots Al and A2 as g(X, X) < 0 and g(Y, Y) > O. If
Np is known, Al and A2 may be determined. But

AlA2 = g(X, X)/g(Y, V).

Thus the ratio of the magnitudes of a timelike vector and a spacelike
vector may be found from the null cone. Then ifW and Z are any two
non-null vectors at p,

g(W,Z) = !(g(W,W)+g(Z,Z)-g(W+Z,W+Z».

Each of the magnitudes on the right-hand side may be compared with
the magnitude ofeither X or Y, and so g(W, Z )/g(X, X) may be found.
(If W +Z is null, the corresponding expression involving W + 2Z
could be used.) Thus observation of local causality enables one to
measure the metric up to a conformal factor. In practice this measure­
ment is performed most conveniently using the experimental fact that
no signal has been observed to travel faster than electromagnetic
radiation. This means that light must travel on null geodesics. This
however is a consequence of the particular equations the electro­
magnetic field obeys, not of the theory of relativity itself. Causality
will be considered further in chapter 6. Among other results, it will be
shown that causal relations may be used to determine the topological
structure ofvII. The conformal factor in the metric may be determined
using postulate (b) below; thus all the elements of the theory will be
physically observable.

Postulate (b): Local conservation of energy and momentum

The equations governing the matter fields are such that there exists
a symmetric tensor Tab, called the energy-momentum tensor, which
depends on the fields, their covariant derivatives, and the metric, and
which has the properties:

(i) Tab vanishes on an open set ew ifand only if all the matter fields
vanish on ew,

(li) Tab obeys the equation

Tab;b = O. (3.1)
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Condition (i) expresses the principle that all fields have energy. One
might possibly object to the' only if' on the grounds that there might
be two non-zero fields, one ofwhose energy-momentum tensor exactly
cancelled that of the other. This possibility is related to that of the
existence of negative energy which will be discussed in §3.3.

If the metric admits a Killing vector field K, equations (3.1) can be
integrated to give a conservation law. To see this, define pa to be the
vector whose components are pa = TabKb. Then,

pa;a = Tab;aKb+TabKb;a'

The first term is zero by the conservation equations, and the second
vanishes as Tab is symmetric and 2K1a;b) = Lggab = 0, since K is a
Killing vector. Thus if~ is a compact orientable region with boundary
o~, Gauss' theorem (§2.7) shows

(3.2)

L = %x"- (a = 1, 2, 3, 4)..

f Pbdub =I pb'b dv = O.
iJB/ B/ •

This may be interpreted as saying that the total flux over a closed
surface of the K-component of energy-momentum is zero.

When the metric is flat, as it is in the Special Theory of Relativity,
one may choose coordinates {xa} in which the components ofthe metric
are gab = ea8ab (no summation) where 8ab is the Kronecker delta and
ea is - 1 if a = 4 and is + 1 if a = 1,2,3. Then the following are
Killing vectors:

(these generate four translations) and

M = e..x"- ';).°P - epxP~ (no summation; a, fJ = 1, 2, 3, 4)
..p oX (/;(;-

(these generate six 'rotations' in space-time). These isometries form
the ten-parameter Lie group ofisometries offlat space-time known as
the inhomogeneous Lorentz group. One may use them to define ten
vectors pa and pa which will obey (3.2). We may think of Pas repre-

.. ..{J 4

senting the flow of energy and P, P, P as the flow of the three compo­
1 2 3

nents of linear momentum. The P can be interpreted as the flow of
..p

angular momentum.
If the metric is not flat there will not, in general, be any Killing

vectors and so the above integral conservation laws will not hold. How­
ever, in a suitable neighbourhood of a point q one may introduce
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normal coordinates {xa}. Then at q the components gab ofthe metric are
eO. Bab (no summation), and the components r a

lle of the connection are
zero. One may take a neighbourhood !!t of q in which the gab and ralle

differ-from their values at q by an arbitrarily small amount; then the
L Ca' b) and M ca • b) will not exactly vanish in!!t, but will in this neigh-
ct ' all '
bourhood differ from zero by an arbitrarily small amount. Thus

f pbdub and f pbdub
DB/a. DB/a.P

will still be zero in the first approximation; that is to say, one still has
approximate conservation of energy, momentum and angular
momentum in a small region ofspace-time. Using this it can be shown
that a small isolated body moves approximately on a timelike geodesic
curve independent ofits internal constitution provided that the energy
density ofmatter in it is non-negative (for an account of the motion of
a small body in relativity, see Dixon (1970». This may be thought of
as Galileo's principle that all bodies fall equally fast. In Newtonian
terms one would say that the inertial mass (the m in F = ma) and the
passive gravitational mass (the mass acted on by a gravitational field)
are equal for all bodies. This has been verified to a high order of
accuracy in experiments by E6tvos and by Dicke (1964).

Postulate (a) enables one to measure the metric up to a conformal
factor at each point. Using postulate (b) one may relate these factors
at different points, for the conservation equations Tab; b = 0 would not
in general hold for a connection derived from a metric g = Q~. One
way ofdoing this would be to observe the paths ofsmall 'test' particles
and so to determine the timelike geodesic curves. Then ify(t) is such a
curve with tangent vector K = (a/at)'}', one has from (2.29)

f> Ka = D Ka+2Q-IQ. KbKa_Q-l(KbKCIl )fJadQm m ,b VIle;~

Since y(t) is a geodesic, with respect to the space-time metric g,
]([b(D/ot) Kal = O. Thus

]{[b~Kal = - (KCKdfJcd) ]{[bfJale (log Q); e' (3.3)

Knowing the conformal structure, one can choose a metric g which
represents the conformal equivalence class ofmetrics and can evaluate
the left-hand side of(3.3) for any test particle. Then the right-hand side
of (3.3) determines (log Q); b up to the addition of a multiple of KafJab'
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By considering another curve y'(t) whose tangent vector K'c is not
parallel to Kc, one can find (logO);b and so can determine 0 every­
where up to a constant multiplying factor. This constant factor
specifies one's units of measurement, and so can be chosen arbitrarily.

This is, of course, not the way one measures the conformal factor in
practice; one makes use of the fact that there exist a large number of
similar systems (such as the electronic states ofatoms) whose internal
motions define a number of events along the timelike curve which
represents their position in space-time. The intervals between these
events seem to be independent of their past history in the sense that
the intervals measured by two nearby systems correspond. Ifone can
effectively isolate them against external matter fields (so they must
move on geodesic curves) and if one assumes their internal motion is
independent of the curvature ofspace-time, then the only thing it can
depend on is the metric. Thus the arc-length between two successive
events on a curve must be the same for each pair of successive events
on any such curve. Ifone takes this arc-length as one's unit ofmeasure­
ment, one can determine the conformal,factor at any point of space­
time.

In fact it may not be possible to isolate a system from external
matter fields. Thus for example in the Brans-Dicke theory there is
a scalar field which is non-zero everywhere. However the conformal
factor can still be determined by the requirement that the conserva­
tion equation TCb; b = 0 should hold. Thus knowledge of the energy­
momentum tensor Tcb determines the conformal factor.

3.3 Lagrangian formulation

The conditions (i) and (ii) of postulate (b) do not tell one how to con­
struct the energy-momentum tensor for a given set offields, or whether
it is unique. In practice one relies heavily on one's intuitive knowledge
of what energy and momentum are. However, there is a definite and
unique formula for the energy-momentum tensor in the case that the
equations of the fields can be derived from a Lagrangian.

Let L be the Lagrangian which is some scalar function of the fields
'YWC... bc... d' their first covariant derivatives~ and the metric. One
obtains the equations of the fields by requiring that the action
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be stationary under variations ofthe fields in the interior ofa compact
four-dimensional region fi). By a variation of thefields 'Y(i)a ..,be ... din fi)
we mean a one-parameter family of fields ':I'w(u,r) where ue(-e.e)
and reJl. such that

(i) ':I'(i)(O. r) = ':I'(dr).
(ii) ':I'(i)(u. r) = ':I'(i)(r) when r e JI - fi).

We denote o':l'(i)(u.r)/oul_o by !J.':I'(i)'

Then

0/\ f ( oL- = ~ a ... b !J.'Y(i)a••• be••• dou u=o (i) !I O'YW e... d

oL )+O'Y a...b !J.('Y(i)a ••• be... d ; c) dv.
(i) e... d; c

where 'Y(i)a... be.ood;c are the components of the covariant derivatives
of ':I'(i). But !J.('Y(i)a... be.ood;c) = (!J.'Y(i)a ...be.ood);c. thus the second term
can be expressed as

f [( oL )~ !J.'Y a...b
~ 0'Y a...b (i) eoo.d
(t)!I (i) e... d; c ; c

-(0'Y a~~ ) !J.'Ywa... be... d]dv.
(i) c... d; c ; c

The first term in this expression can be written as

where Q is a vector whose components are

oLQC - ~ !J.'Y a...b- 0'Y a... b (i) e.ood·
(i) (i) c ••• d; c

This integral is zero as condition (ii) is the statement that !J.':I'w vanish
at the boundary ofi). Thus in order that o//oul_o should vanish for
all variations on all voiumes fi). it is necessary and sufficient that the
Euler-Lagrange equations,

oL _( oL ) _ 0
0'Y a.oob 0'1" aoo.b - ,

(i) coo. d (i) eoo.d; c ;c
(3.4)

hold for all i. These are the equations of the fields.
We obtain the energy-momentum tensor from the Lagrangian by

considering the change in the action induced by a change in the metric.
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(3.5)

Thus

Suppose a variation Yab(u, r) leaves the fields 'Y(i)a... bc... d unchanged
but alters the components Yab of the metric. Then

~I =f (~o'Y a~~ t.('Yli)a...bc... d:C)+:yL t.Yab)dv
u=O !i/ (\) (i) c... d; c ab

I o(dv)
+ L-<l-t.Yab·

!i/ ()Yab

The last term arises because the volume measure dv depends on the
metric, and so will vary when the metric is varied. To evaluate this
term, recall that dv is in fact the four-form (4!)-IYj whose compo­
nents are 7Jabcd = (-y)14! 81a18b28c38dl', where Y == det(Yab)' Therefore

07Jabcd = _1(-y}-1~4!~ 182838 4on "2" on labcdl
:tc! :tel

"" -I(- 0)-1 (/~!(/4' a.} 11,,1 II} IIdJ'

= lye!7Jabcd'

o(dv) = lrr"dv.
ogab

The first term in (3.5) arises because t.('YCila... bc... d; c) will not neces­
sarily be zero even though t.'Y(i)a...bc...d is, since the variation in the
metric will induce a variation in the components r a

bc ofthe connection.
As the difference between two connections transforms like a tensor,
t.ra

bc may be regarded as the components ofa tensor. They are related
to the variation in the components of the metric by

t.ra
bc = 19cd{(t.gdb ); c+ (t.gdc ); b- (t.gbc ); d}'

(The easiest way to derive this formula is to note that since it is a tensor
relation, it must be valid in any coordinate system. In particular, one
could choose normal coordinates about a pointp. For these coordinates
the components r a

bc and the coordinate derivatives of the components
gab vanish at p. The formula given can then be verified to hold atp.)
Using this relation, t.'Y(i)a... bc... d;e may be expressed in terms of
(llgbc); d and the usual integration by parts employed to give an inte­
grand involving t.gab only. Thus we may write aI/au as

~ I~ (Tabt.gab)dv,

where Tab are the components of a symmetric tensor which is taken
to be the energy-momentum tensor of the fields. (See Rosenfeld (1940)
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But

:,IfI Lx (LY))

for the relation between this tensor and the so-called canonical energy­
momentum tensor.)

This energy-momentum tensor satisfies the conservation equations
as a consequence of the field equations obeyed by the 'YCilc..• bc ... d' For
suppose one has a diffeomorphism ¢: JI-JI which is the identity
everywhere except in the interior of fi). Then, by the invariance of
integrals under a differential map,

I =f Ldv =.!.f LY) =.!. r LY) =~ r ¢*(LY)).
fI 4' fI 4! Jt}CfI) 4. JfI

Thus :, Ifl (LY)-¢*(LY))) = O.

Ifthe diffeomorphism ¢ is generated by a vector field X (non-zero only
in the interior of fi)) it follows that

J j.
4' fI Lx (LY)) = O.

= ~ f ( oL _ ( oL. ) ). o~ c ... b o~ c ... b
(1) fI (i) c ... d Ci) c ... d;c;c

x Lx'Ywc ... bc ... ddv+i Ifl TcbLxYcb dv .

The first term vanishes as a consequence of the field equations. In the
second term, LXYcb = 2Xcc;b)' Thus

Ifl (TCbLxYcb)dv = 2Ifl «TCbXc);b-TCb;bXc)dv.

The first contribution may be transformed into an integral over the
boundary of fi) which vanishes as X is zero there. Since the second
term must therefore be zero for arbitrary X, it follows that Tcb; b = O.

We shall now give as examples Lagrangians for some fields which
will be of interest later.

Example 1: A scalar field Yr
This can represent, for example, the nO-meson. The Lagrangian is

1 m2

L = -!Yr;uYr;bgcb_2 h2Yr2

where m, h are constants. The Euler-Lagrange equations (3.4) are

m2

Yr;Cbgcb- h2Yr = o.
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The energy-momentum tensor is

Tab = \b';a\b';b-!gab(\b';c\b':dffd+~: \b'2). (3.6)

Example 2: The electromagnetic field

This is described by a one-form A, called the potential, which is defined
up to the addition ofa gradient ofa scalar function. The Lagrangian is

L = - 1~17 FnbFedgccgbd,

where the electromagnetic field tensor F is defined as 2 dA, Le.
Fab = 2A1b: aJ o Varying Aa, the Euler-Lagrange equations (3.4) are

Fab· cg!JC = o.
This and Ji[ab;cl = 0 (which is the equation dF = d(dA) = 0) are the
Maxwell equations for the source-free electromagnetic field. The
energy-momentum tensor is

(3.7)

Example 3: A charged scalar field

This is really a combination of two real scalar fields \b'l and \b'2' These
are combined into a complex scalar field \b' = \b'l +i\b'2' which could
represent, for example, 17+ and 17- mesons. The total Lagrangian ofthe
scalar field and electromagnetic field is

1 m2 1
L = -!(\b';a +ieAu\b')gcb(Vi;b-ieAbVi) -2 "'2 fl- 1617 FabFcdgccgM,

where e is a constant and Vi is the complex conjugate of \b'. Varying
\b', Vi and Aa independently, one obtains

\b'; abyab - ~: \b'+ ieAagcb(2\b'; b + ieAb\b') + ieAa:bgcb\b' = 0,

and its complex conjugate, and

4~Fab:cg!JC- ie\b'(Vi; a -ieAaVi) + ieVi(\b': a+ieAa\b') = o.

The energy-momentum tensor is

Tab = !(\b'; a Vi;b + Vi; a \b'; b) +!( - \b': aieAbVi+ Vi; bieAa \b'

+Vi;uieAb\b'- \b';bieAaVi) +4~FacFbd!fd+e2A aA b\b'Vi+Lgab'
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Example 4: An isentropic perfect fluid

The technique here is rather different. The fluid is described by a
function P, called the density, and a congruence of timelike curves,
called the flow lines. By a congruence of curves, is meant a family of
curves, one through each point of vIt. If~ is a sufficiently small com­
pact region, one can represent a congruence by a diffeomorphism
y: [a, b] x.AI-+~ where [a, b] is some closed interval of Rl and .AI is
some three-dimensional manifold with boundary. The curves are said
to be timelike if their tangent vector W = (0/Of,)1" t E [a, b], is timelike
everywhere. The tangent vector V is defined byV = ( - g(W, W) )-1 W,
so g(V, V) = - 1, and the fluid current vector is defined by j = pV. It
is required that this is conserved, i.e. ja; a = O. The behaviour of the
fluid is determined by prescribing the elastic potential (or internal
energy) e as a function of p. The Lagrangian is taken to be

L = -p(l +e)

and the action I is required to be stationary when the flow lines are
varied and p is adjusted to keep ja conserved. A variation of the flow
lines is a differentiable map y: ( - 8, 8) x [a, b] x JV-+ ~ such that

yeO, [a, b],.AI) = y([a, b],.AI)

and y(u, [a,b),.AI) = y([a,b),.AI) on vIt-~, (ue( -8,8».

Then it follows that!::J.W = LgW where the vector K is K = (o/au)"!.
This vector may be thought ofas representing the displacement, under
the variation, of a point of the flow line. It follows that

!::J.Va = va;bKb_Ka;b Yb_ VaVbKb;c Ve.

Using the fact that Mja; a) = 0 = (!::J.ja); a' one has

(!::J.P):a va+!::J.pVa;a+P;a!::J. Va+p(!::J. Va);a = O.

Substituting for !::J. Va and integrating along the flow lines, one finds

!::J.p == (PKb);b+pKb;c ybVc.

Therefore the variation of the action integral is

~Iu=o = - J9 {«PKb);b+PKb;cVbYC) (1+ dt;»)}dV.
Integrating by parts,
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where Va == va;b Vb. If this is zero for all K, it follows that

(p+p) Va = -P:b(gb'> + VbVa),

where p = p(l +e) is the energy density and p = p2(de/dp) is the
pressure. Thus Va, the acceleration of the flow lines, is given by the
pressure gradient orthogonal to the flow lines.

To obtain the energy-momentum tensor one varies the metric. The
calculations may be simplified by noting that the conservation of the
current may be expressed as

Given the flow lines, the conservation equations determineja uniquely
at each point on a flow line in terms of its initial value at some given
point on the same flow line. Therefore ("J - g)ja is unchanged when the
metric is varied. But

so

and thus

p2 = g-l«"J _g)ja ("J -;- g)jb) gab'

2p!::J.p = (jBjb - i"icgBb) !::J.gab ,

{
de"} • deTab = p(1+e)+p2- JiaVb+ p2_ gab
dp dp

= (p+p) vaVb+pgab. (3.8)

We shall call any matter whose energy-momentum tensor is of the
above form (whether or not it is derived from a Lagrangian) a perfect
fluid. From the energy and momentum conservation equations (3.1)
applied to (3.8) one finds

P;a Va+(p+p) Va; a = 0, (3.9)

(p+p) va+ (gab + vaVb)p;b = O. (3.10)

These are the same as the equations derived from the Lagrangian. We
shall call a perfect fluid isentropic if the pressure p is a function of the
energy density p only. In this case one can introduce a conserved
density p and an internal energy e and derive the equations and the
energy-momentum tensor from a Lagrangian.

One may also give the fluid a conserved electric charge e (Le.
Ja; a = 0 where J = e V is the electric curre'nt). The Lagrangian for
the charged fluid and the electromagnetic field is

L = - l~1TFabF.:dgacgbd-p(l+e)-lJaAa.
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The last term gives the interaction between the fluid and the field.
Then varying A, the flow lines and the metric respectively, one finds

Fab;b = 41TJa,

tu+p) Va = -P:b(gab + Va Vb) +FabJb,

Tab = (,u+p) Va Vb +pgab + 4~(FacFbc- !yabF"dFCd).

3.4 The field equations

So far, the metric g has not been specified. In the Special Theory of
Relativity, which does not include gravitational effects, it is taken to
be flat. One might think that one could include gravitation by keeping
the metric flat and by introducing an extra field on space-time. How­
ever, experiments have shown that light rays travelling near the sun
are deflected. Since light rays are null geodesics, this shows that the
space-time metric cannot be flat or even conformal to a flat metric.
One therefore has to give some prescription for the curvature of
space-time. It turns out that this prescription can be chosen so as to
reproduce the results of Newtonian gravitation theory in the limit of
small slowly varying curvature. It is therefore not necessary to intro­
duce an extra field to describe gravitation. This is not to say that there
could not be an additional field that produced part ofthe gravitational
effects. Such a scalar field has been suggested by Jordan (1955), and
Brans and Dicke (see Dicke (1964)). However, as mentioned before,
such an additional field could be regarded as simply another matter
field .and included in the total energy-momentum tensor. We therefore
adopt the view that the gravitational field is represented by the
space-time metric itself. The problem then becomes one of finding
field equations to relate the metric to the distribution of matter.

These equations should be tensor equations involving the matter
only through its energy-momentum tensor, Le. should not distinguish
between two different matter fields which have the same distribution
ofenergy and momentum. This can be regarded as a generalization of
the Newtonian principle that the active gre.vitational mass of a body
(the mass producing a gravitational field) is equal to the passive gravi­
tational mass (the mass acted on by the gravitational field). This has
been verified experimentally by Kreuzer (1968).

To determine what the field equations should be, we shall consider
the Newtonian limit. Since the Newtonian gravitational field equation
does not involve time, the correspondence with Newtonian theory
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should be made in a metric which is static. By a static metric is meant
a metric which admits a timelike Killing vector field K which is
orthogonal to a family of spacelike surfaces. These surfaces may be
regarded as surfaces of constant time and may be labelled by the
parameter t. We define the unit timelike vector V as j-lK, where
j2 = - KaKa. Then va: b = - va~, where Va = va;b Vb = j-l!;byab
represents the departure from geodesity of the integral curves of V
(which are of course also integral curves of K). Note that Va fa = o.

These integral curves define the static frame of reference, that is to
say, the space-time metric seems to be independent of time to a
particle whose history is one of these curves. A particle released from
rest and following a geodesic would appear to have an initial accelera­
tion of - V with respect to the static frame. Ifj differs only slightly
from unity the initial acceleration of a freely moving particle released
from rest is approximately minus the gradient ofj. This suggests that
one should regard j - 1 as the quantity analogous to the Newtonian
gravitational potential.

One can derive an equation for this potential by considering the
divergence of va:

va; a = (V<l;b Vb); a = VU;b;a Vb+ Va: b Vb: a

= R ab vaVb+(va;a);b Vb+(~Vb)2 = R ab Va Vb.

But va; a = (j-l!;byab): a = - j-2!:a!:byab +j-Ij:bayab

and j VaVb - -j Va Vb - -j-I1 j nab;ab -;o;b - J;B ;b~ ,

SO one finds !;ab(yab+ Vap) =jRab VaVb.

The term on the left is the Laplacian of j with respect to the induced
metric in the three-surface {t = constant}. If the metric is almost fiat,
this will correspond to the Newtonian Laplacian of the potential.
One would therefore obtain agreement with Newtonian theory in the
limit of a weak field (i.e. when j ~ 1) if the term on the right is equal
to 417G times the matter density plus terms which are small in the weak
field limit.

This will be the case if there is a relation of the form

(3.11)

where Kab is a tensorial function ofthe energy-momentum tensor and
the metric, which is such that (417G)-lKab Va Vb is equal to the matter
density plus terms which are small in the Newtonian limit. We shall
for the moment assume a relation of this form.
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Since ROb satisfies the contracted Bianchi identities R.b; b = IR; a'

(3.11) implies
Kab;b = IK;b' (3.12)

This shows that the apparently natural equation K ab = 417GTab cannot
be correct, since (3.12) and the conservation equations Tab;b = 0
would imply T; a = O. For a perfect fluid, for example, this would mean
that p- 3p was constant throughout space-time, which is clearly not
satisfied by a general fluid.

In fact in general, the only first order identities satisfied by the
energy-momentum tensor are the conservation equations. From this
it follows that the only tensorial function K ab ofthe energy-momentum
tensor and the metric which obeys the identities (3.12) for all energy­
momentum tensors, is

(3.13)

where K and A are constants. The values of these constants can be
determined from the Newtonian limit. Consider a perfect fluid with
energy densityp and pressurep whose flow lines are the integral curves
of the Killing vector (i.e. the fluid is at rest in the static frame). The
energy-momentum tensor is given by (3.8). Putting this in (3.13) and
(3.11), one finds

f;ab(gOIJ+ VaVb) =f(IK(,u+3p)-A). (3.14)

In the Newtonian limit the pressurep is normally very small compared
to the energy density p. (Weare using units in which the speed of
light is unity. In units in which the speed of light is c, the expression
p+ 3p should be replaced by p+ 3plc2.) One would therefore obtain
approximate agreement with Newtonian theory if K = 817G and if IAI
is very small. We shall use units ofmass in which G = 1. In these units,
a mass of lO28 gm corresponds to a length of lcm. Sandage's (1961,
1968) observations of distant galaxies place limits on IAI of the order
of lO-li8 cm-2 ; we shall normally take A to be zero, but shall bear in
mind the possibility of other values.

Onemay then integrate (3.14) over a compact region§' of the three­
surface {t = constant} and transform the left-hand side into an integral
of the gradient off over the bounding two-surface o§':

f f( 417(,lt + 3p)) dO" = f J. ab(gab + Va Vb) dO"
, .F'

= f J. a(gab + Va Vb) dTb'
iJ.F •
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(3.15)

where dO" is the volume element of the three-surface {t = constant} in
the induced metric, and dTb is the surface element of the two-surface
a!F in the three-surface. This gives the analogue of the Newtonian
formula for the total mass contained within a two-surface. There are
however two important differences from the Newtonian case:

(i) a factor f appears in the integral on the right-hand side. This
means that matter placed in a region wheref is considerably less than
one (a large negative Newtonian potential) makes a smaller contribu­
tion to the total mass than does the same matter in a region wheref is
almost one (small negative Newtonian potential);

(ii) the pressure contributes to the total mass. This means that in
some circumstances it can actually assist rather than prevent gravita­
tional collapse.

The equations Rab = 81T(Tab - !TYab) +AYOb

are called the Einstein equations and are often written in the equivalent
form

Since both sides are symmetric, these form a set of ten coupled non­
linear partial differential equations in the metric and its first and
second derivatives. However the covariant divergence of each side
vanishes identically, that is,

(RGb_!RyGb+Agab):b = 0

and Tab: b = 0

hold independent of the field equations. Thus the field equations really
provide only six independent differential equations for the metric.
This is in fact the correct number ofequations to determine the space­
time, since four of the ten components of the metric can be given
arbitrary values by use of the four degrees of freedom to make co­
ordinate transformations. Another way of looking at this is that two
metrics gl and ga on a manifold J( define the same space-time if there
is a diffeomorphism () which takes gl into ga. Therefore the field equa­
tions should define the metric only up to an equivalence class under
diffeomorphisms, and there are four degrees of freedom to make
diffeomorphisms.

We shall consider the Cauchy problem for ,the Einstein equations
in chapter 7, and shall show that, together with the equations for the
matter fields, they are sufficient to determine the evolution of space­
time given suitable initial conditions, and that they satisfy the
causality postulate (a).
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(3.16)

The Einstein equations can be derived by requiring that the action

J= f9(A(R-2A)+L)dV

be stationary under variations ofgab' where L is the matter Lagrangian
and A a suitable constant. For

~((R- 2A)dv) = ((R- 2A) Igcw~gab+Rab~g<W+gcw~Rab)dv.

The last term can be written

gab~Rabdv= gab((~rCab);"- (~rcac); b) dv

= (~rCabgab - ~rdadgac ); c dv.

Thus it may be transformed into an integral over the boundary o!!#,
which vanishes as ~rabc vanishes on the boundary. Therefore

(3.17)

and so ifoJIOu vanishes for all ~gab' one obtains the Einstein equations
on setting A = (1611')-1.

One might ask whether varying an action derived from some other
scalar combination of the metric and curvature tensors might not give
a reasonable alternative setofequations. However the curvature scalar
is the only such scalar linear in second derivatives of the metric tensor;
so only in this case can one transform away a surface integral and be
left with an equation involving only second derivatives of the metric.
If one tried any other scalar such as RabRab or RabcdRabcd One would
obtain an equation involving fourth derivatives of the metric tensor.
This would seem objectionable, as all other equations of physics are
first or second order. If the field equations were fourth order, it would
be necessary to specify not only the initial values of the metric and its
first derivatives, but also the second and third derivatives, in order to
determine the evolution of the metric.

We shaH assume the field equations do not involve derivatives of
the metric higher than the second. If these field equations are derived
from a Lagrangian, then the action must have the form (3.16). One
could however obtain a system of equations other than the Einstein
equations, if one restricted the form of the variations ~g"ab for which
the action was required to be stationary.

For example, one could restrict the metric to be conformal to a flat
metric, Le. assume
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where 7Jab is a flat metric as in Special Relativity. Then

t::.gab = 20-I t::.Ogab

and the action will be stationary if

{(A(IR-A)gab-Rab) +Tab}t::.Ogab = 0

for all t::.0, that is if R +A-IT = 4A.

From (2.30),

R = - 60-30 1001]00 = - 60-10; 00 gOO + 120-20;c O;dgcd,

where I denotes covariant differentiation with respect to the flat
metric 1]ab. If the metric is static, 0 will be constant along the integral
curves of the Killing vector K (it will be independent of the time t).
The magnitude of K will be proportional to O. Therefore

!:ab(gab + ya yb)j-l = 0; ab(gab + yaYb) 0-1

= -tR+20-20:aO;bgab_0-l0;aya:b yb

= -tR +j-2!:af:bgab.

gab = 02(1]ab + JY.. JYr,),

where JY.. is an arbitrary one-form field. This would give the Newtonian
limit in a static metric in which JY.. was parallel to the timelike Killing
vector. There could however also be other static metrics where JY.. was
not parallel to the Killing vector and these would not give the
Newtonian limit. Further this restriction on the form of the metric

Thus the Laplacian ofjwill be equal to -IR plus a term proportional
to the square of the gradient ofJ. This last term may be neglected in
a weak field. From the field equations, -tR will be equal to
IA-IT - tA. For a perfect fluid, T = - JL +3p. One will therefore get
agreementwith Newtonian theory ifA is small or zeroandA-I = - 2411'.

This theory in which the metric is restricted to be conformally flat
is known as the Nordstrom theory. It can be reformulated as a theory
in which the metric is the flat metric Yj and in which the gravitational
interaction is represented by an additional scalar field 1>. As men­
tioned before, this sort of theory would be inconsistent with the
observed deflection of light by massive objects, and it would not
account for the measured advance of the perihelion of Mercury.

One could in fact obtain the observed deflection of light and the
advance of the perihelion ofMercury if the metric was restricted to be
of the form
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seems rather artificial. It appears more natural not to restrict the
metric, apart from requiring that it be Lorentzian.

We therefore adopt as our third postulate,

Postulate (c): Field equations

Einstein's field equations (3.15) hold on .ft.
The predictions of these field equations agree, within the experimtm­

tal errors, with the observations that have been made so far on the
deflection of light and the advance of the perihelion of Mercury,
though the question of whether there exists a long range scalar field
which ought to be included in the energy-momentum tensor remains
open at the present time.



4

The physical significance of curvature

In this chapter we consider the effect of space-time curvature on
families of timelike and null curves. These could represent flow lines
of fluids or the histories of photons. In §4.1 and §4.2 we derive the
formulae for the rate of change of vorticity, shear and expansion of
such families of curves; the equation for the rate of change of expan­
sion (Raychaudhuri's equation) plays a central role in the proofs of
the singularity theorems of chapter 8. In §4.3 we discuss the general
inequalities on the energy-momentum tensor which imply that the
gravitational effect ofmatter is always to tend to cause convergence of
timelike and of null curves. A consequence of these energy conditions
is, as is seen in §4.4, that conjugate or focal points will occur in families
of non-rotating timelike or null geodesics in general space-times. In
§4.5 it is shown that the existence of conjugate points implies the
existence of variations of curves between two points which take a null
geodesic into a timelike curve, or a timelike geodesic into a longer
timelike curve.

4.1 Timelike curves

In chapter 3 we saw that if the metric was static there was a relation
between the magnitude of the timelike Killing vector and the
Newtonian potential. One was able to tell whether a body was in a
gravitational field by whether, ifreleased from rest, itwould accelerate
with respect to the static frame defined by the Killing vector. However,
in general, space-time will not have any Killing vectors. Thus one will
not have any special frame against which to measure acceleration; the
best one can do is to take two bodies close together and measure their'
relative acceleration. This will enable one tq measure the gradient of
the gravitational field. If one thinks of the metric as being analogous
to the Newtonian potential, the gradient of the Newtonian field would
correspond to the second derivatives ofthe metric. These are described
by the Riemann tensor. Thus one would expect that the relative

[ 78]
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(4.2)

(4.3)

acceleration of two neighbouring bodies would be related to some
components of the Riemann tensor.

In order to investigate this relation more precisely we shall examine
the behaviour of a congruence of timelike curves with timelike unit
tangent vector V (g(V, V) = -1). These curves could represent the
histories of small test particles, in which case they would be geodesics,
or they might represent the flow lines of a fluid. If this were a perfect

fluid, then by (3.10) (,u+p) Va = -P:b hab, (4.1)

where Va = va; b Vb is the acceleration of the flow lines and
ha

b = 8a
b+ vaY" is the tensor which projects a vector XE~ into its

component in the subspace Hq of Tq orthogonal to V. One may also
think of hab as the metric in Hq (cf. §2.7).

Suppose A(t) is a curve with tangent vector Z = (oIOt))." Then one
may construct a family A(t, s) of curves by moving each point of the
curve A(t) a distance s along the integral curves ofV.1fOne now defines
Z as (oloth-(t,s) it follows from the definition of the Lie derivative (see
§2.4) that LvZ = 0 or in other words that

D
_Za = va.bZb.
os •

One may interpret Z as representing the separation of points equal
distances from some arbitrary initial points along two neighbouring
curves. Ifone adds a multiple of V to Z then this vector will represent
the separation of points on the same two curves but at different
distances along the curves. It is really only the separation of neigh­
bouring curves that one is interested in, not the separation of particu­
lar points on these curveS. One is thus concerned only with Z modulo
a component parallel to V, Le. only with the projection of Z at each
point q into the space Qq consisting of equivalence classes of vectors
which differ only by addition of a multiple of V. This space can be
represented as the subspJ1.ce Hq of~ consisting of vectors orthogonal
to V. The projection of Z into Hq will be denoted by .LZa = ha

bZb. In
the case of a fluid one can regard .LZ as the distance between two
neighbouring particles of the fluid as measured in their rest frame.

From (4.2) it follows that

D
.Los(.Lza) = va;b.LZb•

This gives the rate of change of the separation of two infinitesimally



80 PHYSICAL SIGNIFICANCE OF CURVATURE L4.1

neighbouring curves as measured in B q• Operating again with Dlos
and projecting into Bq, one finds

hab~(hbC~.LZC) = hab(Yb;cd.LZcyd+ Yb;c yc:dYezeyd

+ Yb: cycye:dZe yd+ Yb;chceze;d yd).

Changing the order of the derivatives in the first term and Using (4.2),

this reduces to

This equation, known as the deviation or Jacobi equation, gives the
relative acceleration, Le. the second time derivative of the separation,
of two infinitesimally neighbouring curves as measured in Bq• We
see that this depends only on the Riemann tensor if the curves are
geodesics.

In Newtonian theory, the acceleration of each particle is given by
the gradient of the potential cI> and therefore the relative acceleration
of two particles with separation Za is cI>: abZb. Thus the Riemann
tensor term Babcd ybyd is analogous to the Newtonian cI>; ac' The effect
of this 'tidal force' term can be seen, for example, by considering a
sphere of particles freely falling towards the earth, Each particle
moves on a straight line through the centre of the earth but those
nearer the earth fall faster than those further away. This means that
the sphere does not remain a sphere but is distorted into an ellipsoid
with the same volume.

In order to investigate the deviation equation further we shall
introduce dual orthonormal bases E I, E2, E2, E41 and EI, E2, Ell, E4 of
Tqand T*q at some pointq on an integral curvey(s) ofV, with E41 = V.
One would like to propagate them along y(s) to obtain similar such
bases at each point ofy(s). However, ifone parallelly propagates them
along y(s) (Le. so that Dlos of each vector is zero) E41 will not remain
equal to V, and E lt E 2, Es will not remain orthogonal to V, unless
y(s) is a geodesic. We therefore introduce a new derivative along
y(s) called the Fermi derivative DFlos. This is defined for a vector
field X along y(s) by:
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It has the properties:

(i) ~: = ~if')'(S) is a geodesic;

(ii) DF V = 0;
os

(iii) if X and Yare vector fields along ')'(s) such that

~X=O=DFY
os os '

then g(X, Y) is constant along ')'(s);
(iv) if X is a vector field along ')'(s) orthogonal to V then

~X= ~(~~).

(This last property shows that the Fermi derivative is a natural
generalization of the derivative Dlos.)

Thus, ifone propagates an orthonormal basis ofTq along ')'(s) so that
the Fermi derivative of each basis ve~tor is zero, one obtains an
orthonormal basis at each point of ')'(s), with E41 = V. The vectors
E1, E2, E2 may be interpreted as giving a non-rotating set of axes
along ')'(s). These could be realized physically by small gyroscopes
pointing in the direction of each vector.

The definition of the Fermi derivative along ')'(s) can be extended
from vector fields to arbitrary tensor fields by the usual rules:

(i) DFlos is a lineal'mapping of tensor fields of type (r, s) along ')'(s)
to tensor fields of type (r, s), which commutes with contractions;

(ii) DF(K®L) = DFK ®L+K® DFL.
os os os '

(iii) DFf = df wherefis a function.
os ds'

From these rules it follo'Ys that the dual basis El, E2, E3, E4 of T*q is
also Fermi-propagated along ')'(s). Using Fermi derivatives, (4.3) and
(4.4) may be written as:

DF a _ ~a bos ~Z - J ;b~Z, (4.5)

D2
os: ~Za = -RabcdJ.ZC VbVd + hPb Vb;cJ.ZC+ VaYr,~Zb. (4.6)

One may express these equations in terms of the Fermi-propagated
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dual bases. As J..Z is orthogonal to V it will have components with
respect to ElJ Ell' Ell only. Thus it may be expressed as ZaEa where we
adopt the convention that Greek indices take the values 1, 2, 3 only.
Then (4.5) and (4.6) can be written in terms of ordinary derivatives:

~za = Va Zp (4.7)ds ;p.
dB
dsllza = (-.Ra4P4 + Va;p+ Va"Vp)ZP (4.8)

(4.10)

where Vo;p are the components of VO;b for whieh a = IX and b = p. As
the components Za obey the first order linear ordinary differential
equation (4.7), they can be expressed in terms of their values at some
pointq by:

Za(s) = Aap(s) ZPI<l' (4.9)

where Aap(s) is a 3 x 3 matrix which is the unit matrix at q and satisfies

d
ds Aap(s) = Ya; yAyp(s).

In the case ofa fluid the matrix Aap can be regarded as representing the
shape and orientation ofa small element of fluid which is spherical at q.
This matrix can be written as

A ap = 0o,S,p (4.11)

where O",p is an orthogonal matrix with positive determinant and SoP

is a symmetric matrix. These will both be chosen to be the unit matrix
atq. The matrix 0 ",p may be thought ofas representing therotationthat
neighbouring curves have undergone with respect to the Fermi­
propagated basis while Sap represents the separation of these curves
from ')'(s). The determinant of SaP' which equals the determinant of
Aop, may be thought of as representing the three-volume of the
element of the surface orthogonal to ')'(s) marked out by the neigh­
bouring curves.

At q where A ap is the unit matrix, dOaplds is antisymmetric and
dS",p/ds is symmetric. Thus the rate ofrotation ofneighbouring curves
at q is given by the antisymmetric part of J;;; p while the rate of change
of their separation from ')'(B) is given by the Mymmotric Plt!'t of T:;p
and the rate of ehange of volume is given by tho trace of y..;p. Wo
thoroforc ooflno t,he vorticity tensor as

the expansion tensor as
(4.12)

(4. Ja)
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and the volume expansion as

(J = (Jabhab = Y..; b hab = va; a' (4.14)

We further define the shear tensor as the trace free part of (Jab'

(Tab = (Jab -lhab(J,

and the vorticity vector as

wa = habcd~Wcd = habcd~ P,;; d'

(4.15)

(4.16)

The covariant derivative of the vector V may be expressed in terms of
these quantities; T~Y..; b = Wab+ (Tab +l(Jhab - I'a~' (4.17)

(4.18)

This decomposition of the gradient of the fluid velocity vector is
directly analogous to that in Newtonian hydrodynamics.

In the Fermi-propagated orthonormal basis the vorticity and
expansion can be expressed in terms of the matrix A",p and its inverse
A-I.

",p'

(4.19)

d
(J = (detA)-1 ds (detA). (4.20)

From the deviation equation (4.8) it follows that

d2

ds2A",P = (-R"'4Y4 +~;'Y+ ~ ~)A.yp. (4.21)

(4.22)

part, oneA-Ih and taking the antisymmetric

d-
ds w",p = 2cuy!a(Jply+ If",,,:p1'

This equation enables one to calculate the propagation ofthe vorticity,
shear and expansion along the integral curves of V if one knows the
Riemann tensor.

Multiplying by
obtains

Thus the propngntion of vorticity depends on the antisymmetric
grndient of the nccclcrntion but not the 'tidal force'. Anot,h~r form of
the abovo equation iB

(4.2:~)
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Therefore A ya wy8A6p is a constant matrix if the curves are geodesics;
in particular, if the curves are geodesics and the vorticity vanishes at
one point on a curve, it will vanish at all points on the curve. If the
curves are the flow lines of a perfect fluid it follows from (4.1) that

1 dp
]{I j=---w,,-a;p P+P al'ds'

If the fluid is isentropic, this implies the conservation law:

WAyaWy6A6P = constant, (4.24)

where f dp
logW= -.

P+P

This conservation law is the relativistic form of the Newtonian
vorticity conservation law. In the geodesic or pressure-free case, this
takes the usual form that the magnitude of the vorticity vector is
inversely proportional to the area of a cross-section orthogonal to the
vorticity vector of an element of the fluid. When the pressure is non­
zero, there is an extra relativistic effect arising from the fact that
compression of the fluid does work on the fluid and therefore increases
the mass and so the inertia of an element of the fluid (cf. (3.9». This
means that the vorticity of a fluid increases less under compression
than would otherwise be expected.

Multiplying (4.21) by A-lpy and taking the symmetric part, one

finds d
ds 0ap = - Ra4p4 - WayWyp- 0ayOyp+ J';a; p>+~ ~. (4.25)

(This equation and (4.23) can be expressed in terms of a general, non­
orthonormal, non-Fermi-propagated basis by replacing the ordinary
derivatives with Fermi derivatives and projecting everything into the
subspace orthogonal to V.)

The trace of (4.25) is

where

(4.26)

This equation, which was discovered by Landau and independently by
Raychaudhuri, will be ofgreat importance later. From it one sees that
vorticity induces expansion as might be expected by analogy with
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Rab!cd;cl = 0

centrifugal force while shear induces contraction. By the field equa­
tions, the term R ab ya yb = 411'(,u +3p) for a perfect fluid whose flow
lines have tangent vectors ya. Thus one would expect this term also
to induce contraction. We shall give a general discussion of the sign
of this term in §4.3.

The trace-free part of (4.25) is

~:Uab = -OacM YCYd+lhachbdRcd-wacw"b-UacuCb

- feuab +haC hb
d 1l;c; d)-lhab(2w2

- 2u2 + 17a;a + IRcdhCd ), (4.27)

where 0abcd is the Weyl tensor. Since this tensor is trace-free it does not
enter directly in the expansion equation (4.26). However since the
term - 2u2 occurs on the right of the expansion equation, the Weyl
tensor produces convergence indirectly by inducing shear. The
Riemann tensor can be expressed in terms of the Weyl tensor and the
Ricci tensor:

R abcd = °abCd-gQ[dRclb-gblcRdJa-lRgarJldlb'

The Ricci tensor is given by the Einstein equations:

R ab -lgabR +Agab = 877Tab o

Thus the Weyl tensor is that part of the curvature which is not deter­
mined locally by the matter distribution. However it cannot be
entirely arbitrary as the Riemann tensor must satisfy the Bianchi
identities:

These can be rewritten as
Oabcd;r! = Jabc, (4.28)

where Jabc = Rc{a;bl+i!f~bR;al. (4.29)
These equations are rather similar to Maxwell's equations in electro­
dynamics:

where Fab is the electromagnetic field tensor and Ja is the source
current. Thus in a sense one could regard the Bianchi identities (4.28)
as field equations for the Weyl tensor giving that part of the curvature
at a point that depends on the matter distribution at other points.
(This approach has been used to analyse the behaviour ofgravitational
radiation in papers by Newman and Penrose (1962), Newman and
Unti (1962) and Hawking (1966a).)
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4.2 Null curves
The Riemann tensor will affect the rate of change of separation of null
curves as well as that of timelike curves. For simplicity, we shall con­
sider only null g6udesics. These could represent the histories of
photons; the effect of the Riemann tensor will be to distort or focus
small bundles of light rays.

To investigate this, we consider the deviation equation for a congru­
ence of null geodesics with tangent vector K (g(K, K) = 0). There are
two important differences between this case and that of the timelike
curves considered in the previous section. First, one could normalize
the tangentvectorVto thetimelike curves byrequiringg(V, V) = -1.
In effect this means that one parametrized the curves by the arc­
length 8. However this is clearly impossible with null curves as they
have zero arc-lengths. The best one can do is to choose an affine
parameter v; then the tangent vector K will obey

However one could multiply v by a function f which was constant
along each curve. Then Iv would be another affine parameter and the
corresponding tangent vector would bef-IK. Thus, given the curves as
point sets in the manifold, the tangent vector is only really unique up
to a constant factor along each curve. The second difference is that
Qq, the quotientofTqby K, is not now isomorphic to Hq, the subspace of
T q orthogonal to K, since E q includes the vector K itselfas g(K, K) = o.
In fact as will be shown below, one is not really interested in the whole
of Qq but only in the subspace Sq consisting of equivalence classes of
vectors in Hq which differ only by a multiple of K. In the case of light
rays, one can regard an element of Sq as representing the separation
between two neighbouring light rays which were emitted at the same
time by a source.

Ai; before we introduce dual bases E I, E2, Es, E" and EI, E2, ES, E'
of Tq and T: at some point q on a curve y(v). However we will ~ot
choose them to be orthonormal. We take E, equal to K, Es to be some
other null vector L having unit negative scalar product with E,
(g(Es, Es,) = 0, g(Es, E,) = - 1) and EI and E2 to be unit spacelike
vectors, orthogonal to each other and to Es and E,



4.2] NULL CURVES 87

Note that because ofthe non-orthonormal character ofthe basis, the
form ES is in fact equal to the form - Kagab and E' is - Lagab. It can
be seen that E 1, E 2 and E, constitute a basis for Eo. while the projec­
tions into QQ ofE1, E2 and Es form a basis of QQ' and the projections of
~ and E2 form a basis ofSQ. We shall normally not distinguish between
a vector Z and its projection into QQ or SQ' We shall call a basis having
the properties of ~, E2, Es, E" above, pseudo-orthonormal. By
parallelly transporting them along the geodesic y(v) one obtains a
pseudo-orthonormal basis at each point of y(v).

Wo use this basis to analyse the deviation equation for null geo­
desics. IfZ is the vector representing the separation of corresponding
points on neighbouring curves, one has, as before:

so

and

(4.30)

(4.31)

In the pseudo-orthonormal basis Ka;, will be zero as K is geodesic.
Therefore one can express the 1, 2 and 3 components of (4.30) as a
system of ordinary differential equations:

d-Za = Ka Zp
dv ;P'

where as before Greek indices take the values 1, 2, 3. This shows that
the projection of Z into the space QQ obeys a propagation equation
which involves only this projection, and not the component of Z
parallel to K. Further K3;c = 0 since (KagabKb);c = o. This implies
that ZS = -zaKa is constant along the geodesic y(v). This can be
interpreted as saying that light rays emitted from the same source at
different times maintain a constant separation in time. As this is the
case, one is more interested in the behaviour of neighbouring null
geodesics which have p~rely spatial separations, i.e. one is interested
in vectors Z for which ZS = O. The projections of such vectors will
then lie in the subspace SO. and will obey the equation

d_Zm = Km Zndv ;n'

where m, n take the values 1, 2 only. This is similar to (4.7) for the
timelike case, except that now one is dealing only with a two­
dimensional space of connecting vectors Z.
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As in the previous section, one can express Zm in terms of their
values at some point q: ~

Zm(v) = Amn(v) znlq,

where Amn(v) is a 2 x 2 matrix which satisfies

(4.32)

(4.33)
d2 ~ ~

dv2Amn(v) = -Rm4P,Apn(v).

As before we call the antisymmetric part of K m;n the vorticity 6'>mn'
the symmetric part the rate of separation 8mn and the trace the
expansion 8. We also define the shear Umn as the trace-free part of8mn.
They obey similar equations to the analogous quantities in the
previous section:

~ 6lmn = -86lmn +26lp[munlp, (4.34)

Equation (4.35) is the analogue of the Raychaudhuri equation for
timelike geodesics. One sees again that vorticity causes expansion
while shear causes contraction. We shall show in the next section that
the Ricci tensor term -RabKaKb will normally be negative, and so
cause focussing. As before the Weyl tensor does not affect the expan­
sion directly but causes distortion which in turn causes contraction
(cf. Penrose (1966».

4.3 Energy conditions

In the actual universe the energy-momentum tensor will be made up
of contributions from a large number of different matter fields. It
would therefore be impossibly complicated to describe the exact
energy-momentum tensor even if one knew the precise form of the,
contribution of each field and the equations of motion governing it.
In fact, one has little idea of the behaviour of matter under extreme
conditions of density and pressure. Thus it might seem that one has
little hope of predicting the occurrence of singularities in the universe
from the Einstein equations as one does not know the right-hand side
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of the equations. However there are certain inequalities which it is
physically reasonable to assume for the energy-momentum tensor.
These will be discussed in this section. It turns out that in many
circumstances these are sufficient to prove the occurrence of singu­
larities, independent of the exact form of the energy-momentum
tensor.

The first of these inequalities is:

v = ±1.v

o

o

o

v

V-K

o

Tab =

Tab =

The weak energy condition

The energy-momentum tensor at each P e..-f( obeys the inequality
Tab WaWb ~ 0 for any timelike vector WeTp • By continuity this will
then also be true for any null vector WeTp •

To an observer whose world-line at p has unit tangent vector V, the
local energy density appears to be Tab Va Vb. Thus this assumption is
equivalent to saying that the energy density as measured by any
observer is non-negative. This would seem very reasonable physically.
To investigate further the significance of this assumption we use the
fact that one may express the components Tab of the energy­
momentum tensor at p with respect to an orthonormal basis E1, E 2•

Es, E4 , (E4 timelike) in one of four canonical forms.

Type 1.

P
This is the general case in which the energy-momentum tensor has a
timelike eigenvector E 4 • This eigenvector is unique unless P= -Pa

(a = 1,2,3). The eigenvalue p represents the energy-density as
measured by an observer whose world-line at p has unit tangent
vector E4 and the eigenvalues Pa (a = 1,2,3) represent the principal
pressures in the three spacelike directions Ea. This is the form of the
energy-momentum for all observed fields with non-zero rest mass and
also for all zero rest mass fields except in special cases when it is type II.

Type II. PI 0
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This is the special case in which the energy-momentum tensor has
a double null eigenvector (Ea+E4 ). The only observed occurrence of
this form is for zero rest-mass fields when they represent radiation all
of which is travelling in the direction Ea+E 4• In this case PI' P2 and K

are zero.

Type III. o 0
-v 1

1 -v
1 0

This is the special case in which the energy-momentum tensor has
a triple null eigenvector (Ea+E4). There are no observed fields which
have energy-momentum tensors of this form.

Type IV.
PI 0

o

o

This is the general case in which the energy-momentum tensor has no
timelike or null eigenvector. There are no observed fields which have
energy-momentum tensors of this form.

For type I, the weak energy condition will hold if P ~ 0, P+Pa ~ 0
(a = 1, 2, 3). For type II it will hold ifPI ~ 0, P2 ~ 0, K ~ 0, V = + 1.
These inequalities are very reasonable requirements and are satisfied
by all experimentally detected fields. The condition will not hold for
the physically unrealized types III and IV.

The condition will also holdfor the scalar field¢ postulated by Brans
and Dicke and by Dicke (see Dicke (1964)). This field is required to be
positive everywhere. It has an energy-momentum tensor of the form
(3.6) where now m = o. The energy-tensor of the other fields is ¢ times
what it would have been had the scalar field not existed.

The condition will not hold for the' C'-field proposed by Hoyle and '
Narlikar (1963). This again is a scalar field wi~h m zero, only this time
the energy-momentum tensor has the opposite sign and so the energy
density is negative. This allows the simultaneous creation ofquanta of
positive energy fields and of the negative energy C-field. This process
occurs in the steady-state model of the universe suggested by Hoyle
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and Narlikar in which, as particles move apart due to the general
expansion of the universe, new matter is continually being created to
keep the average density constant. There is, however, a quantum
mechanical difficulty associated with such a process. For even if the
cross-section for the process were very small, the infinite phase space
available to the positive and negative energy quanta would seem to
result in an infinite number of such pairs being produced in a finite
region of space-time.

Such a catastrophe could not occur if the weak energy condition
held. If a slightly stronger condition holds then creation is impossible
in the sense that space-time must remain empty if it is empty at one
time and no matter comes in from infinity. Conversely, matter present
at one time cannot disappear and so must be present at another time.
The condition is

The dominant energy condition

For every timelike lfa, Tablfam~ 0, and Tablfa is a non-spacelike
vector.

This may be interpreted as saying that to any observer the local
energy density appears non-negative and the local energy flow vector
is non-spacelike. An equivalent statement is that in any orthonormal
basis the energy dominates the other components of Tab' i.e.

Too ~ ITabl for each a, b.

This holds for type I if /1- ~ 0, - /1- ~ Pa ~ /1- (a = 1,2,3) and for
type II if v = + 1, K ~ 0, 0 ~ Pi ~ K (i = 1,2). In other words, the
dominant energy condition is the weak energy condition with the
additional requirement that the pressure should not exceed the energy
density. This holds for all known forms of matter and there is in fact
good reason for believing that this should be the case in all situations.
For the speed of sound waves travelling in the Ea direction is dPa/dP­
(adiabatic) times the spee~of light. Thus dpJd/1- must be less than or
equal to one, as by postulate (a) in §3.2 no signal can propagate faster
than light. It follows that Pa ~ /1-' since, for every known form of
matter, the pressures are small when the density is small. (Bludman
and Ruderman (1968, 1970) have shown that there might be fields for
which mass renormalization could lead to pressure being greater than
the density. We feel, however, that this probably indicates a failure of
renormalization theory rather than that such a situation would occur.)
Now consider the situation depicted in figure 9 in which there is a 0 2
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Surface8 {I = con8tant}

[4.3

1 increases

1=1'

( '11).

FIGURE 9. A compact region tW ofspac&-time with past and future non-timelike
boundaries {8'f1h. (8'f1). and timelike boundary (8'f1)a' The part of tW lying to
the past of the surface Jf"{t') (defined by t = t') is tWIt').

function t whose gradient is everywhere timelike. (It will be shown in
§6.4 that such a function will exist provided space-time is not on the
verge ofviolating causality.) The boundary 0'11 of the compact region
'11 consists of a part (o'1lh. whose normal form n is non-spacelike and
such that nat;bfflbis positive, a part (0'11)2 whose normal form n is non­
spacelike and such that nat:bfflb is negative, and a remaining part
(0'11)3 (which may be empty). The sign of the normal form n is given by
the requirement that (n, X) be positive for all vectors X which point
out of '11 (cf. §2.8), £'(t') denotes the surface t = t' and '1I(t') denotes
the region of '11 for which t < t'. For later use in §7.4 we shall establish
an inequality which holds not only for the energy-momentum tensor
Tab but also for any symmetric tensor 8 ab which satisfies the dominant
energy condition. Applied to the energy-momentum tensor this
inequality will show that Tab vanishes everywhere on '11 if it vanishes
on (0'11)3 and on the initial surface (o'1lh.

Lemma 4.3.1

There is some positive constant P such that for any tensor 8ab which'
satisfies the dominant energy condition and vanishes on (o'1l)a,

f 8 abt: adUb ~ -f 8 abt; adUb
.1t"(I)n'1l (iI'1I),

+pf'(f 8abt; adUb) de' +f'(f 8ab ;a dub) dr.
.1t"(I') n 4' .1t"(I') n 4'
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Consider the volume integral

By Gauss' theorem this can be transformed into an integral over the
boundary of '1I(t):

The boundary of '1I(t) will consist of '1I(t) n 0'11 and '11 n£'(t). Since
Sah is zero on (0'11)3'

I(t) =I4'{I) n (i1'li), +I4'(1) n (i1'li). +I4'n oW'{I)'

By the dominant energy condition, Saht:a is a non-spacelike vector
such that Saht:at:b ~ O. As the normal form to (0'11)2 is non-spacelike
and such that nat: byab < 0, the second term on the right will be non­
negative. Thus

f Saht:adub ~ -f Saht:adub
4' n oW'(1l 4'(1) n (i14'),

+f (Saht·ab+Sab·bt·a)dv.
4'(1) • ••

Since '11 is compact there will be some upper bound to the components
oft: ah in any orthonormal basis whose timelike vector is in the direc­
tion oft;a' Thus there will be some P > 0 such that on '11,

Sabt;ah ~ PSaht:at: b

for any Sah which obeys the dominant energy condition. The volume
integral over '1I(t) can be decomposed into a surface integral over
£'(t') n '11 followed by an integral with respect to t':

f (PSaht;at;b+Sah:bt:a)dv = I'{f (PSaht;b+Sah;b) dua}dt',4'(t) . - oW'(1') n 4'

where dua is the surface element of £'(t'). Thus

f Saht;adub ~ -f Saht:adub
oW'(I) n 4'. 4'(1l n (i1'i'),

As an immediate consequence of this result one has:
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The conservation theorem
Ifthe energy-momentum tensor obeys the dominant energy condition
and is zero on (0'11)3 and on the initial surface (W1h, then it is zero
everywhere on '11.

Let x(t) = f Tabt;at;b dv
4'(1)

= I'(f Tabt;a dUb) dt' ~ O.
3t'(1') n 4'

Then the above lemma gives dx/dt :s; Px. But for sufficiently early
values of t, £'(t) will not intersect '11 and so x will vanish. Thus x will
vanish for all t which implies that Tab is zero on '11. 0

From the conservation theorem it follows that if the energy­
momentum tensor vanishes on a set!7, then it also vanishes on the

S'

FIGURE 10. The future Cauchy development D+(9') of a spacelike set 9'.

future Cauchy development D+(!7), which is defined as the set of all
points through which every past-directed non-spacelike curve inter­
sects!7 (figure 10) (cf. §6.5). For ifq is any point ofD+(!7), the region
of D+(!7) to the past of q is compact (proposition 6.6.6) and may be
taken as '11. This result may be interpreted as saying that the
dominant energy condition implies that matter cannot travel faster
than light.

For our consideration of singularities, the importance of the weak
energy condition is that it implies that matter always has a converging
(or more strictly nondiverging) effect on congruences ofnull geodesics.
If the vorticity vanishes, the expansion () obeys the equation:

:v{) = -RabKaKb-2a2 -1{)2·
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Thus in this case () will monotonically decrease along the null geodesic
if Rab WaWb ~ 0 for any null vector W. We shall call this the null
convergence condition. From the Einstein equations,

Tab WaWb ~ wal¥..(IT-;1TA).

This will hold for type I if

it follows that this condition is implied by the weak energy condition,
independent of the value of A.

From (4.26) it can be seen that the expansion (} ofa timelike geodesic
congruence with zero vorticity will monotonically decrease along a
geodesic ifRab Wa Wb ~ 0 for any timelike vector W. We shall call this
the timelike convergence condition. Bythe Einstein equation, this condi­
tion will be satisfied if the energy-momentum tensor obeys the
inequality,

and for type II if

11=+1, K ~ 0,

We shall say that the energy-momentum tensor satisfies the 8trong
energy condition if it obeys the above inequality for A = O. This is a
stricter requirement than the weak energy condition but it is still
physically reasonable for the total energy-momentum tensor. For the
general case, type I, it would be violated only by a negative energy
density or a large negative pressure (e.g. for a perfect fluid with density
1gm cm-3 it can only be violated ifp < -1015 atmospheres). It holds
for the electromagnetic field and for the scalar field with m zero (in
particular, it holds for the scalar field of Brans and Dicke). For
m non-zero, the energy-momentum tensor of a scalar field has the
form (§3.3):

Thus if Wa is a unit timelike vector

T. waWb_1lv.WaT=(A. wa)2_!
m2

A.2ab "2 a 'fJ; a 2 1i2 'fJ (4.37)

which may be negative. However by the equation of the scalar field

1m2

"2 1i2¢2 = l¢¢;abgab.
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Inserting this in (4.37) and integrating over a region '11, one obtains

The first term will be non-negative since gab+2WaWb is a positive
definite metric and the second term will be small compared to the first
ifthe region '11 is large compared to the wavelength hIm. For 1T mesons,
which may be described classically by a scalar field with
m = 6 x 10-25 gm, this wavelength is 3 x to-13 cm. Thus although the
energy-momentum tensor of 1T mesons may not satisfy the strong
energy condition at every point, this should not affect the convergence
of timelike geodesics over distances greater than 10-12 cm. This might
possibly lead to a breakdown of the singularity theorems in chapter 8
when the radius ofcurvature ofspace-time becomes less than 10-12 cm
but such a curvature would be so extreme that it might well count as
a singularity (§10.2).

4.4 Conju~ate points

In §4.1 we saw that the components of the vector which represented
the separation between a curve Y(8) and a neighbouring curve in a
congruence of timelike geodesics, satisfied the Jacobi equation:

(4.38)

A solution of this equation will be called a Jacobi field along y(8). Since
a solution may be specified by giving the values of Z« and dZ«/d8 at
some point on y(8) there will be six independent Jacobi fields along
Y(8). There will be three independent Jacobi fields which vanish at
some point q of Y(8). They may be expressed as:

where

d
Z«(8) = A..p(8) d8 ZPlq,

d2

ds2A«P(8) = - Rt.<4')'4A;rp(8), (4.39)

and A«p(8) is a 3 x 3 matrix which vanishes at q. These Jacobi fields
may be thought of as representing the separation of neighbouring
geodesics through q. As before one may define the vorticity, shear and
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expansion of the Jacobi fields along ')'(s) which vanish at q:

d
wa.p = A-I.yIPdsAa.J')',

() = (detA)-1:s (detA).

(4.40)

(4.41)

(4.42)

These will obey the equations derived in §4.1, with Va. = O. In particular

1( d d)A')'a.w')'aAap ="2 A')'a.dsA')'p-A')'PdsA')'a.

will be constant along ')'(s). But it vanishes at q where Aa.p is zero.
Thus wa.p will be zero wherever Aa.p is non-singular.

We shall say that a pointp on 1'(s) is conjugate to qalong1'(s) if there
is a Jacobi field along ')'(s), not identically zero, which vanishes at
q and p. One may think of p as a point where infinitesimally neigh­
bouring geodesics through q intersect. (Note, however, that it may be
only infinitesimally neighbouring geodesics which intersect atp; there
need not be two distinct geodesics from q passing through p.) The
Jacobi fields along ')'(s) which vanish at q are described by the matrix
Aa.p. Thusa pointpis conjugate to qalong1'(s) ifand onlyifAa.pissingu­
laratp. The expansion () is defined as (detA)-ld(detA)/ds. Since Aa.p
obeys (4.39) where Ra.4,,4is finite, d (det A)/dB will be finite. Thus a point
p will be conjugate to q along ')'(s) if () becomes infinite there. The con­
verse will also be true since () = dlog (detA)jds andAa.p can besinguJar
only at isolated points or else it would be singular everywhere.

Proposition 4.4.1

If at some point 1'(SI) (SI > 0), the expansion () has a negative value
()1 < 0 and if Rab Va Vb ~ 0 everywhere then there will be a point
conjugate to q along 1'(§) between ')'(SI) and 1'(SI + (3/- ()1»' provided
that 1'(s) can be extended to this parameter value. (This may not be
possible if space-time is geodesically incomplete. In chapter 8 we
shall interpret such incompleteness as evidence of the existence of a
singularity.)

The expansion () of the matrix Aa.p obeys the Raychaudhuri equation
(4.26): d

-() = -Rab vaVb_2u2_!()2
ds
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where we have used the fact that the vorticity is zero. All the terms on
the right-hand side are negative. Thus for 8 > 81

3
O:!!;. 10)'8-(81+(3 - 1)

So 0 will become infinite and there will be a point conjugate to q for
some value of 8 between 81 and 81 + (3/- ( 1 ), 0

In other words, if the timelike convergence condition holds and if the
neighbouring geodesics from q start converging on Y(8), then some
infinitesimallyneighbouring geodesic will intersect Y(8) providing that
')'(8) can be extended to large enough values of the parameter 8.

Proposition 4.4.2

IfRab Va Vb ~ oand ifat some pointp = Y(81) the tidalforce Rabcd VbVd
is non zero, there will be values 80 and 82 such that q = Y(80 ) and
r = Y(82) will be conjugate along Y(8), providing that Y(8) can be
extended to these values.

A solution of (4.39) along Y(8) is uniquely determined by the values of
Aap and dA..p/d8 atp. Consider the setP consisting ofall such solutions
for which Aaplp = 8ap, (dAap/d8)/p is symmetric with trace 0lp :!!;. O.
For each solution in P there will be some 83 > 81 for which A ap(83 ) is
singular, since either 0lp < 0, in which case this follows from the
previous result, or 0lp = 0, in which case (duap/ds)lp is non-zero which
will then cause u2 to be positive and so cause 0 to become negative for
8 > 81, The members of the set P are in one-one correspondence with
the space S of all symmetric 3 x 3 matrices with non-positive trace
(i.e. with the values of dA..p/ds)!p). There is thus a map 1J from S
to Y(8) which assigns to each initial value (dAap/ds)lp the point on Y(8)
where A..p first becomes singular. The map 1J is continuous. Further if
any component of (dAap/ds)lp is very large, the corresponding point
on Y(8) willlienearp, since in the limit the term Ra4,,4 in (4.39) becomes
irrelevant and the solution resembles the flat space case. Thus there is
some°> oand some 84 > 81 such that ifany component of (dAaplds) Ip
is greater than 0, the corresponding point on ')'(8) will be before Y(84)•.

However the subspace ofS consisting ofall m,atrices all of whose com­
ponents are less than or equal to 0, is compact. This shows that there
is some 85 > 81 such that1J(S) is contained in the segment from y(81) to
Y(85 )· Consider now a point r = Y(82) where 82 > 85, If there is no point
conjugate to r between r and p, the Jacobi fields which are zero at r
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must have an expansion () which is positive atp (otherwise they would
be in the set P which represents all families of Jacobi fields with zero
vorticity which have non-positive expansion atp). It follows from the
previous result that there is then a point q = y(so) (so < S1) which is
conjugate to r along y(s). 0

In a physically realistic solution (though not necessarily in an exact
one with a high degree ofsymmetry), one would expect every timelike
geodesic to encounter some matter or some gravitational radiation and
so to contain some point where RabCd Vb Vd was non-zero. Thus it would
be reasonable to assume that in such a solution every timelike geodesic
would contain pairs of conjugate points, provided that it could be
extended sufficiently far in both directions.

We shall also consider the congruence of timelike geodesics normal
to a spacelike three-surface, .J't'. By a spacelike three-surface, .J't', we
mean an imbedded three-dimensional submanifold defined locally by
f = 0 wherefis a 0 2 function and !Ff:af;b < 0 whenf = O. We define
N, the unit normal vector to.J't', by Na = (-gbci;J;t)-lgadf;d and the
second fundamental tensor X of .J't' by Xab::s haC hbd Ne; d' where
hab = gab+NaN" is called the first fundamental tensor (or induced
metric tensor) of.J't' (cf. §2.7). It follows from the definition that:x is
symmetric. The congruence of timelike geodesics orthogonal to .J't' will
consist of the timelike geodesics whose unit tangent vector V equals
the unit normal N at £: Then one has:

Ya;b = Xab at .J't'. (4.43)

The vector Z which represents the separation of a neighbouring
geodesic normal to.J't' from a geodesic y(s) normal to.J't', will obey the
Jacobi equation (4.38). At a point q on ')'(s) at .J't' it will satisfy the
initial condition: d

dsza = XapZP• (4.44)

(4.45)where

We shall express the Jacobi fields along y(s) which satisfy the above
condition as

and at q, Aap is the unit matrix and

d
ds A"'B = XayAyp. (4.46)
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"d "(j = (detA)-ldv (det A)

We shall say that a pointp on y(s) is conjugate to.J't' along y(s) ifthere
is a Jacobi field along y(s) not identically zero, which satisfies the
initial conditions (4.44) at q and vanishes at p. In other words, pis
conjugate to.J't' along y(s) if and only if A",p is singular at p. One may
think ofp as being a point where neighbouring geodesics normal to .J't'
intersect. As before Aap will be singular where and only where the
expansion () becomes infinite. At q, the initial value of Ay",CUY8Aap will
be zero, therefore cutJtP will be zero on y(s). The initial value of () will
be XahgOO.

Proposition 4.4.3

If Rah Va Vb ~ 0 and Xahgab < 0, there will be a point conjugate to.J't'
along y(s) within a distance 3/( - XahgOO) from.J't', provided that y(s)
can be extended that far.

This may be proved using the Raychaudhuri equation (4.26) as in
proposition 4.4.1. 0

We shall call a solution of the equation:

d2
dv2 Zm = - Rm4n4zn (m, n = 1,2)

along a null geodesic y(v), a Jacobi field along y(v). The components
Zm could be thought ofas the components, with respect to the basis E1

and E 2, of a vector in the space Sq at each point q. We shall say that
p is conjugate to q along the null geodesic y(v) ifthere is a Jacobi field
along y(v), not identically zero, which vanishes at q and p. If Z is
a vector connecting neighbouring null geodesics which pass through q,
the component ZS will be zero everywhere. Thus p can be thought of
as a point where infinitesimally neighbouring geodesics through q
intersect. Representing the Jacobi fields along y(v) which vanish at q
by the 2 x 2 matrix Amn,

~ d
zm(v) = A mn dv znlq •

One has as before: A,mlVrkAkn = 0, so the vorticity ofthe Jacobi fields
which are zero at p vanishes. Also p will be conjugate to q along y(v) ,
if and only if

becomes infinite at p. Analogous to proposition 4.4.1, we have:
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Proposition 4.4.4

IfRabKaKb ~ 0 everywhere and ifat some point y(VI) the expansion ()
has the negative value ()I < 0, then there will be a point conjugate
to q along y(v) between y(vI ) and y(vI + (2/- 01»provided that y(v)
can be extended that far.

The expansion () of the matrix Amn obeys (4.35):

tvo = -Rab KaKb-2&2-1()2,

and so the proof proceeds as before. 0

Proposition 4.4.5

If RabKaKb ~ 0 everywhere and if at p = y(vl ), KCKdKlaRblcdlgK,l is
non-zero, there will be Vo and V2such that q = y(vo) and r = y(v2) will
be conjugate along y(v) provided y(v) can be extended to these values.

If KcKdKlaRblcdleK'l is non zero then so is Rm4n4• The proof is then
similar to that of proposition 4.4.2. 0

As in the timelike case, this condition will be satisfied for a null
geodesic which passes through some matter provided that the matter
is not pure radiation (energy-momentum tensor type II of §4.3) and
moving in the direction of the geodesic tangent vector K. It will be
satisfied in empty space if the null geodesic contains some point where
the Weyl tensor is non-zero and where K does not lie in one of the
directions (there are at most four such directions) at that point for
which KCKdKlaOblcdlgK,J = O. It therefore seems reasonable to assume
that in a physically realistic solution every timelike or null geodesic
will contain a point at which KaKbKlcRdlablgK,l is not zero. We shall
say that a space-time satisfying this condition satisfies the generic
condition.

Similarly we may also consider the null geodesics orthogonal to
a spacelike two-surface'9'. By a spacelike two-surface 9', we mean an
imbedded two-dimensional submanifold defined locally by fl = 0,
f2 = 0 where fl and f2 are 0 2 functions such that when fl = 0, f2 = 0
thenfl;a andf2;a are non-vanishing and not parallel and

(f1;a+pf2;a) (fl; b+#f2: b) gab = 0

for two distinct real values PI and P2 ofp. Then any vector lying in t.he
two-surface is necessarily spacelike. We shall define N1a and N2a, the
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two null vectors normal to /7, as proportional to gab(fl;b +#112: b) and
gab(fl; b+#212: b) respectively. and normalize them so that

N 1aN 2bgab = -1.

One can complete the pseudo-orthonormal basis by introducing two
spacelike unit vectors Yla and y2a orthogonal to each other and to Nla
and ~a. We define the two null second fundamental tensors of/7 as:

where n takes the values 1,2. The tensors lXab and 2Xab are symmetric.
There will be two families of null geodesics normal to /7 corre­

sponding to the two null normals N1a and N2a. Consider the family
whose tangent vector K equals N2 at /7. We may fix our pseudo­
orthogonal basis El , E2, Ea, E 4 by taking El = Yl , E 2 = Y2, Ea = N l ,

E4 = N 2 at /7 and parallelly propagating along the null geodesics.
The projection into the space Sq of the vector Z representing the
separation of neighbouring null geodesics from the null geodesic y(v)
will satisfy (4.30) and the initial conditions

d-Zm= 2X Zndv mn (4.47)

at q on y(v) at /7. As before the vorticity ofthese fields will be zero.
The initial value of the expansion IJ will be 2Xabgab. Analogous to
proposition 4.4.3 we have:

Proposition 4.4.6

If RabKaKb ~ 0 everywhere and 2Xabgab is negative there will be a
point conjugate to /7 along y(v) within an affine distance 2/( - 2Xabgab)
~m/7. 0

From their definition, the existence of conjugate points implies the
existence of self-intersections or caustics in families of geodesics. A
further significance of conjugate points will be discussed in the next
section.

4.5 Variation of arc-length

In this section we consider timelike and non-spacelike curves which
are piecewise 0 3 but which may have points at which their tangent
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vector is discontinuous. We shall require that at such points the two
tangent vectors

:eL and :eL satisfy g (:eL, :eIJ = -1,

that is, they point into the same half of the null cone.

Proposition 4.5.1

Let 411 be a convex normal coordinate neighbourhood about q. Then the
points which can be reached from q by timelike (respectively non­
spacelike) curves in till are those of the form expo (X), X e To where
g(X, X) < 0 (respectively ~ 0). (Here, and for the rest of this section,
we consider the map exp to be restricted to the neighbourhood of the
origin in To which is diffeomorphic to till under expo')

In other words, the null geodesics from q form the boundary of the
region in tf/ which can be reached from q by timelike or non-spacelike
curves in 41/. This is fairly obvious intuitively but because it is funda­
mental to the concept of causality we shall prove it rigorously. We
first establish the following lemma:

Lemma 4.5.2

In 0/1 the timelike geodesics through q are orthogonal to the three­
surfaces of constant u (u < 0) where the value of u at p etill is defined
to be y(cxPo-1 p, expo-lp).

The proof is based on the fact that the vector representing the separa­
tion of points equal distances along neighbouring geodesics remains
orthogonal to the geodesics if it is so initially. More precisely, let X(t)

denote a curve in To, where g(X(t), X(t» = - 1. One must show that
the corresponding curves A(t) = expq(soX(t» (so constant) in till, where
defined, are orthogonal. to the timelike geodesics yes) = expo(sX(to»
(to constant). Thus· ill terms of the two-surface a defined by
xes, t) = expq(sX(f), one must prove that

(sec figure 11). Xow

b (0 b) (D 0 0) (0 D0)
os!J os' bi = Y cs Fa' at +g os' os at .
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X,~II

cone

exp, (8X(t))

Surface 11 = constant
(11 =_82)

Null cOile

Thus

FIGURE 11. In a normal neighbourhood. surfaces at constant distance from q
are orthogonal to the geodesics through q.

The first term on the right is zero as %s is the unit tangent vector to
the timelike geodesics from q. In the second term one has from the
definition of the Lie derivative that

DoD °
os m= at os'

o (0 0) (0 D 0) 1 0 (0 0)
osg os' m= g os' at oS = '2 mg O8' & = O.

Therefore g(%s,%t) is independent of s. But at s = 0, (%t)a. = o.
Thus g(%s, o/Ot) is identically zero. 0

Proof ofproposition 4.5.1. Let Oq denote the set of all timelike vectors
at q. These constitute the interior of a solid cone in Tq with vertex at
the origin. Let yet) be a timelike curve in 0/1 from q to p and let yet) be
the piecewise ()2 curve in Tq defined by yet) = expq-I(y(t». Then
identifying the tangent space to Tq with 1:z itself, one has

(%t)ylq = (%t);lq·
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Therefore at q, (%t); will be timelike. This shows that the curve yet)
will enter the region Oq. But expq (Oq) is the region of ON on which u is
negative and in which by the previous lemma the surfaces of constant
a are spacelike. Thus u must monotonically decrease along yet) since
(oIOt)y being timelike can never be tangent to the surfaces ofconstant u
and since at any non-differentiable point of yet) the two tangent
vectors point into the same half of the null cone. Therefore p E expq(Oq)
which completes the proof for timelike curves. To prove that a non­
spacelike curve yet) remains in expq (Oq), one performs a small varia­
tion of yet) which makes it into a timelike curve. Let Y be a vector
field on Tq such that in ON the induced vector field expq.(Y) is every­
where timelike and such that g(Y, (%t)Ylq) < o. For each e ~ 0 let
per, e) be the curve ~ starting at the origin such that the tangent
vector (o/ar)p equals (olot):ylt=r+eYIp<r.e)' Then p(r,e) depends differ­
entiably on rand e. For each e> 0, expq(p(r,e» is a timelike curve
in ON and so is contained in expq (Oq)' Thus the non-spacelike curve

expq (p(r, 0» = y(r) is contained in eXPq (Oq) = expq (Oq). 0

Oorollary

IfpEON can be reached from q by a non-spacelike curve but not by a
timelike curve, then p lies on a null geodesic from q. 0

The length of a non-spacelike curve yet) from q to pis

L(y,q,p) = I:[ -g(~, ~)Ydt,
where the integral is taken over the differentiable sections of the curve.

In a positive definite metric one may seek the shortest curve between
two points but in a Lorentz metric there will not be any shortest curve
as any curve can be deformed into a null curve which has zero length.
However, in certain cases there will be a longest non-spacelike curve
between two points or between a point and a spacelike three-surface.
We deal first with the situation when the two points are close together.
We shall then derive necessary conditions in the general case when the
two points are not close. The sufficient condition in this case will be
dealt with in §6.7.

Proposition 4.5.3

Let q and p lie in a convex normal neighbourhood ON. Then, if q and p
can be joined by a non-spacelike curve in ON, the longest such curve
is the unique non-spacelike geodesic curve in ON from q to p. Moreover,
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defining p(q,p) as the length of this curve if it exists, and as zero
otherwise, p(q,p) is a continuous function on 0/1 x 0/1.

By the definition of convex normal neighbourhoods (§2.5), there is
a unique geodesic yet) in 0/1 with yeO) = q, y( 1) = p. Since this geodesic
depends differentiably on its endpoints, the function

will be differentiable on 0/1 x 0/1. (This function u is the same as that
in lemma 4.5.2.) Thus p(q,p) will be continuous on 0/1 x 0/1 since it
equals [-u(q,p)]t if (J' < 0 and is zero otherwise. It now remains to
show that if q and p can be joined by a timelike curve in 0/1 then the
timelike geodesic y between them is the longest such curve. Let a(s, t)

be eXPll (sX(t» as before where g(X(t), X(t» = - 1. If A(t) is a time­
like curve in 0/1 from q to p, it can be represented as A(t) = a(f(t) , t).

Th@n

Since the two vectors on the right are mutually orthogonal by lemma
4.5.2. and since g«%s)a., (%s)a.) = - 1, this gives

the equality holding if and only if (%t)a. = 0 and hence if and only if
Ais a geodesic curve. Thus

L(A,q,p) ~ f:f'(t)dt = p(q,p),

the equality holding if and only if Ais the unique geodesic curve in 0/1
from q to p. 0

We shall now consider the case where q and p are not necessarily
contained in a convex normal neighbourhood 0/1. By considering small
variations we shall derive necessary conditions for a timelike curve
yet) from q to p to be the longest such curve from q to p. A variation a
of yet) is a 0 1- map a: (- 6, 6) X[0, tp ] ~ J( such that

(1) a(O,t) = yet);
(2) there is a subdivision 0 = t1 < t2 ••• < tn = tp of [0, tp ] such that

a is 0 3 on each (-6,6) X [ti ,ti +1];

(3) a(u,O) = q, a(u, tp ) = p;
(4) for each constant u, a(u, t) is a timelike curve.
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The vector (%u)"lu_o will be called the variation vector Z. Con­
versely, given a continuous, piecewise ()2 vector field Z along yet)
vanishing at q and p, we may define a variation a for which Z will
be the variation vector by:

a(u, t) = expr (uZlr)'
where u E ( - €, €) for some € > 0 and r = yet).

Lemma 4.5.4

The variation of the length from q to p under a is

oLI n-l rl+· (0 { D ° (oj) oJ) n-l (0 [ 0])au ..-0 = i~dl' g au' j-1 Ft Ft-j-2 Ol Ft dt+ i~/ au' j-1 Ft '

where j2 = g(%t,O/ot) is the magnitude of the tangent vector and
[j-l 0/Ol] is the discontinuity at one of the singular points of yet).

We have:

~~I..=o = >: :uf( -0 (~. ~))ldt

= -I:fg(D ~ ~)j-ldtau Ol' ot

= -I:fg(D~ ~)j-Idt
ot au' ot

Integrating the first term by parts one has the required formula. 0

One may simplify the formula by choosing the parameter t to be the
arc-length s. Then g(%t,olot) = -1. We shall denote by V the unit
tangent vector %s. One has:

~~I = ni:,11'1+. g(Z, V) dB +ni:,lg(Z, [V])
VI.(, ..-0 i-I" i-2

where V = DV/os is the acceleration. From this one sees again that a
necessary condition for yet) to be the longest curve from q to p is that
it should be an unbroken geodesic curve as otherwise one could choose
a variation which would yield a longer curve.

One may also consider a timelike curve yet) from a spacelike three­
surface .J't' to a point p. A variation a of this curve is defined as before
except that condition (3) is replaced by:

(3) a(u, 0) lies on .J't', a(u, tp ) = p.
Thus at.J't' the variation vector Z = o/au lies in.J't'.
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Lemma 4.5.5

oLI n-lf'l+l n-l
<l.. = ~ g(V, Z)ds+ ~ g(Z, [V])+g(Z, V>I._o·
vu, u-O i-III i-2

The proof is as for lemma 4.5.4. 0

From this one sees that a necessary condition for yet) to be the longest
curve from .J't' to p is that it is an unbroken geodesic curve orthogonal
to .J't'.

We have seen that, under a variation a, the first derivative of the
length of a timelike geodesic curve is zero. To proceed further we shall
calculate the second derivative. We define a two-parameter variation
a of a geodesic curve yet) from q to p as a 0 1 map:

a: (- 61,61) X ( - 62,62) X [0, tp]~..A"
such that

(1) a(O,O,t) = yet);
(2) there is a subdivision °= t1 < t2 < ... < tn = tp of [0, tp ] such

that a is 0 3 on each

( - 61, 61) X ( - 6 2, 62) X [ti , ti+J;

(3) a(u1 , u2, 0) = q, a(ul'~' tp ) = p;
(4) for all constant Ut, ~, a(u1, u2, t) is a timelike curve.
We define

ZI = (o~ )1"'-0'1 ,. ...-0

Z2= (~tb:g,
as the two variation vectors. Conversely given two continuous, piece­
wise 02 vector fields ZI and Z2 along yet) one may define a variation
for which they will be the variation vectors, by:

a(u1, u2, t) = eXPr (u1ZI +U 2Z2 ),

r = yet).
Lemma 4.5.6

Under the two-parameter variation of the geodesic curve yet), the
second derivative of the length will be:

02L I n-1ili
+. ( {D2 })~ 1£.-0 = .~ f/ ZI' !i"2(Z2+f/(V,Z2)V)-R(V,Z2)V ds

VU,2 uUt ...-0 .-1 II uS

+ :~:f/ (ZlJ [~ (Z2+f/(V, Z2) V)]).
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By lemma 4.5.4, one has:

Therefore

The first and third terms vanish as yet) is an unbroken geodesic curve.
In the second term one can write:

and

= _~{!-1~(g(~, ~)) -1-1g(~2'~ ~)}.
In the 'fourth term:

D[/-1 0] [1-1 D0 1-3 (D 0 0) 0]0u2 at = at 0u2+ g at OU
2

' at at .
Then taking t to be the arc-length 8, one obtains the required result. 0

Although it is not immediately obvious from the appearance of the
expression, one knows from its definition that it is symmetric in the
two variation vector fields Zl and Z2. One sees that it only depends on
the projections of Z1 and Z2 into the space orthogonal to V. Thus we
can confine our attention to variations a whose variation vectors are
orthogonal to V. We shall define T" to be the (infinite-dimensional)
vector space consisting of all continuous, piecewise 0 2 vector fields
along yet) orthogonal to V and vanishing at q and p. Then 02L/0u20u1
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will be a symmetric map of T" x T" to Rl. One may think of it as
a symmetric tensor on T" and write it as:

a
2
L 1L(Zl,Z2) =~ 1£,-0, Zl,Z2 ET".uU2 UU1 1£,- 0

One may also calculate the second derivative of the length from .J't'
to P of a geodesic curve y(t) normal to .J't'. One proceeds as before
except that one endpoint of y(t) is allowed to vary over .J't' instead of
being fixed.

Lemma 4.5.7

The second derivative of the length of y(t) from .J't' to pis:

~.~2~.1'Ut_0="i:,
l I fI+l g (Zl' (~:Z2 - R(V, Z2) v}) ds

VU,2 V U,l1£,_0 i-l fI uS

+:~:g(Zl' [~Z2])+g(Zl'~Z2)1~-X(Zl,Z2)1~,
where ~ and Z2 have been taken orthogonal to V and X(ZlJ Z2) is the
second fundamental tensor of .J't'.

The first two terms are as for lemma 4.5.6. The extra terms are:

D (a 1-1 a)1 1-1 (D a a)10u2g 0u1 ' Ft ~ = g au2au/m ~

+1-3g(~ Fe,~)g(a~,~)I~ +1-lg(~l'~ ~)I~·
The second term vanishes as a/0u1 is orthogonal to a/at. If one takes
t to be the arc-length s, then O/at will be equal to the unit normal N
at.J't'. Since the endpoint of y(t) is restricted to varying over.J't', a/Oul
will always be orthogonal to N. Thus

g(E- ~,N) = ~g(~,N)-g(~,E-N) = -x(~,~\. 00u2 Oul 0u2 0u1 Out 0u2 aU1 au;}
We shall say that a timelike geodesic curve y(t) from q to P is maximal
if L(Zl' Z2) is negative semi-definite. In other words, if y(t) is not
maximal there is a small variation a which yields a longer curve from
p to q. Similarly we shall say that a timelik'e geodesic curve from .J't'
to Pnormal to .J't' is maximal if L(Zl' Z2) is negative semi-definite,
so ify(t) is not maximal there is a small variation which yields a longer
curve from .J't' to p.
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Proposition 4.5.8

A timelike geodesic curve yet) from q to P is maximal if and only if
there is no point conjugate to q along yet) in (q, pl.

Suppose there is no conjugate point in (q,p). Then introduce a Fermi­
propagated orthonormal basis along yet). The Jacobi fields along yet)

which vanish at q will be represented by a matrix A"p(t) which will be
non-singular in (q,p), but which will be singular atq and possibly atp.
Since conjugate points are isolated, d(log det A)/ds will be infinite
where A"p is singular. Thus a (JO, piecewise (J2 vector field ZeT"
can be expressed in [q,p] as

Z"=A"pWP,

where WP is (JO, piecewise 0 1 on [q,p]. Then,

L(Z,Z) =:E f:
P

A"p WP{~:(A"6W6)+R"41'4A1'6 W6}ds

+ :EA"pWP [~ (Ad W6)]

= c~::EJ:PA"p WP{2~Ad:S W6 +A"6Z W6}ds

+:EA"p WPA"6 [1s W6]

= -:Ef:JI{A"p~WPA"6~W6+ WP(:sA"pA"6

-A"p:sA"6):S W6}ds.

(We take the limit because the second derivative of W6 may not be
defined at q.) But

(1sA"pA"6-A"P:sAd) = -2A"pw"1'A,.6 = o.

Therefore L(Z, Z) ~ O.
Conversely, suppose there is a point re(q,p) conjugate to q along

yet). Let W be the Jacobi field along y which vanishes at q and r.

Let Ke T" be such that
D

Kagabos Wb = -1 at r.
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Extend W to P by putting it zero in [r,p]. Let Z be eK+e-1W, where
e is some constant. Then

L(Z,Z) = e2L(K,K)+2L(K,W)+2c2L(W, W) = e2L(K,K)+2.

Thus by taking e small enough, L(Z, Z) may be made positive. 0

One may obtain similar results for the case of a timelike geodesic
curve yet) orthogonal to ft', from ft' to p.

Proposition 4.5.9

A timelike geodesic curve yet) from ft' to P is maximal if and only if
there is no point in (ft', q) conjugate to ft' along y. 0

We shall also consider variations of a non-spacelike curve yet) from q
to p. We shall be interested in the circumstances under which it is
possible to find a variation a of yet) which makes g(a/Bt, a/at) negative
everywhere, or in other words, yields a timelike curve from q to p.
Under a variation a:

~(g(~,~)) = 2Y(~~,~) = 2g(~~,~)

= 2~(g(~,~))-2Y(~,~~). (4.48)

In order to obtain a timelike curve from q to p, one requires this to be
less than or equal to zero everywhere on yet).

Proposition 4.5.10

Ifp and q are joined by a non-spacelike curve yet) which is not a null
geodesic they can also be joined by a timelike curve.

Ifyet) is not a null geodesic curve from p to q, there must be some point
at which the tangent vector is discontinuous, or there must be some
open interval on which the acceleration vector (D/at) (a/at) is non-zero
and not parallel to a/at. Consider first the case where there are no
discontinuities. One has

(D a a) 1 a( (a a))
g at ai' ai ="2 at g ai' at = O.

This shows that (D/at) (a/at) is a spacelike vector where it is non-zero
and not parallel to a/at. Let W be a 02 timelike vector field along yet)
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such that g(W, a/at) < O. Then one will obtain a timelike curve from
p to q under the variation whose variation vector is

Do
Z = xW+Y atat

with x = c-Ieb [t e-b(l- iYa2)dt,
Jt,

2 (D a D0)
where a = g at at' at at "

c=-g(w~), at '

b = - Ie: c-Ig ( W, ~~)dt,
and Y is a C2 non-negative function on [P, q] such that Yp = Yo. = 0 and

If, e-b(l- lya2)dt = O.
t,

Suppose now there is some subdivision to. < tl < t2 < ... < tp such that
the tangent vector a/at is continuous on each segment [ti' ti+l]' If
a segment [ti' ti+l] is not a null geodesic curve, it can be varied to give
a timelike curve between its endpoints. Thus one has only to show
that one can obtain a timelike curve from a non-spacelike curve yet)
made up of null geodesic segments whose tangent vectors are not
parallel at points of discontinuity yeti)' The parameter t can be taken
to be an affine parameter on each segment [ti' ti+l]' The discontinuity
[%t]lti will be a spacelike vector, as it is the difference between two
non-parallel null vectors in the same half of the null cone. Thus one
can find a C2 vector field W along [ti - l , ti+l] such that g(W, a/at) < 0 on
[ti-I' til and g(W, a/at) > 0 on [ti' ti+l]' Then a timelike curve between
yeti-I) and y(ti+l) will be obtained from the variation with variation
vector field Z =xW, where x = C-l(ti+l-ti)(t-ti_l) for ti- l ~ t ~ ti ,
andx = C-I(ti-ti_I)(ti+l-t) forti ~ t ~ ti+I , wherec = -g(W, a/at). 0

Thus if yet) is not a geodesic curve, it can be varied to give a timelike
curve. If it is a geodesic curve, the parameter t may be taken to be an
affine parameter. One then sees that a necessary, but not sufficient,
condition for a variation to yield a timelike curve is that the variation
vector a/au should be orthogonal to the tangent vector a/at everywhere
on yet), since otherwise (a/at) g(o/au, a/at) would be positive somewhere
on yet). For such a variation the first derivative (a/au) g(%t, a/at) will
be zero and so one will have to examine the second derivative.
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We shall therefore consider a two-parameter variation a of a null
geodesic y(t) from q to p. The variation a will be defined as before
except that, for the reason given above, we shall restrict ourselves to
variations whose variation vectors

~~ 11£1-0 and ~~ 11£1-0
UUl u,-o UUll u,-o

are orthogonal to the tangent vector o/Ot on y(t).
It is not convenient to study the behaviour of L under such a varia­

tion since (-g(%t, %t))l is not differentiable when g(%t, a/at) = o.
Instead we shall consider the variation in:

1'-1 rtl+1 (0 0)
A == - i~ JfI g at' at dt.

Clearly a necessary but not sufficient condition that a variation a of
yet) should yield a timelike curve from q to P is that A should become
positive.

One has

and so

~a::~lb:g = ~fg(~l'{~: ~ll -R(~, ~J~})dt

+~(~ ,[~ ~J), (4.49)

This formula is very similar to that for the variation of the length of
a timelike curve. It can be seen that the variation of A is zero for a
variation vector proportional to the tangent vector o/Ot since a/at is
null and R(%t, a/at) (a/at) = 0 as the Riemann tensor is anti­
symmetric. Such a variation would be equivalent to simply repara­
metrizing yet). ThuB ifone wants a variation which will give a timelike
curve one need consider only the projection ofthe variation vector into
the space Bq at each point q of yet). In other words, introducing a
pseudo-orthonormal basis E1, Ell, Ea, E4 along yet) with E4 = a/at, the
variation ofA will depend only on the components Zm of the variation
vector (m = 1,2).
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dll

dt2f+hf= 0,

Proposition 4.5.11

If there is no point in [q,p] conjugate to q along yet) then d2A/du21,,_0
will be negative for any variation a of yet) whose variation vector
a/au1,,-0 is orthogonal to the tangent vector a/Ot on YCt) andis not every­
where zero Or proportional to a/at. In other words, if there is no point
in [q,p] conjugate to q then there is no small variation of YCt) which
gives a timelike curve from q to p.

The proof is similar to that for proposition 4.5.8, using instead the
2 x 2 matrix Am.. of §4.2. 0

Proposition 4.5.12

If there is apointr in (q,p) conjugate to qalongYCt) then there will be
a variation of YCt) which will give a timelike curve from q to p.

The proof is a bit finicky since one has to show that the tangent vector
becomes timelike everywhere. Let Wm be the components in the space
S (see §4. 2) of the Jacobi field which vanishes at q and r. It obeys

d2

dt2 Wm = -Rm4n4 W n,

where for convenience t has been taken to be an affine parameter.
Since Wm will be at least Q3 and since dWm/dt is not zero at q and r,
one can write Wm = lWmwhere Wmis a unit vector andf and Ware 0 2.
Then

where

Let x E [r,p] be such that Wmis not zero in [r, x]. Let hI be the minimum
value of h in [r,x]. Let a> 0 be such that a2+hl > 0 and let
b = {- f(eat -1)-1}1a:' Then the field

"Zm = {b(eat -1) +f} Wm

will vanish at q and x and will satisfy

zm(~t22zm+Rm4n4Z")> 0 in Cq,x).

We shall choose a variation a(u,t) of YCt) from q to x such that the
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( D a 0)1g---au au' at u-o
components in S of its variation vector o/auk_o equals Zm and such
that

satisfies

{

- et for 0 ~ t ~ itz'

g(~~,~)lu-o+g(~,~~JL-o== e(t-ltz) for itz~t~itz,
e(tz - t) for itz ~ t ~ tz•

where tz is the value of t at x, and e > 0 but less than the least value of
zm (d2Zm/dt2+ R71,tntZ") in the range itz ~ t ~ ftz. Then by (4.49)
(02/au2)g(0/Clt,0/ot) will be negative everywhere in [q,x] and so for
sufficiently small u, a will give a timelike curve from q to x. Ifone joins
this curve to thesection of y from x top, one will obtain a non-spacelike
curve from q to p which is not a null geodesic curve. Thus there will
be a variation ofthis curve which gives a timelike curve from q to p. 0

By similar methods one can prove:

Proposition 4.5.13

Ifyet) is a null geodesic curve orthogonal to a spacelike two-surface9'
from 9' top and if there is no point in [9',p] conjugate to 9' along y,
then no small variation of y can give a timelike curve from 9' to p . 0

Proposition 4.5.14

If there is a point in (9',p) conjugate to 9' along p, then there is a
variation of y which gives a timelike curve from 9' to p. 0

These results on variations of timelike and non-spacelike curves will
be used in chapter 8 to show the non-existence of longest geodesics.



5

Exact solutions

Any space-time metric can in a sense be regarded as satisfying
Einstein's field equations

(5.1)

(where we use the units of chapter 3), because, having determined the
left-hand side of (5.1) from the metric tensor of the space-time
(.A,g), one can define Tab as the right-hand side of (5.1). The matter
tensor so defined will in general have unreasonable physical properties;
the solution will be reasonable only ifthe matter content is reasonable.

We shall mean by an exact 8olution of Einstein's equations, a space­
time (.A,g) in which the field equations are satisfied with Tab the
energy-momentum tensor of some specified form of matter which
obeys postulate (a) ('local causality') of chapter 3, and one of the
energy conditions of §4.3. In particular, one may look for exact
solutions for empty space (Tab = 0), for an electromagnetic ·field (Tab
has the form (3.7», for a perfect fluid (Tab has the form (3.8», or for
a space containing an electromagnetic field and a perfect fluid.
Because of the complexity of the field equations, one cannot find
exact solutions except in spaces of rather high symmetry. Exact
solutions are also idealized in that any region ofspace-time is likely to
contain many forms of matter, while one can obtain exact solutions
only for rather simple matter content. Nevertheless, exact solutions
give an idea of the qualitative features that can arise in General
Relativity I and so ofpo~ible properties ofrealistic solutions ofthe field
equations. The examples we give will show many types of behaviour
which will be of interest in later chapters. We shall discuss solutions
with particular reference to their global properties. Many of these
global properties have only recently been discovered, although the
solutions have been known in a local form for some time.

In §5.1 and §5.2 we consider the simplest Lorentz metrics: those of
constant curvature. The spatially isotropic and homogeneous cosmo­
logical models are described in §5.3, and their simplest anisotropic

[ 117]



118 EXACT SOLUTIONS [5

(5.3)

generalizations are discussed in §5.4. It is shown that all such simple
models will have a singular origin provided that A does not take large
positive values. The spherically symmetric metrics which describe
the field outside a massive charged or neutral body are examined in
§5.5, and the axially symmetric metrics describing the field outside
a special class of massive rotating bodies are described in §5.6. It is
shown that some of the apparent singularities are simply due to a bad
choice of coordinates. In §5.7 we describe the Godel universe and in
§ 5.8 the Taub-NUT solutions. These probably do not represent the
actual universe but they are of interest because of their pathological
global properties. Finally some other exact solutions of interest are
mentioned in §5.9.

5.1 Minkowski space-time

Minkowski space-time (..,ft, "l) is the simplest empty space-time in
General Relativity, and is in fact the space-time ofSpecial Relativity.
Mathematically, it is the manifold R4 with a flat Lorentz metric "l.
In terms of the natural coordinates (XI ,X2,X3,X4) on R4, the metric "l
can be expressed in the form

<isS = - (dx4)2+ (dXI )2+ (dx2)2+ (dx3)2. (5.2)

If one uses spherical polar coordinates (t, r, 0, if» where x4 = t,
x 3 = r C08 0, x 2 = rsin ocos if>, Xl = rsin osin if>, the metric takes the
form

This metric is apparently singular for r = 0 and sin 0 = 0; however
this is because the coordinates used are not admissible coordinates at
these points. To obtain regular coordinate neighbourhoods one has to
restrict the coordinates, e.g. to the ranges 0 < r < 00, 0 < 0 < TT,
0< if> < 2TT. One needs two such coordinate neighbourhoods to cover
the whole of Minkowski space.

An alternative coordinate system is given by choosing advanced
and retarded null coordinates v, W defined by v = t + r, W = t - r
(=> v ~ w). The metric becomes

ds2= -dvdw+!(v-w)2(d(J2+ sin20dif>2), (5.4)
,

where - 00 < v < 00, - 00 < w < 00. The absence in the metric of
terms in dv2, dw2 corresponds to the fact that the surfaces {w = con­
stant}, {v = constant} are null (i.e. w;aw;bgab = 0 = v;av;bgab); see
figure 12.
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FIGURE 12. Minkowski space. The null coordinate v(w) may be thought of as
incoming (outgoing) spherical waves travelling at the speed of light; they are
advanced (retarded) time coordinates. The intersection of a surface
{v =constant} with a surface {w =constant} is a two-sphere.

(i) The v, w coordinate surfaces (one coordinate is suppressed).
(ii) The (t, r) plane; each point represents a two-sphere ofradills r.

In a coordinate system in which the metric takes the form (5.2), the
geodesics have the form xa(v) = bav+ea where baand ea are constants.
Thus the exponential map expp : Tp 4 ..,II is given by

xa(expp X) = Xa+xa(p),

where Xa are the components ofX with respect to the coordinate basis
{olexa} of Tp- Since exp is one-one and onto, it is a diffeomorphism
between Tp and Jt. Thus any two points of Jt can be joined by a
unique geodesic curve. AB exp is defined everywhere on Tp for all p,
(Jt, Yl) is geodesically complete.

For a spacelike three-surface Y, the future (past) Cauchy develop­
ment D+(Y) (D-(Y» is defined as the set of all points qEJt such that
each past-directed (future-directed) inextendible non-spacelike curve
through q intersects Y, cf. §6.5. IfD+(Y) uD-(Y) = Jt, i.e. if every
inextendible non-spacelike curve in Jt intersects Y, then Y is said
to be a Cauchy surface. In Minkowski space-time, the surfaces
{x4 = constant} are a family ofCauchy surfaces which cover the whole
of Jt. One can however find inextendible spacelike surfaces which are
not Cauchy surfaces; for example the surfaces

~: {- (x4)2 + (X1)2 + (X2)2 + (xlI)2 = U = constant},
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where u < 0, x4 < 0, are spacelike surfaces which lie entirely inside the
past null cone of the origin 0, and so are not Cauchy surfaces (see
figure 13). In fact the future Cauchy development of~ is the region
bounded by~ and the past light cone of the origin. By lemma 4.5.2,
the timelike geodesics through the origin 0 are orthogonal to the
surfaces ~. If rED+(~)UD-(~) then the timelike geodesic
through r and 0 is the longest timelike curve between rand Y (T" If

Surface
{xt = constant)

Past null
cone of 0

FIGURE 13. A Cauchy surface {xc:;:: constant} in Minkowski space-time, and
spacelike surfaces .9""•.9"", which are not Cauchy surfaces. The norma.l geodesics
to the surfaces .9"(/', .9"(/', all intersect at O.

however r does not lie in D+(~)uD-(~) there is no longest timelike
curve between r and~: either r lies in the region u ~ 0, in which case
there is no timelike geodesic through r orthogonal to ~, or r lies in
the region u < 0, x4 ~ 0, in which case there is a timelike geodesic
through r orthogonal to~ but this geodesic is not the longest curve­
between r and ~ as it contains a conjugate point to ~ at 0 (cf.
figure 13).

To study the structure ofinfinity in Minkowski space-time, we shall
use the interesting representation of this space-time given by Penrose.
From the null coordinates v, W, we define new null coordinates in
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which the infinities of v, w have been transformed to finite values;
thus we define p, q by tanp = v, tanq = w where -l11 < P < l",
-l11 < q < !11 (andp ~ q). Then the metric of (.L,Yl) takes the form

ds2 = sec2p sec2q( - dp dq+ ! sinll (p - q)(d02 + sin20 d¢2».

The physical metric Yl is therefore conformal to the metric g given by

dsll = -4dpdq+sin2(p-q)(d02+sinll Od¢2). (5.5)

This metric can be reduced to a more usual form by defining

t' = p+q, r' = p-q,

where -11 < t' +r' < 11, -11 < t' -r' < 11, r' ~ 0; (5.6)

(5.5) is then

d82 = - (dt')2+ (dr')2+ sin2r'(dOll +sin20d¢2). (5.7)

Thus the whole ofMinkowski space-time is given by the region (5.6) of
the metric

where ds2 is determined by (5.7); the coordinates t, r of (5.3) are
related to t', r' by

2t = tan (!(t' +r'» + tan (W' -r'»,

2r = tan (W' +r'» -tan (W' -r'».

Now the metric (5.7) is locally identical to that of the Einstein static
universe (see §5.3), which is a completely homogeneous space-time.
One can analytically extend (5.7) to the whole of the Einstein static
universe, that is one can extend the coordinates to cover the manifold
Rl x 8 3 where - 00 < t' < 00 and r', 0, ¢ are regarded as coordinates
on 8 3 (with coordinate singularities at r' = 0, r' = 11 and 0 = 0,0 = 11
similar to the coordinate singularities in (5.3); these singularities can
be removed by transforming to other local coordinates in a neighbour­
hood ofpoints where (5.7) is singular). On suppressing two dimensions,
one can represent the Einstein static universe as the cylinder
xli + y2 = 1 imbedded in a three-dimensional Minkowski space with
metric ds2 = - dt2+ dx2+ dy2 (the full Einstein static universe can be
imbedded as the cylinder x2+ y2 + Z2 + w2 = 1 in a five-dimensional
Euclidean space with metric ds2 = -dtll+dx2+dy2+dzll+dwll, cf.
Robertson (1933».

One therefore has the situation: the whole ofMinkowski space-time
is conformal to the region (5.6) of the Einstein static universe, that is,
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to the shaded area in figure 14. The boundary of this region may there­
fore be thought of as representing the conformal structure of infinity
of Minkowski space-time. It consists of the null surfaces p = itT
(labelled J+) and q = - itT (labelled J-) together with points P = itT,
q = itT (labelled i+), p = itT, q = - itT (labelled iO) and p = - itT,
q = - itT (labelled i-). Any future-directed timeIike geodesic in

r' = 0

FIGURE 14. The Einstein sta.tic universe represented by an imbedded cylinder;
the coordinates 0, f/J have been suppressed. Each point represents one half
of a two-sphere ofarea. 41Tsint r'. The shaded region is conformal to the whole of
Minkowski space-time; its bounda.ry(part of the null cones ofi+, iO and i-)ma.y
be regarded as the conformal infinity of Minkowski spa.ce-time.

Minkowski space approaches i+ (i-) for indefinitely large positive
(negative) values of its affine parameter, so one can regard any time­
like geodesic as originating at i- and finishing at i+ (cf. figure 15(i».
Similarly one can regard null geodesics as oziginating atJ- and ending
at J+, while spacelike geodesics both originate and end at iO. Thus one
may regard i+ and i- as representing future and past timelike infinity,
J+ and J- as representing future and past null infinity, and iO as
representing spacelike infinity. (However non-geodesic curves do not
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obey these rules; e.g. non-geodesic timelike curves may start on J­
and end on J+.) Since any Cauchy surface intersects all timelike and
null geodesics, it is clear that it will appear as a cross-section of the
space everywhere reaching the boundary at iO.

'1'=0

Spacelike
geodesic

Timelike
geodesics

Null
geodesic

i+(q = i")
P(p = ill)

."(J (regard as
one point)

Surface
{p = constant}

(i)

.1+('1' = 00,

t =+00)

{q = constant}

Surfaces
(t = constant}

FIGURE 15
(i) The shaded region of figure 14, with only one coordinate suppre88ed,

representing Minkowski space-time and its conformal infinity.
(ii) The Penrose diagram of Minkowski space-time; each point represents

a two-sphere, except for i +, iO and i-, each of which is a single point, and points
on the line r = 0 (where the polar coordinates are singular).

One can also represent the conformal structure of infinity by
drawing a diagram of the (t', r') plane, see figure 15 (ii). As in figure
12 (ii), each point of this diagram represents a sphere S2, and radial
null geodesics are represented by straight lines at ± 450

• In fact, the
structure of infinity in any spherically symmetric space-time can be
represented by a diagram of this sort, which we shall call a Penrose
diagram. On such diagrams we shall represent infinity by single lines,
the origin of polar coordinates by dotted lines, and irremovable singu­
larities of the metric by double lines.

The conformal structure of Minkowski space we have described is
what one would regard as the 'normal' behaviour of a space-time at
infinity; we shall encounter different types of behaviour in later
sections.

Finally, we mention that one can obtain spaces locally identical to
(,A, Yl) but with different (large scale) topological properties by identi-
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fying points in Jt which are equivalent under a discrete isometry
without a fixed point (e.g. identifying the point (XI ,X2,x3,x4) with the
point (XI ,Xll,X3,X4 +C), where c is a constant, changes the topological
structure from R4 to R3 X BI, and introduces closed timelike lines into
the space-time). Clearly, (Jt, Yl) is the universal covering space for
all such derived spaces, which have been studied in detail by Auslander
and Markus (1958).

5.2 De Sitter and anti-de Sitter space-times

The space-time metrics ofconstant curvature are locally characterized
by the condition Rabed = -hR(gaegbcJ - gadgbe)' This equation is equiva­
lent to Called = 0 = R ab - lRgab; thus the Riemann tensoris determined
by the Ricci scalar R alone. It follows at once from the contracted
Bianchi identities that R is constant throughout space-time; in fact
these space-times are homogeneous. The Einstein tensor is

R ab -lRgab = - lRgab·

One can therefore regard these spaces as solutions of the field
equations for an empty space with A = lR, or for a perfect fluid with
a constant density R/321T and a constant pressure -R/321T. However
the latter choice does not seem reasonable, as in this case one cannot
have both the density and the pressure positive; in addition, the
equation of motion (3.10) is indeterminate for such a fluid.

The space of constant curvature with R = 0 is Minkowski space­
time. The space for R > 0 is de Bitter space-time, which has the
topology RI x B3 (see Schrodinger (1956) for an interesting account of
this space). It is easiest visualized as the hyperboloid

_V2 +W2 +X2+y2+ Z11 = a2

in flat five-dimensional space Jl5 with metric

-dvll +dw2 +dx2 +dyll +dz2 = ds2

(see figure 16). One can introduce coordinates (t, X, 0, 1» on the hyper­
boloid by the relations

a sinh (a-It) = v, a cosh (a-It) cos X = w,

a cosh (a-It) sinx cos 0 = x, a cosh (a-It) sin Xsin 0 cos 1> = y,

a cosh (a-It) sin Xsin 0sin 1> = z.
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Timelike geodesic which
does not cross surfaces
{t = constant}

Surfaces of
constant
time t

,\, __~Surfacesof
constant time i

Null surfaces {t =-oo}
are boundaries of
coordinate patchX=lI

u-+-t-t--+-.JJ"'-_ Geodesic
normals

(i) (ii)

FIGURE 16. De Sitter space-time represented by a hyperboloid imbedded in
a five-dimensional flat space (two dimensions are suppressed in the figure).

(i) Coordinates(t,x,O,~) cover the whole hyperboloid; the sections {t =con­
stant} are surfaces of curvature k = +1.

(ii) Coordinates (t,~, y,£) cover half the hyperboloid; the surfaces
{l =constant) are flat three-spaces, their geodesic normals diverging from a
pcint in the infinite past.

In these coordinates, the metric has the form

ds2 = -dtll +a2 • coshII (a-It) .{dx'+sinll X(dOll+sinllOd~lI)}.

The singularities in the metric at X = 0, X = TT and at 0 = 0, 0 = TT,

are simply those that occur with polar coordinates. Apart from these
trivial singularities, the coordinates cover the whole space for
-ex) < t < ex), 0 ~ X ~ TT, 0 ~ 0 ~ TT, 0 ~ ¢J ~ 2TT. The spatial sections
of constant t are spheres 8 3 of constant positive curvature and are
Cauchy surfaces. Their geodesic normals are lines which contract
monotonically to a miIiimum spatial separation and then re-expand
to infinity (see figure 16 (i».

One can also introduce coordinates

w+vl= alog--
a '

~= ax
w+v'

ay
9 = w+v' ~=~w+v

on the hyperboloid. In these coordinates, the metric takes the form

dsll = - dlll + exp (2a-1l) (~1+ d911 + d~lI).
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However these coordinates cover only half the hyperboloid as t is not
defined for w+v ~ 0 (see figure 16 (ii)).

The region of de Sitter space for which v +w > 0 forms the space­
time for the steady state model of the universe proposed by Bondi and
Gold (1948) and Hoyle (1948). In this model, the matter is supposed
to move along the geodesic normals to the surfaces {£ = constant}. As
the matter moves further apart, it is assumed that more matter is
continuously created to maintain the density at a constant value.
Bondi and Gold did not seek to provide field equations for this model,
but Pirani (1955), and Hoyle and Narlikar (1964) have pointed out
that the metric can be considered as a solution of the Einstein equa­
tions (with A = 0) if in addition to the ordinary matter one introduces
a scalar field of negative energy density. This •C'-field would also be
responsible for the continual creation of matter.

The steady state theory has the advantage of making simple and
definite predictions. However from our point of view there are two
unsatisfactory features. The first is the existence of negative energy,
which was discussed in §4.3. The other is the fact that the space-time
is extendible, being only halfofde Sitter space. Despite these aesthetic
objections, the real test of the steady state theory is whether its pre­
dictions agree with observations or not. At the moment it seems that
they do not, though the observations are not yet quite conclusive.

de Sitter space is geodesica1ly complete; however, there are points
in the space which cannot be joined to each other by any geodesic.
This is in contrast to spaces with a positive definite metric, when
geodesic completeness guarantees that any two points of a space can
be joined by at least one geodesic. The half of de Sitter space which
represents the steady state universe is not complete in the past (there
are geodesics which are complete in the full space, and cross the
boundary of the steady state region; they are therefore incomplete in
that region).

To study infinity in de Sitter space-time, we define a time coordinate

t' by t' = 2arc tan (expa-1 t)-!",

where -!11 < t' < !11. (5.8),

Then ds2 = a2cosh2 (a-It') . ds2,

where ds2 is given by (5.7) on identifying r' = X. Thus the de Sitter
space is conformal to that part of the Einstein static universe defined
by (5.8) (see figure 17 (i)). The Penrose diagram of de Sitter space is
accordingly as in figure 17 (ii). One halfof this figure gives the Penrose
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T' = 0 r' = 1r

J+(f = l1r), a sphere S3

{I' = conswnt}

1'=0

J-(f =-l1r), a sphere 8 3

Time lines
(x = constant)

(i)

Time lines
x=

constant)

00)J+(!

=1r
J-(! =-00) (coordinate

singularity)

,r--< =

~

t}~
(

-

)
1 X

x=o
(coordinate
singularity)

Surfaces
{! = constan

(ii) (iii)

FIGURE 17
(i) De Sitter space-time is conformal to the region -i1T < t' < i1T of the

Einstein static universe. The steady state universe is conformal to the shaded
region.

(ii) The Penrose diagram of de Sitter space-time.
(iii) The Penrose diagram of the steady state universe.
In (ii), (iii) each point represents a two-sphere of area 21Tsinl X; null lines are

at 45°. X =0 and X = 1T are identified.

diagram of the half of de Sitter space-time which constitutes the
steady state universe (~gure 17 (iii».

One sees that de Sitter space has, in contrast to Minkowski space,
a spacelike infinity for timelike and null lines, both in the future and
the past. This difference corresponds to the existence in de Sitter
space-time of both particle and event horizons for geodesic families
of observers.

In de Sitter space, consider a family of particles whose histories are
timelike geodesics; these must orIginate at the spacelike infinity J­
and end at the spacelike infinity J +. Letp be some event on the world-
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Particle hM heen
observpd by 0 at. p

Particle horizon
for 0
at p

O's world·line

Particles
~~~~;::;notyet

~
.llitjJtobservedby

Particle 0 at p
world.-
lines

Past null cone
oro atp

(i)

O's world·line

~ All particleR
have been
observed
by 0 at p

(ii)

FIGURE 18
(i) The particle horizon defined by a congruence of geodesic curves when

past null infinity J - is spacelike.
(ii) Lack of suoh a horizon if J - is null.

line of a particle 0 in this family, i.e. some time in its history (proper
time measured along O's world-line). The past null cone ofp is the set
of events in space-time which can be observed by 0 at that time. The
world-lines of some other particles may intersect this null cone; these
particles are visible to O. However, there can exist particles whose
world-lines do not intersect this null cone, and so are not yet visible
to O. At a later time 0 can observe more particles, but there still exist .
particles not visible to 0 at that time. We say that the division of
particles into those seen by 0 at p and those not seen by 0 at p, is the
particle horizon for the observer 0 at the event p; it represents the
history of those particles lying at the limits of O's vision. Note that it
is determined only when the world-lines of all the particles in the
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family are known. Ifsome particle lies on the horizon, then the event p
is the event at which the particle's creation light cone intersects O's
world-line. In Minkowski space, on the other hand, all the other
particles are visible at any event p on O's world-line if they move on
timelike geodesics. As long as one considers only families of geodesic
observers, one may think of the existence of the particle horizon as a
consequence of past null infinity being spacelike (see figure 18).

All events outside the past null cone of p are events which are not,
and never have been, observable by 0 up to the time represented by
the event p. There is a limit to O's world-line on J +. In de Sitter space­
time, the past null cone of this point (obtained by a limiting process
in the actual space-time, or directly from the conformal space-time)
is a boundary between events which will at some time be observable
by 0, and those that will never be observable by O. We call this surface
the future event horizon of the world-line. It is the boundary of the past
of the world-line. In Minkowski space-time, on the other hand, the
limiting null cone of any geodesic observer includes the whole of
space-time, so there are no events which a geodesic observer will never
be able to see. However ifan observer moves with uniform acceleration
his world-line may have a future event horizon. One may think of the
existence of a future event horizon for a geodesic observer as being
a consequence of J+ being spacelike (see figure 19).

Consider the event horizon for the observer 0 in de Sitter space-time
and suppose that at some proper time (event p) on his world-line, his
light cone intersects the world-line of the particle Q. Then Qis always
visible to 0 at times after p. However there is on Q's world-line an
event r which lies on O's future event horizon; 0 can never see later
events on Q's world-line than r. Moreover an infinite proper time
elapses on O's world-line from any given pQint till he observes T, but
a finite proper time elapses along Q's world-line from any given event
to r, which is a perfectly ordinary event on his world-line. Thus 0 sees
a finite part of Q's history in an infinite time; expressed more physi­
cally, as 0 observes Q he sees a redshift which approaches infinity as
oobserves points on Q's world-line which approach r. Correspondingly,
Q never sees beyond some point on O's world-line, and sees nearby
points on O's world-line only with a very large redshift.

At any point on O's world-line, the future null cone is the boundary
of the set of events in space-time which 0 can influence at and after
that time. To obtain the maximal set of events in space-time that 0
could at any time influence, we take the future light cone of the limit
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~~s;:::c.._V·1l future null
cone atp

~illlrO'Spast
event horizon
('creation
light cone')

~~~~@@~~r--Events 0
~ will never be

§~~~~IS:~~~~~~§~~_ableto
influence

O's futurel__III~
event
horizon

J- Q's world-line O's past null cone at p

(i)

Geodesic observer
O's world-line

(il)

FIGURE 19
(i) The future event horizon fora particle 0 which existswhen futuro infinity

J + is spacelike; also the past event horizon which exists when past infinityJ­
is spacelike.

(ii) If future infinity consists of a null J+ and iO, there is no future event
horizon for a geodesic observer O. However an acc!l1erating observer R may
have a. future event horizon.

point of O's world-line on past infinity J-; that is, we take the
boundary of the future of the world-line (which can be regarded as
O's creation light cone). This has a non-trivial existence for a geodesic
observer only if the past infinity J- is spacelike (and is in fact then
O's past event horizon). It is clear from the above discussion that
in the steady state universe, which has a null past infinity for timelike
and null geodesics and a spacelike future infinity, any fundamental
observer has a future event horizon but no past particle horizon.

One can obtain other spaces which are locally equivalent to the de
Sitter space, by identifying points in de Sitter space. The simplest such
identification is to identify antipodal points p, p' (see figure 16) on the
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hyperboloid. The resulting space is not time orientable; iftimeincreases
in tho direct.ion of t,he I\rrow n.t P. the n.ntipocll\l idont.iflcation implicR
it must increase in the direction of the arrow at pi, but one cannot
continuously extend this identification of future and past half null
cones over the whole hyperboloid. Calabi and Markus (1962) have
studied in detail the spaces resulting from such identifications; they
show in particular that an arbitrary point in the resulting space can
be joined to any other point by a geodesic if and only if it is not time
orientable.

The space of constant curvature with R < 0 is called anti-de Bitter
space. It has the topology Bl x W, and can be represented as the
hyperboloid

in the flat five-dimensional space Jl6 with metric

There are closed timelike lines in this space; however it is not simply
connected, and if one unwraps the circle Bl (to obtain its covering
space Rl) one obtains the universal covering space of anti-de Sitter
space which does not contain any closed timelike lines. This has the
topology of R4. We shall in future mean by Canti-de Sitter space', this
universal covering space.

It can be represented by the metric

dall = -dtll+cosllt{dXll+sinhllX(dOll+sinllOd~lI)}. (5.9)

This coordinate system covers only part ofthe space, and has apparent
singularities at t = ±i". The whole space can be covered by coordi­
nates {t', r, O,~} for which the metric has the static form

dall = - coshllr dt/ll + drll + sinhllr(dOS+ sinllOd~lI).

In this form, the space is covered by the surfaces {t' = constant} which
have non-geodesic normals.

To study the structure at infinity, define the coordinate r' by

r' = 2arctan (expr)-i", 0 ~ r' < i".

Then one finds dall = coshllrds2, where d8lI is given by (5.7); that is,
the whole ofanti-de Sitter space is conformal to the region 0 ~ r' < iTT
of the Einstein static cylinder. The Penrose diagram is shown in
figure 20; null and spacelike infinity can be thought of as a timelike
surfac.e in this case. This surface has the topology Rl x BlI,
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,.' = .~1I'

Lines
{r = constant}

Surfaces
1I:l111:--t--+-+-t""~~~{t'= constant}

:;-.l.~lrl--+"'l:A--r {t =+~}
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{t = constant}
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FIGURE 20
(i) Universal anti-de Sitter space is conformal to one half of the Einstein

static universe. While coordinates (t'. r, 0, ¢J) cover the whole space, coordinates
(t. X. 0, ¢J) cover only one diamond-shaped region 88 shown..The geodesics
orthogonal to the surfaces {t =constant} all converge at p and q. and then
diverge out into similar diamond-shaped regions.

(ii) The Penrose diagram ofuniversal anti-de Sitter space. Infinity consists of
the timelike surface oF and the disjoint points i+, i-. The projection of some
timelike and null geodesics is shown.
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One cannot find a conformal transformation which makes timelike
infinity finite withont pinching off the Einstein static universe to a
point (if a conformal transformation makes the time coordinate finite
it also scales the space sections by an infinite factor), so we represent
timelike infinity by the disjoint points i+, i-.

The lines {X,(J, cf> constant} are the geodesics orthogonal to the
surfaces {t = constant}; they all converge to points g (respectively, p)
in the future (respectively, past) of the surface, and this convergence
is the reason for the apparent (coordinate) singularities in the original
metric form. The region covered by these coordinates is the region
between the surface t = 0 and the null surfaces on which these normals
become degenerate.

The space has two further interesting properties. First, as a con­
sequence of the timelike infinity, there exists no Cauchy surface
whatever in the space. While one can find families of spacelike
surfaces (such as the surfaces {t' = constant}) which cover the space
completely, each surface being a complete cross-section of the space­
time, one can find null geodesics which never intersect any given
surface in the family. Given initial data on any such surface, one
cannot predict beyond the Cauchy development of the surface; thus
from the surface {t = O}, one can predict only in the region covered by
the coordinates t, X, 0, cf>. Any attempt to predict beyond this region is
prevented by fresh information coming in from the timelike infinity,

Secondly, corresponding to the fact that the geodesic normals from
t = 0 all converge at p and g, all the past timelike geodesics from p
expand out (normal to the surfaces {t = constant}) and reconverge
at g. In fact, all the timelike geodesics from any point in this space
(to either the past or future) reconverge to an image point, diverging
again from this image point to refocus at a second image point, and
so on. The future timelike geodesics from p therefore never reach oF, in
contrast to the future null geodesics which go to oF from p and form the
boundary of the future of p. This separation of timelike and null
geodesics results in the existence ofregions in the future ofp (i.e. which
can be reached from p by a future-directed timelike line) which cannot
be reached from p by any geodesic. The set of points which can be
reached by future-directed timelike lines from p is the set of points
lying beyond the future null cone ofp; the set of points which can be
reached from p by future-directed timelike geodesics is the interior of
the infinite chain of diamond-shaped regions similar to that covered
by coordinates (t,x,O, cf». One notes that all points in the Cauchy
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development of the surface t = 0 can be reached from this surface by
a unique geodesic normal to this surface, but that a general point
outside this Cauchy development cannot be reached by any geodesic
normal to the surface.

5.3 Robertson-Walker spaces

So far, we have not considered the relation of exact solutions to the
physical universe. Following Einstein, we can ask: can one find space­
times which are exact solutions for some suitable form of matter and
which give a good representation of the large scale properties of the
observable universe? Ifso, we can claim to have a reasonable' cosmo­
logical model' or model of the physical universe.

However we are not able to make cosmological models without some
admixture ofideology. In the earliest cosmologies, man placed himself
in a commanding position at the centre of the universe. Since the time
ofCopernicus we have been steadily demoted to a medium sized planet
going round a medium sized star on the outer edge of a fairly average
galaxy, which is itself simply one of a local group of galaxies. Indeed
we are now so democratic that we would not claim that our position in
space is specially distinguished in any way. We shall, following Bondi
(1960), call this assumption the Oopernican principle.

A reasonable interpretation of this somewhat vague principle is to
understand it as implying that, when viewed on a suitable scale, the
universe is approximately spatially homogeneous.

By spatially homogeneous, we mean there is a group of isometries
which acts freely on JI, and whose surfaces of transitivity are space­
like three-surfaces; in other words, any point on one of these surfaces
is equivalent to any other point on the same surface. Of course, the
universe is not exactly spatially homogeneous; there are local irregu­
larities, such as stars and galaxies. Nevertheless it might seem reason­
able to suppose that the universe is spatially homogeneous on a large
enough scale.

While one can build mathematical models fulfilling this requirement
of homogeneity (see next section), it is difficult to test homogeneity
directly by observation, as there is no simple way of measuring the
separation between us and distant objects. This difficulty is eased by
the fact that we can, in principle, fairly easily observe iBotropies in
extragalactic observations (i.e. we can see if these observations are the
same in different directions, or not), and isotropies are closely con-
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nected with homogeneity. Those observational investigations of iso­
tropy which have been carried out so far support the conclusion that
the universe is approximately spherically symmetric about us.

In particular, it has been shown that extragalactic radio sources are
distributed approximately isotropically, and that the recently ob­
served microwave background radiation, where it has been examined,
is very highly isotropic (see chapter 10 for further discussion).

It is possible to write down and examine the metrics of all space­
times which are spherically symmetric; particular examples are the
Schwarzschild and Reissner-Nordstrom solutions (see §5.5); however
these are asymptotically flat spaces. In general, there can exist at most
two points in a spherically symmetric space from which the space looks
spherically symmetric. While these may serve as models ofspace-time
near a massive body, they can only be models ofthe universe consistent
with the isotropy of our observations if we are located near a very
special position. The exceptional cases are those in which the universe
is isotropic about every point in space time; so we shall interpret the
Copernican principle as stating that the universe is approximately
spherically symmetric about every point (since it is approximately
spherically symmetric about us).

As has been shown by Walker (1944), exact spherical symmetry
about every point would imply that the universe is spatially homo­
geneous and admits a six-parametergroup ofisometries whose surfaces
oftransitivity are spacelike three-surfaces ofconstant curvature. Such
a space is called a Robert8on-Walker (or Friedmann) space (Minkowski
space, de Sitter space and anti-de Sitter space are all special cases of
the general Robertson-Walker spaces). Our conclusion, then, is that
these spaces are a good approximation to the large scale geometry of
space-time in the region that we can observe.

In the Robertson-Walker spaces, one can choose coordinates so that
the metric has the form

'ds2 = -dt2+S2(t)du2,

where du2 is the metric of a three-space of constant curvature and is
independent of time. The geometry of these three-spaces is qualita­
tively different according to whether they are three-spaces ofconstant
positive, negative or zero curvature; by rescaling the function S, one
can normalize this curvature K to be + lor -1 in the first two cases.
Then the metric du2 can be written

du2 = dX2+j2(X)(d02+sin20d¢2),
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where

{

sin X if K = + 1,

f(x) = X if K = 0,

sinhX if K=-1.

(5.10)it = -3(p,+p)S·/S.

The coordinate X runs from 0 to 00 if K = 0 or -1, but runs from 0 to
21T if K = + 1. When K = 0 or - 1, tho three-spaces arc diffeomorphic
to lis and so are' infinite', but when K = + 1 they are diffeomorphic
to a three-sphere S8 and so are compact (' closed' or' finite '). One could
identify suitable points in these three-spaces to obtain other global
topologies; it is even possible to do this, in the case ofnegative or zero
curvature, in such a way that the resulting three-space is compact
(Lobell (1931». However such a compact surface of constant negative
curvature would have no continuous groups of isometries (Yano and
Bochner (1953» - although Killing vectors exist at each point, they
would not determine any global Killing vector fields and the local
groups of isometries they generate would not link up to form global
groups. In the case ofzero curvature, a compact space could only have
a three-parameter group of isometries. In neither case would the
resulting space-time be isotropic. We shall not make such identifica­
tions, as our original reason for considering these spaces was that they
were isotropic (and so had a six-parameter group of isometries). In
fact the only identifications which would not result in an anisotropic
space would be to identify antipodal points on S8 in the case ofconstant
positive curvature.

The symmetry ofthe Robertson-Walker solutions requires that the
energy-momentum tensor has the form of a perfect fluid whose
density p, and pressure p are functions of the time coordinate t only,
and whose flow lines are the curves (X, 0, ¢) constant (so the coordinates
are comoving coordinates). This fluid can be thought ofas a smoothed
out approximation to the matter in the universe; then the function
S(t) represents the separation of neighbouring flow lines, that is, of
'nearby' galaxies.

The equation of conservation of energy (3.9) in these spaces takes
the form

The Raychaudhuri equation (4.26) takes t~e form

41T(p,+3p)-A = -3S·'/S. (5.11)

The remaining field equation (which is essentially (2.35» can be written

3S'2 = 81T(p,83)/S+AS2_3K. (5.12)
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Whenever S· =l= 0, (5.12) can in fact be derived, with an arbitrary value
of the constant K, as a first integral of (5.10), (5.11); so the real effect
of this field equation is to identify the integration constant as the
curvature of the metric du2 of the three-spaces {t = constant}.

It is reasonable to assume (cf. the energy conditions, §4.3) that pis
positive and p is non-negativc. (In fact, prcscnt cstimntcR nrc
JU all gill om :1 ~ Ito ~ 10 MI gm cm-- M, Po ~ Po ~ 0). Then, if A is zero,
(5.11) shows that S cannot be constant; in other words the field equa­
tions then imply the universe is either expanding or contracting.
Observations of other galaxies show, as first found by Slipher and
Hubble, that they are moving away from us, and so indicate that the
matter in the universe is expanding at the present time. Current
observations give the value of S·/S at the present time as

believed correct to within a factor 2. From this, (5.11) shows that if
A is zero, S must have been zero a finite time to ago (that is, a time to
measured along the world-line of our galaxy) where

to < B-1 ~ 1010 years.

From (5.10) it follows that the density decreases as the universe
expands, and conversely that the density was higher in the past,
increasing without bound as S -)- O. This is therefore not merely a
coordinate singularity (as for example, in anti-de Sitter universe
expressed in coordinates (5.9»; the fact that the density is infinite there
shows that some scalar defined by the curvature tensor is also infinite.
It is this that makes the singularity so much worse than in thecorre­
sponding Newtonian situation; in both cases the world-lines of all the
particles intersect in a point and the density becomes infinite, but here
space-time itself becomes singular at the point S = O. We must there­
fore exclude this point_from the space-time manifold, as no known
physical laws could be valid there.

This singularity is the most striking feature of the Robertson­
Walker solutions. It occurs in all models in which p+3p is positive
and A is negative, zero, or with not too large a positive value. It would
imply that the universe (or at least that part ofwhich we can have any
physical knowledge) had a beginning a finite time I!'go. However this
result has here been deduced from the assumptions of exact spatial
homogeneity and spherical symmetry. While these may be reasonable
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approximations on a large enough scale at the present time, they
certainly do not hold locally. One might think that, as one traced the
evolution of the universe back in time, the local irregularities would
grow and could prevent the occurrence of a singularity, causing the
universe to 'bounce' instead. Whether this could happen, and whether
physically realistic solutions with inhomogeneities would contain
singularities, is a central question of cosmology and constitutes the
principal problem dealt with in this book; it will tum out that there is
good evidence to believe that the physical universe does in fact become
singular in the past.

If some suitable relation between p and It is specified, (5.10) can be
integrated to give It as a function of S. In fact the pressure is very
small at the present epoch. If one takes it and A to be zero, one finds
from (5.10)

where M is a constant, and (5.12) becomes

3S'2 -6M/S = -3K == E/M. (5.13)

The first equation expresses the conservation of mass when the pres­
sure is zero, while the second (the Friedmann equation) is an energy
conservation equation for a comoving volume of matter; the constant
E represents the sum of the kinetic and potential energies. If E is
negative (Le. K is positive), S will increase to some maximum value
and then decrease to zero; if E is positive or zero (Le. K is negative or
zero), S will increase indefinitely.

The explicit solutions of (5.13) have a simple form ifgiven in terms
of a rescaled time parameter T(t), defined by

dT/dt = S-l(t); (5.14)
they take the form

S = (E/3)(coshT-l), t = (E/3)(sinhT-T), if K=-l;

S=T2, t = iT3, if K=O;

S = (-E/3)(1- COST), t = (-E/3)(T-sinT), if K=1.

(The case K = 0 is the Einstein-de Sitter universe; clearly Sex: tt.)

Ifp is non-zero but positive, the qualitative behaviour is the same.
In particularifp = (y - 1),It where y is a constant, 1 ~ Y ~ 2, one finds
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t1Tjt = MIS8y , and the solution of (5.12) near the singularity takes the
form

If A is negative, the solution expands from an initial singularity,
reaches a maximum and then recollapses to a second singularity. If
A is positive, then for K == 0 or - 1 the solution expands forever and
asymptotically approaches the steady state model. For K = + 1 there
are several possibilities. If A is greater than some value Acrtt
(Acrtt = (- EI3M)8/(3M)2 if p = 0) the solution will start from an
initial singularity and will expand forever asymptotically approaching
the steady state model. If A = Acrtt there is a static solution, the
Einstein static universe. (The metric form (5.7) is that of the particular
Einstein static solution for which jt +P = (41T)-I, A = 1+81Tp.) There
is also a solution which starts from an initial singularity and asympto­
tica.lly approaches the Einstein universe, and one which starts from the
Einstein universe in the infinite past and expands forever. IfA < Acr1t
there are two solutions-one expands from an initial singularity and
then recollapses to a second singularity; the other contracts from an
infinite radius in the infinite past, reaches a minimum radius, and then
re-expands. This and the universe asymptotic to the static universe
in the infinite past are the only solutions which could represent the
observed universe and which do not have a singularity. In these
models, S" is always positive, and this seems to be in conflict with
observations of redshifts of distant galaxies (Sandage (1961, 1968).
Also, the maximum density in these models would not have been very
much larger than the present density. This would make it difficult to
understand phenomena such as the microwave background radiation
and the cosmic abundance of helium, which seem to point to a very
hot dense phase in the history of the universe.

Just as in the previous cases we have studied, one can find conformal
mappings of the Robertson-Walker spaces into the Einstein static
space. We use the coordinate T defined by (5.14) as a time coordinate;
then the metric takes the form

(5.15)

In the case K = + 1, this is already conformal to the Einstein static
space (putT = t' , X = r ' to agree with the notation of(5.7». Thus these
spaces are mapped into precisely that part of the Einstein static space
determined by the values taken by T. When p = A = 0, T lies in the
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range 0 < T < 1T, so the whole space is mapped into this region in the
Einstein static universe while its boundary is mapped into the three­
spheres T == 0, T = 1T. (If p > 0, it is mapped into a region for which
T takes values 0 < T < a < 1T, for some number a.) In the case K = 0,
the same coordinates represent the space as conformal to flat space
(see (5.15», so on using the conformal transformations of §5.1, one
obtains these spaces mapped into some part of the diamond repre­
senting Minkowski space-time in the Einstein static universe (see
figure 14); the actual region is again determined by the values taken
by T. When A = 0, 0 < T < 00, so this space (which is the Einstein­
de Sitter space when p = 0) is conformal to the half t' > 0 of the
diamond which represents Minkowski space-time. In the case K = - 1,
one obtains the metric conformal to part of the region of the Einstein
static space for which 17T ~ t'+r' ~ -l1T, 11T ~ t'-r' ~ -l1T, on
defining

t' = arc tan (tanh l(T +X» +arc ta.n (tanh l(T - X»,
r' = arc tan (tanh l(T + X» - arc tan (tanh l(T - X».

The part of this diamond-shaped region covered depends on the range
of T; when A = 0, the space is mapped into the upper half.

One thus obtains these spaces and their boundaries conformal to
some (generally finite) region of the Einstein static space, see figure
21 (i). However there is an important difference from the previous
cases: part of the boundary is not 'infinity' in the sense it was previ­
ously, but represents the singularity when S = O. (The conformal
factor can be thought of as making infinity finite by giving an infinite
compression, but making the singular point S = 0 finite by an infinite
expansion.) In fact this makes little difference to the conformal dia­
grams; one can give the Penrose diagrams as before (see figures 21 (ii)
and 21 (iii». In each case when p ~ 0 the singularity at t = 0 is repre­
sented by a spacelike surface; this corresponds to the existence of
particle horizons (defined precisely as in §5.2) in these spaces. Also
when K = +1 the future boundary is spacelike, implying the existence
of event horizons for the fundamental observers; when K = 0 or - 1
and A = 0, future infinity is null and there are no future event horizons
for the fundamental observers in these spaces.

At this stage, one should examine the following question: anti­
de Sitter space could be expressed in the Robertson-Walker form (5.9)
and then expressed conformally as part of the Einstein static universe.
When one did so, one found that the Robertson-Walker coordinates
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(i) The Robertson-Walker spaces (p =A =0) are conformal to the regions
of the Einstein static universe shown, in the three cases K = + 1,0 and -1.

(ii) Penrose diagram of a Robertson-Walker space with K =+ 1 and
p=A= O.

(iii) Penrose diagram of a Robertson-Walker space with K = 0 or -1 and
p = A= O.

covered only a small part of the fullspaee-time. That is to say, the
space-time described by the Robertson-Walker coordinates could be
extended. One should therefore show that the Robertson-Walker
universes in which there is matter are in fact inextendible. This
follows because one can show that if It > 0, P ~ 0 and X is any vector
at any point q, the geodesic y(v) through q = y(O) in the direction of X
is such that either
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(i) y(v) can be extended to arbitrary positive values of v, or
(ii) there is some Vo > 0 such that the scaJar invariant

(Ri:l-1Rgi:l) (Ri:I-1Rgi:l) = (p, +A)lI +3(p - A)lI

is unbounded on y([O, vo))'
It is now clear that the surfaces {t = constant} are Cauchy surfaces

in these spaces. Further one sees that the singularity is universal in the
following sense: all timelike and null geodesics through any point in
the space approach it for some finite value of their affine parameter.

5.4 Spatially homogeneous cosmological models

We have seen that there are singularities in any Robertson-Walker
space-time in which jt > 0, P ~ 0 and A is not too large. However one
could not conclude from this that there would be singularities in
more realistic world models which allo;w for the fact that the universe
is not homogeneous and isotropic. In fact, one does not expect to find
that the universe can be very accurately described by any attainable
exact solution. However one can find exact solutions, less restricted
than the Robertson-Walker solutions, which may be reasonable
models of the universe, and see if singularities occur in them or not;
the fact that singularities do occur in such models gives an indication
that the existence of singularities may be a general property of all
space-times which can be regarded as reasonable models of the
universe.

A simple class of such solutions are those in which the requirement
of isotropy is dropped but the requirement of spatial homogeneity (the
strict Copernican principle) is retained (although the universe seems
approximately isotropic at the present time, there might have been
large anisotropies at an earlier epoch). Thus in these models one
assumes there exists a group ofisometries Gr whose orbits in some part
of the model are spacelike hypersurfaces. (The orbit ofa point p under
the group Gr is the set of points into which p is moved by the action of
all elements of the group.) These models may be constructed locally by
well-known methods; see Heckmann and Schiicking (1962) for the
case r = 3, and Kantowski and Sachs (1967) for the case r = 4 (if
r> 4, the space-time is necessarily a Robertson-Walker space).

The simplest spatially homogeneous space-times are those in which
the group of isometries is Abelian; the group is then of type I in the



5.4] HOMOGENEOUS COSMOLOGIES 143

where S is given by

classification given by Bianchi (1918), so we call these Bianchi 1 spaces.
We discuss Bianchi I spaces in some detail, and then give a theorem
showing singularities will occur in all non-empty spatially homogene­
ous models in which the timelike convergence condition (§ 4.3) is
satisfied.

Suppose the spatially homogeneous space-time has an Abelian
isometry group; for simplicity we assume A = 0 and that the matter
content is a pressure-free perfect fluid ('dust'). Then there exist
comoving coordinates (t, x, y, z) such that the metric takes the form

dB2= -dt2+X2(t)dx2+ Y2(t) dy2+Z2(t) dz2. (5.16)

Defining the function S(t) by S3 = XYZ, the conservation equations
show that the density of matter is given by tl1"jt = M/Ss, where M is
a suitably chosen constant. The general solution of the field equations
can be written

x = S(tt/S)2Blna, Y = S(tt/S)2BIn(a+t7r>,

Z = S(tt/S)2BInCa+t7r>,

S3 = IMt(t+~);

~ (> 0) is a constant determining the magnitude ofthe anisotropy (we
exclude the isotropic case (~ = 0), which is the Einstein-de Sitter
universe (§ 5.3)), and a( - 11T < a <: 11T) is a constant determining the
direction in which the most rapid expansion takes place. The average
rate of expansion is given by

S· 2 t+~/2.

S= 3t t+~ ,

the expansion in the x-direction is

X· 2 t+~(1+2sina)/2

X = Sf t+~

and the expansions Y"/Y, Z·/Z in the y, z directions are given by
similar expressions in which a is replaced by a +11T, a +!1T respectively.

The solution expands from a highly anisotropic singular state at
t = 0, reaching a nearly isotropic phase for large t when it is nearly the
same as the Einstein-de Sitter universe. The average length S increases
monotonically as t increases, its initial high rate of change (S ex:: tt for
small t) decreasing steadily (S ex:: tt for large t). Thus the universe
evolves more rapidly, at early times, than its isotropic equivalent.

Suppose one considers the time-reverse of the model, and follows
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this forward in time towards the singularity. The initially almost
isotropic contraction will become very anisotropic at late times. For
general values ofa, i.e. a =l= 11T, the term 1+ 2sin (a+t1T) will be nega­
tive. Thus the collapse in the z-direction would halt, and, for suffi­
ciently early times, be replaced by an expansion, the rate ofexpansion
becoming indefinitely large for early enough times. In the x- and
y-directions, on the other hand, the collapse would continue mono­
tonically towards the singularity. Thus if one considers the forward
direction of time in the original model, one has a 'cigar' singularity:
matter collapses in along the z-axis from infinity, halts, and then
starts re-expanding, while in the x- and y-directions the matter
expands monotonically at all times. If one could receive signals from
early enough times in such a model, one would see a maximum red­
shift in the z-direction, at earlier times matter in this direction being
observed with progressively smaller redshifts and then with in­
definitely increasing blue-shifts.

The behaviour in the exceptional case a = 11T is rather different. In
this case, the terms 1+2sin (a+i1T) and 1+2sin (a+t1T) both vanish.
Thus the expansions in the axis directions are

X· 2 t+3l:./2 Y" Z" 2 1
X=3t t+l:.' Y-Z=3t+L"

If one follows the time-reversed model, the rate of collapse in the
y- and z-directions slows asymptotically down to zero, while the~
of collapse in the x-direction increases indefinitely. In the ori nal
model, one has a 'pancake' singularity; matter expands monotoni lly
in all directions, starting from an indefinitely high expansion ra in
the x-direction but from zero expansion rates in the y- and z-directions.
Indefinitely high redshifts would be seen in the x-direction, but there
would be limiting redshifts in the y- and z-directions"

Further examination shows that in the general (,cigar') case, there
is a particle horizon in every direction despite the anisotropic expan­
sion. However in the exceptional ('pancake') case, no horizon occurs
in the x-direction; in fact the particles that can be seen by an observer
at the origin at time to are characterized by coordinate values (x, y, z)
lying within the infinite cylinder

X2+y2 < p2

where
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While we have here considered these models for vanishing pressure
and A term only, properties of these spaces with more realistic matter
contents can easily be obtained; for example ifone has either a perfect
fluid with p = (y-l)p, Y a constant (1 < Y < 2), or a mixture of
a photon gas and matter with pressure p ~ Ip, the behaviour near the
singularity is the same as in the dust case.

An interesting consequence of the non-existence of a particle
horizon in the x-direction in the exceptional (' pancake ') case, is that
one can extend the solution continuously across the singularity. We
shall show this explicitly in the case of the dust solution.

The metric takes the form (5.16) where now

X(t) = t(IM(t+L»-t, Y(t) = Z(t) = (IM(t+L»t. (5.17)

We now choose new coordinates T, 71 which satisfy the equations

tanh (2xf9ML) = 71fT, exp (9~f~ ;;t)) = T2 -1J2.

One then finds that the space with metric (5.16), (5.17) is given in the
new coordinates by

(5.18)

t(T,1J) = 0

where

A(t) = exp ( - t~L). (IM(t +L»-t, B(t) = (IM(t +L»t, (5.19)

the whole space (for t > 0) being mapped into the region r defined by
T > 0, T2 -712 > O. The function t(T,1J) is now defined implicitly as the
solution of the equation

2(t+Lt
T2 -1J2 = IMt2exp' (5.20)

L

forwhicht> O. The(T,1J) plane is given in conformally flat coordinates.
The region r in this plane, bounded by the surface t = 0, is shown in
figure 22. In this diagram: the world-lines of the particles are straight
lines diverging from the origin.

The functions A(t), B(t) are continuous as t-)- 0 from above. One can
therefore extend the solution continuously to the whole (T,1J) plane
by specifying that (5.19) holds everywhere, (5.20) holds insider, and
that

holds outside r. Then (5.18) is a Co metric which is a solution of the
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FIGURE 22. Dust-filled Bianchi I space with a pancake singularity.
(i) The (T, '1]) plane; null lines are at ± 45°.
(ii) A half-section of the space in (T, '1], y) coordinates (the z-coordinate is

suppressed), showing the past light cone of the point p := (To, 0, 0). There is a
particle horizon in the y-direction but not in the x- (i.e;~) direction.

field equations equivalent to (5.16), (5.17) inside "f", and is a flat
space-time outside "f". However the solution is not 0 1 across the
boundary of "f", and in fact the density of matter becomes infinite on
this boundary (as S-+ 0 there). Since the first derivatives are not
square integrable, the Einstein field equations cannot be interEreted
on the boundary even in a distributional sense (see §8.4). While the
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extension onto the boundary is unique, it is in no way unique beyond
the boundary. We have carried out the extension in the case of dust;
a similar extension could be carried out if one had a mixture ofmatter
and radiation.

Let us now return to considering general non-empty spatially homo­
geneous models. The existence of a singularity in these models will
follow directly from Raychaudhuri's equation if the motion of the
matter is geodesic and without rotation (as must be the case, for
example, if the world-lines are orthogonal to the surfaces of homo­
geneity) and the timelike convergence condition is satisfied; however
there exist such spaces in which the matter accelerates and rotates,
and either of these factors could possibly prevent the existence of a
singularity. The following result, which is an improved version of a
theorem of Hawking and Ellis (1965), shows that in fact neither
acceleration nor rotation can prevent the existence of singularities in
these models.

Theorem

(.A', g) cannot be timelike geodesically complete if:
(1) RabKaKb> 0 for all timelike and null vectors K (this is true

if the energy-momentum tensor is type I (§ 4.3) and It +Pi > 0,
1t+~Pi-411A > 0);

i

(2) there exist equations of motion for the matter fields such that
the Cauchy problem has a unique solution (see chapter 7);

(3) the Cauchy data on some spacelike three-surface Jr is invariant
under a group of diffeomorphisms of Jr which is transitive on Jr.

Since the intrinsic geometry of Jr is invariant under a transitive
group of diffeomorphisms, these are isometries and Jr is complete,
i.e. cannot have any boundary. It can be shown (see §6.5) that if there
is a non-spacelike curve which intersects Jr more than once, then there
exists a covering manifold viiof.A' in which each connected component
ofthe image ofJrwill not intersect any non-spacelike curve more than
once. We shall assume that.1l is timelike geodesically complete, and
show that this is inconsistent with conditions (1), (2) and (3).

Let .if be a connected component of the image ofJr in JI. By (3),
"-

the Cauchy data on Yf is homogeneous. Therefore by condition (2),
"-

the Cauchy development ofany region ofYf is isometric to the Cauchy
"-

development of any other similar region of Yf. This implies that the
surfaces {s = constant} are homogeneous if they lie within the Cauchy
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" "development of .Yt, where 8 is the distance from Yf measured along
the geodesic normals to £'. These surfaces must lie either entirely
within or entirely outside the Cauchy development of .it>, as otherwise

"there would be equivalent regions in Yf which had inequivalent
Cauchy evolutions. The surfaces {8 = constant} will lie in the Cauchy
development of if as long as they remain spacelike, because the

"boundary of the Cauchy development of Yf (if it exists) must be null
(§ 6.5).
• The geodesics orthogonal to £' will be orthogonal to the surfaces

{8 = constant}, as a vector representing the separation of points equal
distances along neighbouring geodesics will remain orthogonal to the
geodesics if it is so initially. As in §4.1, one can repr~sent the spatial
Reparation of neighbouring geodesics orthogonal to .Yt' by a matrix A

"which is the unit matrix on :Yf'. By homogeneity, it will be constant on
the surfaces {8 = constant} while these lie in the Cauchy development
of :ff. While A is non-degenerate, the map from if to a surface
{8 = constant} defined by the normal geodesics will be of rank three
and so the surfaces will be spacelike three-surfaces contained within
the Cauchy development of it. The expansion

. () = (detA)-1d(detA)/d8

of these geodesics obeys Raychaudhuri's equation (4.26) with the
vorticity and acceleration zero. By condition (1), Rab yayb is positive
for all timelike vectors ya. Thus () will become infinite and A will be
degenerate for some finite positive or negative value 80 of 8. The map
from £' to the surface 8 = 80 can have at most rank two; there wiil
therefore be at least one vector field Z on :if such that AZ = O. The
integral curves ofthis vector field are curves in .itwhich are mapped by
the geodesic normals to one point in the surface 8 = 80, Thus this
surface will be at most two-dimensional. As the geodesics lie in the
Cauchy development of.it for 181 < 1801, the surface 8 = 80 will lie in
the Cauchy development or on the boundary of the Cauchy develop­
ment of if. By condition (I), the energy-momentum tensor has a
unique timelike eigenvector at each point. These eigenvectors will
form a 0 1 timelike vector field whose integral curves may be thought·
ofas representing the flow lines ofthe matter. As the surface 8 = 80lies
in the Cauchy development of it' or on its boundary, all the flow lines
that pass tlu:ough it must intersect.it. But then as .it is homogeneous,
all the flow li~that pass through it' must pass through 8 = 80, Thus
the flow lines define a diffeomorphism between it' and the surface
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"s = so. This is impossible, as Yf is three-dimensional and s = So is
two-dimensional. 0

In fact, if all the flow lines were to pass through a two-dimensional
surface, one would expect the matter density to become infinite. We
have now seen that a large scale rotation or acceleration cannot, by
itself, prevent the occurrence of singularities in a universe model
obeying the strict Copernican principle. In later theorems we shall see
that irregularities are in general also unable to prevent the occurrence
of singularities in world models.

5.5 The Schwarzschild and Reissner-NordstrBm solutions

While the spatially homogeneous solutions may be good models for the
large scale distribution of matter in the universe, they are inadequate
for describing, for example, the local geometry of space-time in the
solar system. One can describe this geometry to a good approximation
by the Schwarzschild solution, which represents the spherically sym­
metric empty space-time outside a spherically symmetric massive
body. In fact, all the experiments which have so far been carried out
to test the difference between the General Theory of Relativity and
Newtonian theory are based on predictions by this solution.

The metric can be given in the form

ds2 = _ (1- 2~) dt2+ (1- 2~)-I dr2+r2(d02+sin20d¢2), (5.21)

where r > 2m. It can be seen that this space-time is static, Le. 0lot is
a timelike Killing vector which is a gradient, and is spherically sym­
metric, Le. is invariant under the group ofisometries 80(3) operating
on the spacelike two-spheres {t, r constant} (cf. appendix B). The
coordinate r in this metric form is intrinsically defined by the require­
ment that 41T1'2 is the area ofthese surfaces oftransitivity. The solution
is asymptotically flat as. the metric has the form gab = 1Jab + O( l/r) for
large r. Comparison with Newtonian theory (cf. §3.4) shows that m
should be regarded as the gravitational mass, as measured from
infinity, of the body producing the field. It should be emphasized that
this solution is unique: if any solution of the vacuum field equations
is spherically symmetric, it is locally isometric to the Schwarzschild
solution (although it may of course look totally different if it is given
in some other coordinate system; see appendix B and Bergmann,
Cahen and Komar (1965)).
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Normally one would regard the Schwarzschild metric for r greater
than some value ro > 2m as being the solution outside some spherical
body, the metric inside the body (r < ro) having a different form
determined by the energy-momentum tensor of the matter in the
body. However it is interesting to see what happens when the metric
is regarded as an empty space solution for all values of r.

The metric is then singular when r = 0 and when r = 2m (there are
also the trivial singularities of polar coordinates when 8 = 0 and
8 = 1T). One must therefore cut r = 0 and r = 2m out of the manifold
defined by the coordinates (t, r, 8, ¢), since in §3.1 we took space-time
to be represented by a manifold with a Lorentz metric. Cutting out the
surface r = 2m divides the manifold into two disconnected components
for which 0 < r < 2m and 2m < r < 00. Since we took the space-time
manifold to be connected, we must consider only one of these com­
ponents and the obvious one to choose is the one for r > 2m, which
represents the external field. One must then ask whether this manifold
.AI with the Schwarzschild metric ~ is extendible, i.e. whether there
is a larger manifold .AI' into which .AI can be imbedded and a suitably
differentiable Lorentz metric ~' on .AI' which coincides with ~ on the
image of .AI. The obvious place where.AI might be extended is where
r tends to 2m. A calculation shows that although the metric is singular
at r = 2m in the Schwarzschild coordinates (t, r, 8, ¢), no scalar poly­
nomials of the curvature tensor and the metric diverge as r~ 2m. This
suggests that the singularity at r = 2m is not a real physical singularity,
but rather one which is a result of a bad choice of coordinates.

To confirm this, and to show that (.AI, ~) can be extended, define

Then

rll< ==f l-~mlr = r+2mlog(r-2m).

v == t+rll<

is an advanced null coordinate, and

w == t-r*

is a retarded null coordinate. Using coordinates (v, r, 8, ¢) the metric,
takes the Eddington-Finkelstein form~' given by

ds2 = - (1- 2;) dv2 + 2dvdr+r2(d82+sin28d¢2). (5.22)

The manifold .AI is the region 2m < r < 00, but the metric (5.22) is
non-singular and indeed analytic on the larger manifold .AI' for which
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o< r < 00. The region of (JI', ~') for which 0 < r < 2m is in fact
isometric to the region of the Schwarzschild metric for which
o< r < 2m. Thus by using different coordinates, i.e. by taking a
different manifold, we have extended the Schwarzschild metric so that
it is no longer singular at r = 2m. In the manifold JI' the surface
r = 2m is a null surface, as can be seen from the Finkelstein diagram
(figure 23). This is a section (0, ¢ constant) of the space-time; each
point represents a two-sphere of area 41Tr2• Some null cones and radial
null geodesics are indicated on this diagram. Surfaces {t = constant}
are indicated; one sees that t becomes infinite on the surface r = 2m.

This representation of the Schwarzschild solution has the odd
feature that it is not time symmetric. One might expect this from the
cross term (dvdr) in (5.22); it is qualitatively clearfrom the Finkelstein
diagram. The most obvious asymmetry is that the surface r ;= 2m acts
as a one-way membrane, letting future-directed timelike and null
curvescrossonlyfromtheoutside(r> 2m)totheinside(r < 2m). Any
past-directed timelike or null curve in the outside region cannot cross
into the inside region. No past-directed timelike Or null curve within
r = 2m can approach r = O. However any future-directed timelike or
null curve which crosses the surface r = 2m approaches r = 0 within
a finite affine distance. As r~ 0, the scalar Rab~dRabcd diverges as m 2/r6 •

Therefore r = 0 is a real singularity; the pair (JI', ~') cannot be
extended in a 0 2 manner or in fact even in a 0 0 manner across r = O.

If one uses the coordinate w instead of v, the metric takes the form
~"given by

(
2m) .ds2 = - l-r dw- 2dwdr+r2(d02+sm20d¢2).

This is analytic on the manifold JI" defined by the coordinates
(w, r, 0, ¢) for 0 < r < 00. Again the manifold JI is the region
2m < r < 00 and the new region 0 < r < 2m is isometric to the region
o < r < 2m of the Schwarzschild metric, but the isometry reverses
the direction of time. In_the manifold JI", the surface r = 2m is again
a null surface which acts as a one-way membrane. However this time
it acts in the other direction of time, letting only past-directed time­
like or null curves cross from the outside (r> 2m) to the inside
(r < 2m).

One can in fact make both extensions (JI', ~') and (JI", ~") simul­
taneously; that is to say, there is a still larger manifold JI* with
metric ~* into which both (JI', ~') and (JI", ~") can be isometrically
imbedded, so that they coincide on the region r > 2m which is
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FIGURE 23. Section (8, ¢) constant of the Schwarzschild solution.
(i) Apparent singularity at l' = 2m when coordinates (t, r) are used.
(ii) Finkelstein diagram obtained by using coordinates (tI, r) (lines at 46° are

lines of cOnstant tI). Surface r =2m is a null surface on which t =co.
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isometric to (Jt, g). A construction of this larger manifold has been
given by Kruskal (1960). To obtain it, consider (Jt, g) in the coordi­
nates (v, w, 0, ¢); then the metric takes the form

d82 = -(1- 2~)dvdw+r2(d02+sin20d¢2),

where r is determined by

l(v-w) = r+2mlog(r-2m).

This presents the two-space (0, ¢ constant) in null conformally flat
coordinates, as the space with metric ds2 = - dv dw is flat. The most
general coordinate transformation which leaves this two-space
expressed in such conformally flat double null coordinates is v' = v'(v),
w' = w'(w) where v' and w' are arbitrary 0 1 functions. The resulting
metric is

d82 = _ (I _2m) dv dw dv' dw' +r2(d02+sin20dA.2).
r dv'dw' 'f'

To reduce this to a form corresponding to that obtained earlier for
Minkowski space-time, define

x' = Hv' -w'), t' = lev' +w').

The metric takes the final form

d82 = F2(t', x')( - dt'2 + dx'2) + rll(t', x')(dOIl +sinll Od¢2). (5.23)

The choice of the functions v', w' determines the precise form of the
metric. Kruskal's choice Was v' = exp(tJ/4m), w' = -exp (-w/4m).
Then r is determined implicitly by the equation

and F is given by

(t')2_(X')1I = -(r-2m)exp(r/2m) (5.24)

F2 = exp(-r/2m). 16mIl/r. (5.25)

On the manifold J(~ defined by the coordinates (t',x',O,¢) for
(t')I_ (x')1 < 2m, the functions rand F (defined by (5.24), (5.25» are
positive and analytic. Defining the metric g* by (5.23), the region I of
(.1*, g*) defined by x' > It'l is isometric to (.I, g), the region of the
Schwarzschild solution for which r > 2m. The region defined by
x' > -t' (regions I and II in figure 24) is isometric to the advanced
Finkelstein extension (.I', g'). Similarly the region defined by x' > t'
(regions I and II' in figure 24) is isometric to the retarded Finkelstein
extension (.I", g"). There is also a region 1', defined by x' < -It'I,
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FIGURE 24. The maximal analytic Schwarzschild extension. The (), if> coordinates
are suppressed; null lines are at ± 46°. Surfaces {r =constant} are homogeneous.

(i) The Kruske.l diagram, showing a.symptotically flat regions I and I' and
regions II, II' for which r < 2m.

(ii) Penrose diagram, showing conformal infinity a.s well a.s the two
singularities.

which turns out t gain isometric with the exterior Schwarzschild
solution (.I, g) This c be regarded as another asymptotically flat
universe on th other side ofthe Schwarzschild <throat'. (Consider the
section t = O. 'he two-spheres {r = constant} behave as in Euclidean
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space, for large r; however for small r, they have an area which
decreases to the minimum value 161Tm2 and then increases again, as the
two spheres expand into the other asymptotically flat three-space.)
The regions I' and II are isometric with the advanced Finkelstein
extension of region I', and similarly I' and II' are isometric with the
retarded Finkelstein extension of I', as can be seen from figure 24.
There are no timelike or null curves which go from region I to region I'.
All future-directed timelike or null curves which cross the part of the
surface r = 2m represented here by t' = Ix'i approach the singularity
at t' = (2m+ (x')2)1, where r = O. Similarly past-directed timelike or
null curves which cross t' = -Ix'i approach another singularity at
t' = - (2m + (x')2)1, where again r = O.

The Kruskal extension (.A"', g"') is the unique analytic and locally
inextendible extension of the Schwarzschild solution. One can con­
struct the Penrose diagram of the Kruskal extension by defining new
advanced and retarded null coordinates

v" = arctan (v'(2m)-1), w" = arctan (w'(2m)-1)

for -1T < v" +w" < 1T and -i1T < v" < i1T, -i1T < w" < i1T
(see figure 24 (ii». This may be compared with the Penrose diagram
for Minkowski space (figure 15 (ii». One now has future, past and null
infinities for each of the asymptotically flat regions I and I'. Unlike
Minkowski space, the conformal metric is continuous but not differ­
entiable at the points iO.

If we consider the future light cone of any point outside r = 2m,
the radial outwards geodesic reaches infinity but the inwards one
reaches the future singularity; ifthe point lies inside r = 2m, both these
geodesics hit the singularity, and the entire future of the point is ended
by the singularity. Thus the singularity may be avoided by any
particle outside r = 2m (so it is not' universal' as it is in the Robertson­
Walker spaces), but once a particle has fallen inside r = 2m (in region
II) it cannot evade the singularity. This fact will turn out to be closely
related to the followingproperty: each point inside region II represents
a two-sphere that is a closed trapped surface. This means the following:
consider any two-sphere p (represented by a point in figure 24) and
two two-spheres q, 8. formed by photons emitted radially outwards,
inwards at one instant from p. The area of q (which is given by 4m2)

will be greater than the area ofp, but the area of8 will be less than the
area ofp, if all three lie in a region r > 2m. However if they all lie in
the region II where r < 2m, then the areas of both q and 8 will be less
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than the area of p (in the figure, r decreases as one moves from the
bottom to the top of region II). In that case, we say that p is a closed
trapped surface. Each point inside region II' represents a time­
reversed closed trapped surface (the existence of trapped surfaces is
a necessary consequence of the fact that the surfaces r = constant are
spacelike), and correspondingly all particles in region II' must have
come from the singularity in the past. We shall see in chapter 8 that
the existence of the singularities is closely related to the existence of
the closed trapped surfaces.

The Reissner-Nordstrom solution represents the space-time outside
a spherically symmetric charged body carrying an electric charge (but
with no spin or magnetic dipole, so this is not a good representation of
the field outside an electron). The energy-momentum tensor is there­
fore that of the electromagnetic field in the space-time which results
from the charge on the body. It is the unique spherically symmetric
asymptotically flat solution of the Einstein-Maxwell equations and is
locally rather similar to the Schwarzschild solution; there exist
coordinates in which the metric has the form

where m represents the gravitational mass and e the electric charge of
the body. This asymptotically flat solution would normally be
regarded as the solution outside the body only, the interior being
filled in with some other suitable metric; but it is again interesting to
see what happens if we regard it as a solution for all r.

If e2 > m 2 the metric is non-singular everywhere except for the
irremovable singularity at r = 0; this may be thought of as the point
charge which produces the field. If e2 ~ m 2, the metric also has singu­
larities at r+ and r_, where r± = m± (m2 _e2 )1; it is regular in the
regions defined by 00 > r > r +, r + > r > r _ and r _ > r > 0 (if e2 = m2 ,

only the first and third regions exist). As in the Schwarzschild case,
these singularities may be removed by introducing suitable coordinates
and extending the manifold to obtain a maximal analytic extension
(Graves and Brill (1960), Carter (1966». The major differences that
arise are due to the existence of two zeros in the factor in front of dt2,

rather than one as in the Schwarzschild case. In particular this implies
that the first and third regions are both static, whereas the second
region (when it exists) is spatially homogeneous but is not static.
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To obtain the maximally extended manifold, we proceed in steps
analogous to those in the Schwarzschild case. Defining the coordinate

r'" by f /( 2 2)r'" = dr 1- ~+~ ,
then for r > r+,

Defining advanced and retarded coordinates v, w by

v=t+r"', w=t-r*

the metric (5.26) takes the double null form

(5.27)

In the case e2 < m 2, define new coordinates VII, wll by

VII = arc tan (expr~~:-v)), wll
= arc tan ( - exp ( -:~; r-w)).

Then the metric (5.27) takes the form

(
2m e2

) r 4d82 = 1- - +Ii 64 ( + )2 cosec 2vll cOsec 2w
ll
dvll dw"

r r r+-r_
+r2(d02 + sin2 0 d¢2), (5.28)

where r is defined implicitly by

tan vlltanwll = -exp ((r~~:-) r) (r-r+)1(r-r_)-a/2

and a = (r+)-2 (r_)2. The maximal extension is obtained by taking
(5.28) as the metric g"', and .At'" as the maximal manifold on which
this metric is 0 2•

The Penrose diagram ofthe maximal extension is shown in figure 25.
There are an infinite number of asymptotically flat regions, where
r > r+; these are denoted by 1. These are connected by intermediate
regions II and III where r+ > r > r_ and r_ > r > 0 respectively.
There is still an irremovable singularity at r = 0 in each region III,



158 EXAOT SOLUTIONS [5.5

Cauchy hor-izon
for 9'

,'=0
(.Iltl!ul,u·lty)

II

II

/
/

" /
,r - r_ /, /, / ,.=,.-, /
III ). III

/ '.

i+

r-O
(.IIt!!lIll1tll.y)

r = 0

Orthogonal
surfaces
{t = constant}

FIGURE 26. Penrose diagram for the maximally extended Reissner-Nordstri:im
solution (el < ml). An infinite chain of asymptotically flat regions I
(00 > r > r+) are connected by regions II (r+ > r > r_) and III (r_ > r > 0);
each region III is bounded by a timelike singularity at r =O.

but unlike in the SchwarzBchild solution, i~ is timelike and so can be
avoided by a future-directed timelike curve from a region I which
crosses r = r+. Such a curve can pass through regions II, III and II
and re-emerge into another asymptotically flat region I. This raises
the intriguing possibility that one might be able to travel to other
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universes by pl1ssing through the 'wormholes' made by chl1rgcs.
Unfortunately it seems that one would not be able to get back again
to our universe to report what one had seen on the other side.
Th~ metric (5.28) is analytic everywhere except at r = r_ where it is

degenerate but one can define different coordinates VI/I and Will by

t,''' = Itrl1 t,nn (I1XP tt':::;v)) ,
U}IH = aretl1n ( -exp (-;;r~:-W))'

where n is an integer;;, 2(r+)2 (r_)-2. In these coordinates, the metric
is analytio everywhere f1xl1ept at r = r I whem it iR nf1f,tf1ll0mt.fl. 'rhn
c.oordinates VIII and Will are analytic functions of v" and w" for r =1= r+

or r_. Thus the manifold JI. can be covered by an analytic atlas, con­
sisting of local coordinate neighbourhoods defined by coordinates v"
and wIt for r =1= r_ and by local coordinate neighbourhoods defined by
if' and Will for r =1= r+. The metric is analytic in this atlas.

The case e2 = m2 can be extended similarly; the case e2 > m2 is
already inextendible in the original coordinates. The Penrose diagrams
of these two cases are given in figure 26.

In all these cases, the singularity is timelike. This means that, unlike
in the Schwarzschild solution, timelike and null curves can always
avoid hitting the singularities. In fact the singularities appear to be
repulsive: no timelike geodesic hits them, though non-geodesic time­
like curves and radial null geodesics can. The spaces are thus timelike
(though not null) geodesically complete. The timelike character of the
singularity also means that there are no Cauchy surfaces in these
spaces: given any spacelike surface, one can find timelike or null curves
which run into the singularity and do not cross the surface. For
example in the case e2 < m 2, one can find a spacelike surface [I' which
crosses two asymptotically flat regions I (figure 25). This is a Cauchy
surface for the two regions I and the two neighbouring regions II.
However in the neighbouring regions III to the future there are past­
directed inextendible timelike and null curves which approach the
singularity and do not cross the surface r = r_. This surface is there­
fore said to be the future Cauchy horizon for [1'. The continuation of
the solution beyond r = r_ is not determined by the Cauchy data on [1'.

The continuation we have given is the only locally inextendible
analytic one, but there will be other non-analytic 0 00 continuations
which satisfy the Einstein-Maxwell equations.
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FIGURE 26. Penrose diagrams for the maximally extended Reissner-Nordstr6m
solutions: 0) I I
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In the first case there is an infinite chain or regions I (00 > r> m) connected by
regions III (m > r > 0). The points p are not part ofthe singularity at r =0, but
are really exceptional points at infinity.
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A particle P crossing the surface r = r+ would appear to have
infinite redshift to an observer 0 whose world-line remains outside
r = r+ and approaches the future infinity i+ (figure 25). In the region II
between r = r+ and r = r_, the surfaces ofconstant rare spacelike and
so each point of the figure represents a two-sphere which is a closed
trapped surface. An observer P crossing the surface r = r_ would see
the whole of the history of one of the asymptotically flat regions I in
a finite time. Objects in this region would therefore appear to be
infinitely blue-shifted as they approached i+. This suggests that the
surface r = r_ would be unstable against small perturbations in the
initial data on the spacelike surface,<;P, and that such perturbations
would in general lead to singularities on r = r_.

5.6 The Kerr solution

In general, astronomical bodies are rotating and so one would not
expect the solution outside them to be exactly spherically symmetric.
The Kerr solutions are the only known family ofexact solutions which
could represent the stationary axisymmetric asymptotically flat field
outside a rotating massive object. They will be the exterior solutions
only for massive rotating bodies with a particular combination of
multipole moments; bodies with different combinations of moments
will have other exterior solutions. The Kerr solutions do however
appear to be the only possible exterior solutions for black holes (see
§9.2 and §9.3).

The solutions can be given in Boyer and Lindquist coordinates
(r, (J, ¢, t) in which the metric takes the form

d82 = p2(~2+d()2) + (r2+a2)sin2(Jd¢2-dt2+ 2;r (asin2(Jd¢-dt)2,

(5.29)
where p2(r,(J) == r 2+a2cos2(J and Ll(r) == r 2-2mr+a2.

m and a are constants, m representing the mass and ma the angular
momentum as measured from infinity (Boyer and Price (1965»; when
a = 0 the solution reduces to the Schwarzschild solution. This metric
form is clearly invariant under simultaneous inversion of t and ¢,
i.e. under the transformation t 4 - t, ¢ 4 - ¢, although it is not
invariant under inversion of t alone (except when a = 0). This is what
one would expect, since time inversion of a rotating object produces
an object rotating in the opposite direction.
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(5.30)

When all > mil, 11 > 0 and the above metric is singular only when
r = O. The singularity at r = 0 is not in fact a point but a ring, as can
be seen by transforming to Kerr-8child coordinates (x, y, 'I., t), where

x+iy = (r+ ia) sin Oexpif (d¢+al1-1dr),

'I. = rcose, 1=f(dt+ (rll+all)11-1dr)-r.

In these coordinates, the metric takes the form

d811 = dx2 + dyll +dzll - dI2

2mr3 (r(Xdx+Ydy)-a(Xdy-ydx) zdz d-)l1
+ +-+tr4+allzll r ll + all r'

where r is determined implicitly, up to a sign, in terms of x, y, 'I. by

r4_(xll+yll+zll_all)rll_allzlI = O.

For r =1= 0, the surfaces {r = constant} are confocal ellipsoids in the
(x, y, 'I.) plane, which degenerate for r = 0 to the disc '1.11 + yll ~ all, 'I. = O.
The ring Xll+yll = all, 'I. = 0 which is the boundary of this disc, is a real
curvature singularity as the scalar polynomial RabcdRabcd diverges
there. However no scalar polynomial diverges on the disc except at
the boundary ring. The function r can in fact be analytically con­
tinued from positive to negative values through the interior of the disc
Xli + y2 < all, 'I. = 0, to obtain a maximal analytic extension of the
solution.

To do this, one attaches another plane defined by coordinates
(x',y',z') where a point on the top side of the disc Xll+yll < all, 'I. = 0
in the (x, y, 'I.) plane is identified with a point with the same x and y
coordinates on the bottom side of the corresponding disc in the
(x', y', 'I.') plane. Similarly a point on the bottom side of the disc in the
(x, y, 'I.) plane is identified with a point on the top side of the disc in the
(x',y',z') plane (see figure 27). The metric (5.30) extends in the obvious
way to this larger manifold. The metric on the (x', y', 'I.') region is again
of the form (5.29), but with negative rather than positive values of r.
At large negative values of r, the space is again asymptotically flat
but this time w;ith negative mass. For small negative values of r near
the ring singularity, the vector 0lo¢ is timelike, so the circles
(t = constant, r = constant, e= constant) are closed timelike curves.
These closed timelike curves can be deformed to pass through any
point of the extended space (Carter (1968a». This solution is geodesic-
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ally incomplete at the ring singularity. However the only timelike and
null geodesics which reach this singularity are those in the equatorial
plane on the positive r side (Carter (1968a)).

r = constant
(r> 0)

Symmetry
axis 0 "" constant
(j=O

S)'mmptry
axis
(j=O

FIGURE 27. The maximal extension of the Kerr solution for at > mt is obtained
by identifying the top of the discxt+yt < at, z =.0 in the (x, y. z) plane with the
bottom of the corresponding disc in the (x', y', z') plane, and vice versa. The
figure shows the sections y = 0, y' = 0 of these planes. On circling twice round
the singularity at x 2 +yt =at, Z =0 one passes from the (x, y, z) plane to tho
(x'. y', z') plane (where r is negative) and back to the (x, y, z) plano (where r is
positive).

The extension in the case a2 < m2 is rather more complicated,
because of the existence of the two values r+ = m + (m2 - a2)l and
r_ = m-(m2_a2 )1 of r at which ~\r) vanishes. These surfaces are
similar to the surfaces r = r+' r = r_ in the Reissner-Nordstrom
solution. To extend the. metric across these surfaces, one transforms
to the Kerr coordinates (r,8,¢+.u+). where

du+ = dt+(r2+a2)~-Idr, d¢+ = d¢+a~-Idr.

The metric then takes the form

d82 = p2d82-2asin28drd¢+ +2drdu+

+p-2[(r2+ a2)2 _ ~2 sin28]sin20 d9+2

-4ap-2mrsin28d¢+du+ - (1- 2mrp-2) du+2 (5.31)
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on the manifold defined by these coordinates, and is analytic at
r = r+ and r = r _. One again has a singularity at r = 0, which has the
same ring form and geodesic structure as that described above. The
metric can also be extended on the manifold defined by the coordinates
(r, 8, ¢_, u_) where

du_ = dt-(r2+a2)~-ldr, d¢_ = d¢-a~-ldr;

the metric again takes the form (5.31), with ¢+' u+ replaced by - ¢_,
- u_. The maximalanalytic extension can be built up by a combination
of these extensions, as in the Reissner-Nordstrom case (Boyer and
Lindquist (1967), Carter (1968a)). The global structure is very similar
to that of the Reissner-Nordstrom solution except that one can now
continue through the ring to negative values of r. Figure 28 (i) shows
the conformal structure of the solution along the symmetry axis. The
regions 1 represent the asymptotically flat regions in which r > r+.
The regions II (r_ < r < r+) contain closed trapped surfaces. The
regions III (- 00 < r < r_) contain the ring singularity; there are
closed timelikc curves through every point in n. region III I hilI. no
cnllRlllit.y violn.t.ioll OCC1l1rR in t.ho ot.hor t.wo ro~ionR.

In the case a l - ml , r+ and r_ coincide and there is 110 region II.l'he
maximal extension is similar to that of the Reissner-Nordstrom solu­
tion when ell = mil. The conformal structure along the symmetry axis
ln Lllll:l Ulll:ltj ll:l l:lhUWll 111 Hgul'tj 2~ (11).

The Kerr solutions, being stationary and axisymmetric, have a
two-parameter group of isometries. This group is necessarily Abelian
(Carter (1970)). There are thus two independent Killing vector fields
which commute. There is a unique linear combination Ka of these
Killing vector fields which is timelike at arbitrarily large positive and
negative values of r. There is another unique linear combination J?a
of the Killing vector fields which is zero on the axis ofsymmetry. The
orbits of the Killing vector Ka define the stationary frame, that is, an
object moving along one of these orbits appears to be stationary with
respect to infinity. The orbits ofthe Killing vector J?a are closed curves,
and correspond to the rotational symmetry of the solution.

In the Schwarzschild and Reissner-Nordstrom solutions, the
Killing vector Ka which is timelike at large values of r is timelike
everywhere in the region I, becoming null on the surfaces r = 2m and
r = r+ respectively. These surfaces are null. This means that a particle
which crosses one of these surfaces in the future direction cannot
return again to the same region. They are the boundary of the region
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r = ". r == r.
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(i) (Ii)

FIGURE 28. The conformal structure of the Kerr solutions along the axis of
Aymmotry, (i) in tho Cfl.AO 0 < at < m t , (ii) in the CILAO at =m,t. Tho doUrrllinoR
ttl'" 1111t'" U. llu"<lI..."t ,.; 1.10" ""1,110"<1 I, 11 .."L1111111 ll""" (I) ...." L11V1Ll"L1 Ly ,. .= 1'+

and r = r_, and the regions I and III in case (ii) by r = m. In both cases, the
structure of the space near the ring singularity is as in figure 27.

of the solution from which particles can escape to the infinity .F+ of
a particular region I, and are called the event horizons ofthat.F+. (They
are in fact the event horizon in the sense of§5.2 for an observer moving
on any of the orbits of the Killing vector Ka in the region I.)

In the Kerr solution on the other hand, the Killing vector Ka is
spacelike in a region outside r = r+, called the ergosphere (figure 29).
The outer boundary ofthis region is the surface r = m + (m2 - a2 cos2 0)*
on which Ka is null. This is called the stationary limit surface since it is
the boundary of the region in which particles travelling on a timelike
curve can travel On an orbit of the Killing vector Ka, and so remain at
rest with respect to infinity. The stationary limit surface is a timelike
surface except at the two points on the axis, where it is null (at these
points it coincides with the surface r = r+). Where it is timelike it can
be crossed by particles in either the ingoing or the outgoing direction.
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Equatorial
plane
(0 =l17)

StationalY
limit
surface

Ergosphere

[5.6

r == "+Ring
singularity

FIGURE 29. In the Kerr solution with 0 < at < mt , the ergosphere lies between
the stationary limit surface and the horizon at r =r +. Particles can escape to
infinity from region I (outside the event horizon r = r+) but not from region II
(between r =,.+ and r =r_) and region III (r < r_; this region contains the
ring singularity).

Ergospherc

Singularity

Event
horizon
r = r+

Stationary
limit surface

FIGURE 30. The equatorial plane of a Kerr solution with mt > at. The circles
represent the position a short time later of flashes of light emitted by the points
represented by heavy dots.
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It is therefore not the event horizon for J +. In fact the event horizon
is the surface r = r+ = m + (m2 - a2)1. Figure 30 shows why this is. It
shows the equatorial plane 8 = i1T; each point in this figure represents
an orbit of the Killing vector Ka, i.e. it is stationary with respect
to J+. The small circles represent the position a short time later of
flashes of light emitted from the points represented by the heavy
black dots. Outside the stationary limit the Killing vector Ka is time­
like and so lies within the light cone. This means that the point in
figure 30 representing the orbit of emission lies within the wavefront
of the light.

On the stationary limit surface, Ka is null and so the point repre­
senting the orbit ofemission lies on the wavefront. However the wave­
front lies partly within and partly outside the stationary limit surface;
it is therefore possible for a particle travelling along a timelike curve
to escape to infinity from this surface. In the ergosphere between the
stationary limit surface and r = r+' the Killing vector Ka is spacelike
and so the point representing the orbit of emission lies outside the
wavefront. In this region it is impossible for a particle moving on a
timelike or null curve to travel along an orbit ofthe Killing vector and
so to remain at rest with respect to infinity. However the positions of
the wavefronts are such that the particles can still escape across the
stationary limit surface and so out to infinity. On the surface r = r+,
the Killing vector Ka is still spacelike. However the wavefront corre­
sponding to a point on this surface lies entirely within the surface.
This means that a particle travelling on a timelike curve from a point
on or inside the surface cannot get outside the surface and so cannot
get out to infinity. The surface r = r+ is therefore the event horizon
for J+ and is a null surface.

Although the Killing vector Ka is spacelike in the ergosphere, the
magnitude Kaf{b Kraf{h) ofthe Killing bivector Kraf{h) is negative every­
where outside r=r+, except on the axis f{a = 0 where it vanishes.
Therefore Ka and f{a sp~n a timelike two-surface and so at each point
outside r = r+ off the axis there is a linear combination of Ka and f{a
which is timelike. In a ~ense, therefore, the solution in the ergosphere
is locally stationary, although it is not stationary with respect to
infinity. In fact there is no one linear combination ofKa and f{a which
is tim,elike everywhere outside r = r+. The magnitude of the Killing
bivector vanishes on r = r+' and is positive just inside this surface.
On r = r+' both Ka and f{a are spacelike but there is a linear combina­
tion which is null everywhere on r = r+ (Carter (1969».
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The behaviour of the ergosphere and the horizon we have discussed
will play an important part in our discussion of black holes in § 9.2
and §9.3.

Just as the Reissner-Nordstrom solution can be thought of as
a charged version of the Schwarzschild solution, so there is a family of
charged Kerr solutions (Carter (1968a)). Their global properties are
very similar to those of the uncharged Kerr solutions.

5.7 Godel's universe

In 1949, Kurt GOdel published a paper (Godel (1949)) which provided
a considerable stimulus to investigation of exact solutions more com­
plex than those examined so far. He gave an exact solution of
Einstein's field equations in which the matter takes the form of a
pressure-free perfect fluid (Tab = pUaubwhere p is the matter density
and ua the normalized four-velocity vector). The manifold is R4 and
the metric can be given in the form

ds2 = - dt2+dx2-1exp (2(.J2) wx) dy2+dz2- 2exp ((.J2) wx) dt dy,

where w > 0 is a constant; the field equations are satisfied if u = 8/&0

(i.e. ua = 8ao) and 47TP = w2 = -A.

The constant w is in fact the magnitude of the vorticity of the flow
vector ua•

This space-time has a five-dimensional group of isometries which
is transitive, i.e. it is a completely homogeneous space-time. (An
action of a group is transitive on JI if it can map any point ofJI into
any other point of vU.) The metric is the direct sum of the metric gl
given by

dsl
2 = - dt2+ dx2-1exp (2(.J2) wx) dy2_ 2exp ((.J2) wx) dtdy

on the manifold JlI = RS defined by the coordinates (t, x, y), and the
metric g2 given by ds22 = dz2

on the manifold Jl2 = RI defined by the coordinate z. In order to
describe the properties of the solution it is sufficient to consider only
(JIll gl)'

Defining new coordinates (t', r, ¢) on JlI,by

exp ((.J2) wx) = cosh 2r+cos¢sinh 2r,

wyexp((.J2)wx) = sin ¢sinh 2r,

tanl(¢+wt-(.J2)t') = exp(-2r)tanl¢,
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the metric gl takes. the form

dsl
2= 2w-2( - dt'2+ dr2- (sinh4 r- sinh2r) d¢2+ 2(,J2) sinh2rd¢ dt),

where -00 < t < 00, 0 ~ r < 00, and 0 ~ ¢ ~ 21T, ¢ = 0 being identified
with ¢ = 21T; the flow vector in these coordinates is u = (wI (,J2)) 8/8t'.
This form exhibits the rotational symmetry of the solution about the
axis r = o. Bya different choice ofcoordinates the axis could be chosen
to lie on any flow line of the matter.

r = 0
(coordinate axis)

t' =0

Caustic on p's
future null cone

_Matter world·line
~. (r,;, constant)

r < log (1+,.12)
(closed spacelike
curve)

FIGURE 31. Godel's universe with the irrelevant coordinate z suppressed. The
sps.ce is rotationally symmetric about any point; the diagram represents cor­
rectly the rotational symmetry about the axis r =0, and the time invariance.
Thf.\ light cone opens out and tips over as ,. increases (see line L) resulting in
closed timelike curves. The diagram does not correctly represent the fact that
all points are in fact equivalent.

The behaviour of (.LI, gl) is illustrated in figure 31. The light cones
on the axis r = 0 contain the direction 81Ot' (the vertical direction on
the diagram) but not the horizontal directions 8/8r and 8/8¢. As one
moves away from the axis, the light cones open out and tilt in the
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¢>-direction so that at a radius r = log (1 +.J2), a/a¢> is a null vector
and the circle of this radius about the origin is a closed null curve.
At greater values ofr, a/a¢> is a timelike vector and circles of constant
r, t' are closed timelike curves. As (.L1, gl) has a four-dimensional
group ofisometries which is transitive, there are closed timelike curves
through every point of (.L1, gl)' and hence through every point of the
Gadel solution (.L, g).

This suggests that the solution is not very physical. The existence
of closed timelike curves in this solution implies that there are no
imbedded three-dimensional surfaces without boundary in J( which
are spacelike everywhere. For a closed timelike curve which crossed
such a surface would cross it an odd number oftimes. This would mean
that the curve could not be continuously deformed to zero, since a
continuous deformation can change the number of crossings only by
an even number. This would contradict the fact that.L is simply
connected, being homeomorphic to R4. The existence of closed time­
like lines also shows that there can be no cosmic time coordinate t in J(

which increases along every future-directed timelike or null curve.
The GOdel solution is geodesically complete. The behaviour of the

geodesics can be described in terms of the decomposition into (.L1, gI)
and (.L2, g2)' Since the metric g2 of.L2is flat, the component of the
geodesic tangent vector in J(2 is constant, i.e. the z-coordinate varies
linearly with the affine parameter on the geodesic. It is sufficient there­
fore to describe the behaviour of geodesics in (.LI, gIl. The null
geodesics from a point p on the axis of coordinates (figure 31) diverge
from the axis initially, reach a caustic at r = log (1 + (.J2», and then
reconverge to a point p' on the axis. The behaviour of timelike geo­
desics is similar: they reach some maximum value of r less than
log (1 + (.J2» and then reconverge to p'. A pointq at a radius r greater
than log (1 + (.J2» can be joined to p by a timelike curve but not by
a timelike or null geodesic.

Further details of GOdel's solution can be found in Gadel (1949),
Kundt (1956).

5·8 Taub-NUT space

In 1951, Taub discovered a spatially homogeneous empty space solu­
tion of Einstein's equations with topology R x 8 3 and metric given by

ds2 = - V-I dt2+ (2l)2 U(difr+ cosOd¢»2

+ (t2+l2)(d02+sinll Od¢>2), (5.32)
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Vet) == - 1+ 2(;t+~;), m and l are positive constants.

Here 0, ¢, ifF are Euler coordinates on 8 3, so 0 ~ 'if; ~ 41T, 0 ~ 0 ~ 1T,
o ~ ¢ ~ 21T. This metric is singular at t = t± =m ± (m2 +l2)i, where
U = O. It can in fact be extended across these surfaces to give a space
found 1,.1 ~ewman, Tamburino and Unti (1963), but before discussing
the extension we shall consider a simple two-dimensional example
given by Misner (1967) which has many similar properties.

This space has the topology 8 1 x Rl and the metric ~ given by

d82 = -t-1 dt2+td'if;2

where 0 ~ ifF ~ 21T. This metric is singular when t = o. However ifone
takes the manifold J( defined by ifF and by 0 < t < 00, (oL,~) can
be extended by defining ifF' = ifF -log t. The metric then takes the
form ~' given by

This is analytic on the manifold J(' with topology 8 1 x Rl defined by
ifF' and by - 00 < t < 00. The region t > 0 of (J(', ~') is isometric with
(oL, ~). The behaviour of (oL', ~') is shown in figure 32. There are
closed timelike lines in the region t < 0, but there are none when
t > O. One family of null geodesics is represented by the vertical lines
in figure 32; these cross the surface t = o. The other family spiral
round and round as they approach t = 0, but never actually cross this
surface, and these geodesics have only finite affine length. Thus the
extension (oL', ~') is not symmetric between the two families of null
geodesics, although the original space (oL,~) was. However One can
define another extension (J(n, ~") in which the behaviour of the two
families of null geodesics is interchanged. To do so define 'if;" by
ifF" = 'if;+logt. The metric takes the form ~" given by

d82 = -2difF"dt+t(difF")2.

This is analytic on the manifold oL" with topology 8 1 x Rl defined
by ifF" and - 00 < t < 00. The region t > 0 of (oL", ~") is isometric
with (oL, ~). In a sense, what we have done by defining ifF" is to untwist
the second family of null geodesics so that they become vertical lines,
and can be continued beyond t = o. However this twisting winds up
the first family of null geodesics so that they spiral around and cannot
be continued beyond t = O. One has therefore two inequivalent locally
inextendible analytic extensions of (oL, ~), both ofwhich are geodesic-
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[5.8

Surfaces u = constant

0/
... ",__Points in a surface

{u"" constant}
which are
equivalent
under G

(ii)

FIGURE 32. Misner's two-dimensional example.
(i) Extension ofregion I across the boundary t = 0 into II. The vertical null

geodesics are complete, but the twisted null geodesics are incomplete.
(ii) The universal covering space is two-dimensional Minkowski space. Under

the discrete subgroup G of the Lorentz group, points 8 are equivalent; similarly
points r, q and t are equivalent. (i) is obtained by identifying equivalent points
in regions I and II.
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ally incomplete. The relation between these two extensions can be
seen clearly by going to the covering space of (.A, g).

This is in fact the region I of two-dimensional Minkowski space
(vK, Yj) contained within the future null cone ora pointp (figure 32(ii».
The isometries of (vK, Yj) which leave p fixed form a one-dimensional
group (the Lorentz group of Yj) whose orbits are the hyperbolae
{O" = constant} where 0" == 12_ x2 and 1, x are the usual Minkowski
coordinates. The space (.A, g) is the quotient of (I, Yj) by the discrete
subgroup G of the Lorentz group consisting of An (n integer) where
A maps (1, x) to

(1 cosh 17 +xsinh 17, xcosh 17 +1sinh 17),

i.e. one identifies the points

(1 cosh nl7 +xsinh nl7, xcosh nl7 +1sinh nl7)

for all integer values of n, and these correspond to the point

t = !(12_ x2), 'l/F = 2arc tanh (x/1) in.A.

The action of the isometry group G in the region I is properly dis­
continuous. The action of a group H on a manifold JV is said to be
properly discontinuous if:

(1) each pointqEJV has a neighbourhood IPJ such that A (IPJ) nIPJ = 0
for each A EH which is not the identity element, and

(2) ifq, r EJV are such that there is no A EH with Aq = r, then there
are neighbourhoods IPJ and IPJ' of q and r respectively such that there
is no BE H with B(IPJ) nIPJ' =1= {O.

C;onrlit,ion (1) implim~ t.hn,t. t,hn fJt1ot.innt, .,vIR iR n mnnifnlrl. n.nrl
condition (2) implies that it is Hausdorff. Thus the quotient (I, Yj)/G is
the Hausdorff space (.A, g). The action of G is also properly discon­
tinuous in the regions I + II (1 > -x). Thus (I +II, Yj)/G is also a
Hausdorff space; in fact it is (.A', g'). Similarly (I + III, Yj)/G is the
Hausdorff space (.A", gil) where I + III is the region 1> X. From this
it can be seen how it is that one family of null geodesics can be com­
pleted in the extension (vK', g') while the other family can be com­
pletedin the extension (.A", gil). This suggests that one might perform
both extensions at the same time. However the action of the group on
the region (I +II + III) (Le.1 > -Ixl) satisfies condition (1) but condi­
tion (2) is not satisfied for points q on the boundary between I and II
and points r on the boundary between I and III. Therefore the quotient
(I +II +III, Yj)/G is not Hausdorff although it is still a manifold.
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This kind of non-Hausdorff behaviour is different from that in the
example given in §2.1. In that example, one could have continuous
curves which bifurcate, one branch going into one region and another
branch going into another region. Such behaviour of an observer's
world-line would be very uncomfortable. However the manifold
(I +II + III)/O does not have any such bifurcating curves; curves in I
can be extended into II or III but not into both simultaneously. Thus
one might be prepared to relax the Hausdorff requirement on a space­
time model to allow this sort ofsituation but not the sort in which one
gets bifurcating curves. Further work on non-Hausdorff space-times
can be found in the papers of Hajicek (1971).

Condition (1) is in fact satisfied by the action of 0 on.Jj -{p}. Thus
the space (..i' -{ph Yi)/O is in some sense the maximal non-Hausdorff
extension of (..I, ~). However it is still not geodesically complete
because there are geodesics which pass through the point p which has
been left out. Ifp is included the action of the group does not satisfy
condition (1), and so the quotient.Jj10 is not even a non-Hausdorff
manifold. However consider the bundle oflinear frames L(.Jj), i.e. the
collection of all pairs (X, Y), X, Y E Tcr, oflinearly independent vectors
at all points qE.Jj. The action of an element A of the isometry group
o on';; induces an action A* on L(.Jj) which takes the frame (X, Y)
at q to the frame (A.X,A. Y) at A(q). This action satisfies condi­
tion (1) because even for (X, Y) E Tp , A.X =t= X and A.Y =t= Y unless
A = identity, and satisfies condition (2) even ifX and Y lie on the null
cone of p. Thus the quotient L(.Jj)/O is a Hausdorff manifold. It is
a fibre bundle over the non-Hausdorff non-manifold..K /0. One could
in a sense regard it as the bundle of linear frames for this space. The
fact that the bundle of frames can be well behaved even though the
space is not, suggests that it is useful to look at singularities by using
the bundle of linear frames. A general procedure for doing this will
be given in §8.3.

We shall now return to the four-dimensional Taub space (o4,~)

where ..I is Rl X S3 and ~ is given by (5.32). As ..I is simply connected,
one cannot take a covering space as we did in the two-dimensional
example. However one can achieve a similar result by considering ..I
as a fibre bundle over 8 2 with fibre Rl x 8 1; the bundle projection
17: .L_S2 is defined by (t,'l/F,O,ep)-(O,ep): This is in fact the pro­
duct with the t-axis of the Hopf fibering sa_s2 (Steenrod (1951»
which has fibre SI. The space (.L,~) admits a four-dimensional group
of isometries whose surfaces of transitivity are the three-spheres
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{t = constant}. This group of isometries maps fibres of the bundle
17: JI _82into fibres, and so the pairs (~, g) are all isometric, where
~ is a fibre (~ ~ Rl X 81) and g is the metric induced on the fibre
by the four-dimensional metric g on Jt. The fibre~ can be regarded
as the (t, J/f) plane, and the metric g on ~ is obtained from (5.32) by
dropping the terms in dO and d¢>; thus g is given by

(5.33)

The tangent space Tq at the point qEJI can be decomposed into
a vertical subspace ~ which is tangent to the fibre and is spanned by
the vectors a/Ot and a/aJ/f, and a horizontal subspace Hq which is
spanned by the vectors alae and a/a¢>-cosoa/OJ/f. Any vector XETq

can be split into a part Xv lying in ~ and a part XH lying in Hq• The
metric g on Tg can then be expressed as

y(X, Y) = Yv(Xv , Yv )+ (t2+12
) YH(l7*XH,l7.YH ), (5.34)

where Yv == g and gH is the standard metric on the two-sphere given
by ds2= d02+sin20d¢>2. Thus although the metric g is not the direct
sum ofgv and (t2+ 12)gH (because Rl x 8 3 is not the direct product of
Rl x 81 with 8 2) it can nevertheless be regarded as such a sum locally.

The interesting part of the metric g is contained in gv and we shall
therefore consider analytic extensions of the pair (~,gv). When com­
bined with the metric gH of the two-sphere as in (5.34), these give
analytic extensions of (Jt, g).

The metric gv, given by (5.33), has singularities at t = t± where
U = o. However if one takes the manifold~ defined by J/f and by
C < t < t+, (~o, gv) can be extended by defining

./,' ./, 1I dt
'i' = 'i' + 21 U(t)"

The metric then takes the form gv' given by

ds2 == 41 dJ/f'(lU(t) dJ/f' - dt).

This is analytic on the manifold ~' with topology 81 x R defined by
J/f' and by - co < t < co. The region C < t < t+ of (~', gv') is isometric
with (~o, gv). There are no closed timelike curves in the region
C < t < t+ but there are for t < C and for t > t+. The behaviour is very
much as for the space (JI', g') we considered before, except that there
are now two horizons (at t = C and t = t+) instead of the one horizon
(at t = 0). One family ofnull geodesics crosses both horizons t = C and
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./," ./, 1f dt
'i' = 'i' - 21 U{t)"

t = t+ but the other family spirals round near these surfaces and is
incomplete.

As before, one can make another extension by defining the
coordinate

The metric then takes the form gy" given by

ds2 = 41 d1/f"(lU(t) d1/f" +dt)

which is analytic on the manifold §" defined by 1/f" and by
- co < t < 00, and is again isometric to (§o, gy) on C < t < t+.

Once again one can show the relation between the different exten­
sions by going to the covering space. The covering space of § 0 is the
manifold .#0 defined by the coordinates - 00 < 1/f < 00 and by
C < t < t+. On.#o the metriclly can be written in the double null form

ds2 = 412U(t) d1/f' d1/f", (5.35)

where - 00 < 1/f' < 00, - 00 < 1/f" < 00. One can extend this in a manner
similar to that used in the Reissner-Nordstrom solution. Define new
coordinates (u+, v+) and (u_, v_) on §o by

u± = arctan (exp1/f'/a±), v± = arctan (-(exp-1/f"/a±)),

h - t+-C d _ t+-C .
were a+ - 41(mt +12 ) an a_ - 4nl(mt +12)'

n is some int.ep;er p;rent.er thnn (m.I., + 12)/('111L -I [2). Thllll t.l1O ,"cl.ric gv
obtained by applying this transformation to (5.35) is analytic on the
mnnifold .# shown in figure 33, where the coordinates (u+, v+) are
analytic coordinates except at t = C where they are at least C3, and the
coordinates (u_, v_) are analytic coordinates except at t = t+ where
they are at least ca. This is rather similar to the extension of the (t, r)

plane of the Reissner-Nordstrom solution.
The space (.#, gy) has a one-dimensional group of isometries, the

orbits of which are shown in figure 33. Near the points P+, p_ the
action of this group is similar to that of the Lorentz group in two­
dimensional Minkowski space (figure 32 (li». Let G be the discrete
subgroup of the isometry group generated by a non-trivial element A
of the isometry group. The space (~, gy) is the quotient of One of
the regions (II+, gy) by G. The space (§', gy') is the quotient
(L+II+ +IlL, gy)/G, and (§", gy") is the quotient

(1+ +11+ +1[[ " fl.,. )/a.
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t =-00

t =00

Homogeneous surfaces
{t = constant} (spacelike
group orbits)

Homogeneous surfaces
{t = constant) (timelike

~~~==n:~~~~~t:=-00 group orbits)

~t=;t+ z
, "t = t+

~,</((IlL
/ '

/ '
FIGURE 33. Penrose diagram of the maximally extended covering space of a
two-dimensional section of Taub-NUT space, showing orbits of the isometry
group. Taub-NUT space llond its extensions are obtained from part of this space
hy irlnnt.ifinntinn of point." 1""I,.r 1\ ,liHur,.I... H"hg"""" "I' "'It' iHolnuLry gl'UII)1.

One would also obtain a Hausdorff manifold by taking the quotient of
(1+ + I1+'+L): this corresponds to extending like ($&", gy') at the
surface·t = t+ but extending like ($&'", gv") at the surface t = L By
taking the quotient of the whole space .# minus the points p+ and p_
one obtains a non-Hausdorff manifold; and taking the quotient of.#
one obtains a non-Hausdorff non-manifold in a way analogous to that
in the example above. AB in that example, one can take the quotient
ofthe bundle oflinearframes over $&' and obtain a Hausdorff manifold.

By combining these extensions of the (t, !/r) plane with the coordi­
nates (0, ¢) one can obtain corresponding extensions of the four­
dimensional space (..6', g). In particular, the two extensions ($&", gy')
and ($''', gv") give rise to two different locally inextendible analytic
extensions of (..6', g), and both are geodesically incomplete.

Consider one of these extensions, Ray (..6", g'). Tho throo-Rphnrofol
whir'" nrr' tit" mll'f"",,'''n nf"I.I·ltllnil.i"i1·.r of" I.lm i!mIlIVLI'Y j;1'UU}J lJ,I'e tl}Ju.cc-
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where

like surfaces in the region C < t < t+ and are timelike for t > t+ and
t < Co The two surfaces of transitivity t = C and t = t+ are null
surfaces and they form the Cauchy horizon of any spacelike surface
contained in the region C < t < t+, because there are timelike curves
in the regions t < C and t > t+ which do not cross t = C and t = t+
respectively (for example, closed timelike curves exist in the regions
t < C and t > t+). The region of space-time C ~ t ~ t+ is compact yet
there are timelike and null geodesics which remain within it and are
incomplete. This kind of behaviour will be considered further in
chapter 8.

Further details of Taub-NUT space may be found in Misner and
To.ub (1060), Misner (1M3).

5.9 Further exact solutions

We have examined in this chapter a number of exact solutions and
used them to give examples of the various global properties which we
shall wish to discuss more generally later. Although a large number of
exact solutions are known locally, relatively few have been examined
globally. To complete this chapter, we shall mention briefly two other
interesting families of exact solutions whose global properties are
known.

The first of these are the plane -wave solutions of the empty space
field equations. Thesc are homeomorphic to R4, and global coordinates
(y, z, u, v), which range from -00 to +00, can be chosen so that the
metric takes the form

ds2 = 2dudv+dy2+dz2+H(y,z,u)du2,

H = (y2_ Z2)f(u)-2yzg(u);

f(u) and g(u) are arbitrary 0 2 functions determining the amplitude
and polarization of the wave. These spaces are invariant under a five­
parameter group ofisometries multiply transitive on the null surfaces
{u = constant}; a special subclass, in whichf(u) = cos 2u, g(u) = sin 2u,
admit an extra Killing vector field, and are homogeneous space-times
invariant under a six-parameter group of isometries. These spapes
do not contain any closed timelike or null curves; however they
admit no Cauchy surfaces (Penrose (1965a». Local properties
of these spaces have been studied in detail by Bondi, Pirani and
Robinson (1959), and global properties by Penrose (1965a); Oszvath
and Schiicking (1962) have studied global properties of the higher
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symmetry space. The way in which two impulsive plane waves scatter
each other and give rise to a singularity has been studied by Khan and
Penrose (1971).

The other is the five-parameter family of exact solutions of the
source-free Einstein-Maxwell equations found by Carter (1968b) (see
also Demianski and Newman (1966». These include the Schwarzschild,
Reissner-Nordstrom, Kerr, charged Kerr, Taub-NUT, de Sitter and
anti-de Sitter solutions as special cases. A description of some of their
global properties is given in Carter (1967). Some cases closely related
to this family have been examined by Ehlers and Kundt (1962) and
KinnerR)oy n.nd Wn.lk(\r (1970).



6

Causal structure

By postulate (a) of §3.2, a signal can be sent between two points ofJ(

only if they can be joined by a non-spacelike curve. In this chapter we
shall investigate further the properties of such causal relationships,
establishing a number of results which will be used in chapter 8 to
prove the existence of singularities.

By §3.2, the study ofcausal relationships is equivalent to that ofthe
conformal geometry of ..1(, i.e. of the set of all metrics g conformal to
the physical metric g (g = n2g, where n is a non-zero, Cr function).
Under such a conformal transformation of the metric a geodesic curve
will not, in general, remain a geodesic curve unless it is null, and even
in this case an affine parameter along the curve will not remain an
affine parameter. Thus in most cases geodesic completeness (i.e.
whether all geodesics can be extended to arbitrary values of their
affine parameters) will depend on the particular conformal factor and
so will not (except in certain special cases described in §6.4) be a
property of the conformal geometry. In fact Clarke (1971 ) and Siefert
(1968) have shown that, provided a physically reasonable causality
condition holds, any Lorentz metric is conformal to one in which all
null geodesics and all future-directed timelike geodesics are complete.
Geodesic completeness will be discussed further in chapter 8 where it
forms the basis of a definition of a singularity.

§6.1 deals with the question of the orientability of timelike and
spacelike bases. In §6.2 basic causal relations are defined and the
definition of a non-spacelike curve is extended from piecewise dif­
ferentiable to continuous. The properties of the boundary ofthe future
of a set are derived in § 6.3. In § 6.4 a number of conditions which rule
outviolations or near violations ofcausality are discussed. The closely
related concepts of Cauchy developments and global hyperbolicity
are introduced in § 6.5 and §6.6, and are used in §6.7 to prove the
existence of non-spacelike geodesics of maximum length between
certain pairs of points.

In § 6.8 we describe the construction of Geroch, Kronheimer and
[180]
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Penrose for attaching a causal boundary to space-time. A particular
example of such a boundary is provided by a class of asymptotically
flat space-times which are studied in §6.9.

6.1 Orientability

In our neighbourhood of space-time there is a well-defined arrow of
time given by the direction of increase of entropy in quasi-isolated
thermodynamic systems. It is not quite clear what the relationship
is between this arrow and the other arrows defined by the expansion
of the universe and by the direction of electrodynamic radiation; the
reader who is interested will find further discussion in Gold (1967),
Hogarth (1962), Hoyle and Narlikar (1963) and Ellis and Sciama
(1972). Physically it would seem reasonable to suppose that there is
a local thermodynamic arrow of time defined continuously at every
point ofspace-time, but we shall only require that it should be possibie
to define continuously a division of non-spacelike vectors into two
classes, which we arbitrarily label future- and past-directed. If this is
the case, we shall say that space-time is time-orie1llable. In some
space-times it is not possible to define such a time-orientation. An
example is the space-time obtained from de Sitter space (§5.2) in
which points are identified by reflection through the origin of the five­
dimensional imbedding space. In this space there are closed curves,
non-homotopic to zero, on going round which the orientation of time
is reversed. However this difficulty could clearly be resolved by simply
unidentifying the points again, and in fact this is always the case: if
a space-time (.L,~) is not time-orientable, then it has a double
covering space (.il,~) which is. .il may be defined as the set of aU
pairs (p, a) where pE.L and a is one of the two orientations of time
atp. Then with the natural structure and the projection1T: (p,a)~p,
.il is a double covering of ..I. If.il consists of two disconnected com­
ponents then (..I, ~) is time-orientable. If.il is connected, then (..I, g)
is not time-orientable but (.il, ~) is. In the following sections we shall
assume that either (..I, g) is time-orientable or we are dealing with the
time-orientable covering space. If one can prove the existence of
singularities in this space-time then there must also be singularities
in (..oR, ~).

One may also ask whether space-time is 8pace-orientable, that is
whether it is possible to divide bases of three spacelike axes into right

. handed and left handed bases in a continuous manner. Geroch (1967 a)
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has pointed out that there is an interesting connection between this
and time-orientability which follows because some experiments
on elementary particles are not invariant under charge or parity
reversals, either singly or together. On the other hand there are theo­
retical reasons for believing that all interactions are invariant under
the combination of charge, parity and time reversals (CPT theorem;
see Streater and Wightman (1964». If one believes that the non­
invariance of weak interactions under charge and parity reversals is
not merely a local effect but exists at all points of space-time, then it
follows that going round any closed curve either the sign of a charge,
the orientation of a basis ofspacelike axes, and the orientation of time
must all reverse, or none of them does. (The ordinary Maxwell theory,
in which the electromagnetic field has a definite sign at every point,
does not allow the sign of a charge to change on going around a closed
curve non-homotopic to zero unless the orientation of time changes.
However one could have a theory in which the field was double-valued
and changed sign on going round such a curve. This theory would agree
with all existing experimental evidence.) In particular ifone assumes
that space-time is time-orientable then it must also be space­
orientable. (This in fact follows on using the experimental evidence
alone without appealing to the CPT theorem.)

Geroch (1968c) has also shown that if it is possible to define two­
component spinor fields at every point then space-time must be
parallelizable, that is it must be possible to introduce a continuous
system of bases of the tangent space at every point. (Further conse­
quences of the existence of spinor structures are obtained in Geroch
(1970a).)

6.2 Causal curves

Taking space-time to be time-orientable as explained in the previous
section, one can divide the non-spacelike vectors at each point into
future- and past-directed. For sets f/ and IPJ, the chronological future
I+(f/, IPJ) off/relative to IPJ can then be defined as the set of all points
in IPJ which can be reached from f/ by a future-directed timelike curve'
in du. (By a curve we mean always one of non-zero extent, not just a
single point. Thus I+(f/, dU) may not con~in f/.) 1+(f/,..II) will be
denoted by 1+(f/), and is an open set, since ifp E..II can be reached by
a future-directed timelike curve from f/ then there is a small neigh­
bourhood ofp which can be so reached.
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This definition has a dual in which «future' is replaced by «past',
and the + by a - ; to avoid repetition, we shall regard dual definitions
and results as self-evident.

The causal future of Y relative to 'PI is denoted by J+(Y, 'PI); it is
defined as the union ofY n 'PI with the set ofall points in 'PI which can
be reached from Y by a future-directed non-spacelike curve in 'PI. We
saw in §4.5 that a non-spacelike curve between two points which was
not a null geodesic curve could be deformed into a timelike curve
between the two points. Thus if 'PI is an open set and p, q, r E 'PI, then

either qEJ+(p,'PI),rEI+(q,'PI)} .
Imply rEI+(p,'PI).

or qEJ+(p, 'PI), rEJ+(q,'PI)

From this it follows that I+(p, 'PI) = J+(p, 'PI) and l+(p, 'PI) = j+(p, 'PI)
where for any set:%, :% denotes the closure of:% and

:t1=. :%n (.4-:%)

denotes the boundary of :%.

Null geodesic in j+(9"J
which does not intersect
J+(9"J and has no past
endpoint in ..I

Chronological
future [+(9")

Causal"""",~-Jt,,__
future --"""'"'"----,lo~
J+WJ

Null geodesics £
through 9" generating
past of J+(9")

FIGURE 34. When a point has been removed from Minkowski space, the causal
future J+(,9') of a closeQ set ,9' is not necessarily closed. Further parts of the
boundary of the future of ,9' may be generated by null geodesic segments
which have no past endpoints in..lt.

As before, J+(Y, .4) will be written simply as J+(Y). It is the region
ofspace-time which can be causally affected by events in Y. It is not
necessarily a closed set even when Y is a single point, as figure 34
shows. This example, incidentally, illustrates a useful technique for
constructing space-times with given causal properties: one starts
with some simple space-time (unless otherwise indicated this will be
Minkowski space), cuts out any closed set and, if desired, pastes it
together in an appropriate way (i.e. one makes identifications ofpoints
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of .,It). The result is still a manifold with a Lorentz metric and there­
fore still a space-time even though it may look rather incomplete
where points have been cut out. As mentioned above, however, this
incompleteness can be cured by an appropriate conformal trans­
formation which sends the cut out points to infinity.

The future horismos of Sf" relative to tPI, denoted by E+(.9, tW), is
defined as J+(.9,tW)-I+(.9,tW); we write E+(.9) for E+(.9,.,It). (In
some papers the relationspEI+(q), pEJ+(q) and P EE+(q) are denoted
by q ~ p, q < p and q...,.p respectively.) If tW is an open set, points of
E+(.9, tW) must lie on future-directed null geodesics from .9 by
proposition 4.5.10, and if tW is a convex normal neighbourhood aboutp
then it follows from proposition 4.5.1 that E+(p, tW) consists of the
future-directed null geodesics in tW from p, and forms the boundary in
tW of both I+(p, tW) and J+(p, tW). Thus in Minkowski space, the null
cone of p forms the boundary of the causal and chronological futures
ofp. However in more complicated space-times this is not necessarily
the case (e.g. see figure 34).

For the purposes of what follows it will be convenient to extend the
definition of timeIike and non-spacelike curves from piecewise dif­
ferentiable to continuous curves. Although such a curve may not have
a tangent vector We can still say that it is non-spacelike if locally
every two points of the curve can be joined by a piecewise differenti­
able non-spacelike curve. More precisely, we shall say that a con­
tinuous curve y: F...,..,It, where F is a connected interval of RI, is
future-directed and non-spacelike if for every t EF there is a neighbour­
hood G of t in F and a convex normal neighbourhood tW of yet) in .,It
such that for any tlEG, y(tl)EJ-(y(t),tW)-y(t) if tl < t, and
y(tl )EJ+(y(t), tW)-y(t) ift < t1• We shall say that y is future-directed
and timelike if the same conditions hold with J replaced by I. Unless
otherwise specified, we will in future mean by a timelike or non­
spacelike curve such a continuous curve, and shall regard two curves
as equivalent if one is a reparametrization of the other. With this
generalization we can establish a result that will be used repeatedly
in the rest of this chapter. We first give a few more definitions.

A point p will be said to be a future endpoint of a future-directed
non-spacelike curve y: F ...,..,It iffor every neighbourhood i/' ofp there
is at EF such thaty(tl ) Ei/' for every tl EF withtl ~ t. A non-spacelike
curve is future-inextendible (respectively,Juture-i71~xtendible in a set.9)
if it has no future endpoint (respectively, no future endpoint in .9).
A point p will be said to be a limit point of an infinite sequence ofnon-
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spacelike curves An if every neighbourhood of p intersects an infinite
number of the An' A non-spacelike curve A will be said to be a limit
curve of the sequence An if there is a subsequence A'n of the An such that
for every pEA, A'n converges to p.

Lemma 6.2.1

Let9' be an open set and let An be an infinite sequence ofnon-spacelike
curves in9'which are future-inextendible in9'. Ifp E9' is a limit point
of An' then through p there is a non-spacelike curve A which is future­
inextendible in 9' and which is a limit curve of the An'

It is sufficient to consider the case 9' = Jt since 9' can be regarded as
a manifold with a Lorentz metric. Let tPJ1 be a convex normal co­
ordinate neighbourhood about p and let £J(q, a) be the open ball of
coordinate radius a about q. Let b > 0 be such that £J(p, b) is defined
and let A(1, O)n be a subsequence of An n tPJ1 which converges to p.
Since .41(p, b) is compact it will contain limit points of the A(1,0)n'
Any such limit point y must lie either in J-(p, tPJ1) or J+(p, tPJ1) since
otherwise there would be neighbourhoods~ of y and~ of p between
which there would be no non-spacelike curve in tPJ1• Choose

Xu EJ+(p, 0;/1 ) n i4(p, b)

to be one of these limit points (figure 35), and choose A(1, 1)n to be
a subsequence of A(1, O)n which converges to Xu' The point Xu will be
a point of our limit curve A. Continue inductively, defining

x'i E J +(p, tPJ1) n i4(p, i-1jb)

as a limit point of the subsequence A(i - 1, i - 1)n for j = 0, A(i,j - 1)n
for i ~ j ~ 1, and defining A(i,j)n as a subsequence of the above
subsequence which converges to X w In other words we are dividing
the interval [0, b] into smaller and smaller sections and getting points

. on our limit curve on the corresponding spheres about p. As any two
of the x'i will have non-sp~celike separation, the closure of the union
of all the x'l (j ~ i) will give a non-spacelike curve A from p = X'D to
Xu = Xii' It now remains to construct a subsequence A'n of the An such
that for each qEA, A'n converges toq. We do this by choosing A'1Il to be
a member of the subsequence A(m, m)n which intersects each of the
balls £J(xfllj, m-1b) for 0 ~ j ~ m. Thus A will be a limit curve of the
An fromp to Xu' Now let tPJ2 be a convex normal neighbourhood about
Xu and repeat the construction using this time the sequence A'n"

Continuing in this fashion, one can extend A indefinitely. 0
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FIGURE 35. The non-spacelike limit curve A through p of a family of non­
spacelike curves A" for which p is a limit point.

6.3 Achronal boundaries
From proposition 4.5.1 it follows that in a convex normal neighbour­
hood tW, the boundary of1+(p, tW) or J+(p, tW) is formed by the future­
directed null geodesics from p. To derive the properties of more general
boundaries we introduce the concepts of achronal and future sets.

A set [/' is said to be achronal (sometimes referred to as 'semi­
spacelike' in the literature) if 1+(9') n[/' is empty, in other words if
there are no two points of[/' with timeIike separation. [/' is said to be
afuture 8et if9' => 1+(9'). Note that if9' is af~ture set, Jt -9'is a past
set. Examples of future sets include 1+(JV) and J+(JV), where JV is
any set. Examples of achronal sets are given by the following
fundamental result.
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Proposition 6.3.1

If.9' is a future set then!/. the boundary of.9'. is a closed. imbedded.
achronal three-dimensional 0 1- submanifold.

Ifqe!/, any neighbourhood ofq intersects[/' and JI -.9'. Ifp eI+(q).
then there is a neighbourhood of q in I-(p). Thus I+(q) c.9'. Similarly
]-(q) c (JI -.9'). If r e ]+(q). there is a neighbourhood "I"" of r such
that "I"" c ]+(q) c .9'. Thus r cannot belong to!/. One can introduce
normal coordinates (x1.x2.x3.x4) in a neighbourhood~.. about q with
a/ax. timelike and such that the curves {xi = constant (i = 1.2. 3)}
intersect both I+{q. ~..) and I-(q. ~..). Then each of these curves must
contain precisely one point of!/. The x4-coordinate of these points
must be a Lipschitz function of the Xi (i = 1.2,3) since no two points
of !/ have timelike separation. Therefore the one-one map
tP..:.9' n ~.. ...,.R3 defined by tP..(p) = xi(p) (i = 1.2.3) for pe.9'n~..
is a homeomorphism. Thus (!/ n~... tP.. ) is a 0 1- atlas for!/. 0

We shall call a set with the properties of!/ listed in proposition 6.3.1,
an achronal boundary. Such a set can be divided into four disjoint
subsets .9;,. ~• .9:.... ~ as follows: for a point qef/ there mayor
may not exist points p.re!/ with peE-(q)-q, reE+(q)-q. The
different possibilities define the subsets of!/ according to the scheme:

3p ~p

I~IS>I~'qe . rp :1
~ .70 pr

If qe.9;,. then reE+(p) since reJ+(p) and by proposition 6.3.1.
r f ]+(P). This means that there is a null geodesic segment in!/ through
q. If qe!/+ (respectively .9:...) then q is the future (respectively. past)
endpoint of a null geodesic in !/. The subset ~ is spacelike (more
strictly. acausal). These divisions are illustrated in figure 36.

A useful condition for a point to lie in .9;" ~ or .9:. is given in the
following lemma due to Penrose (Penrose (1968»:

Lemma 6.3.2

Let if/' be a neighbourhood of qe!/ where.9' is a future set. Then

(i) I+{q) c ]+(.9' - if/') implies q e.9;, U ~.

(ii) I-(q) c ]-(JI -.9' - if/') implies qe.9;, U.9:....
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FIGURE 36. An achronal bounda.ry 9' can be divided into four sets: .9"0 is space­
like, 9'N is null, and g+ (respectively, 9'_l is the future (respectively, past)
endpoint of a null geodesic in Y.

It is sufficient to prove (i) since.9' can also be regarded as the boundary
of the past set (.A -9'). Let {x,J be an infinite sequence of points in
[+(q) n 11/ which converge on q. If [+(q) c [+(9" - if~), there will be
a past-directed timelike curve An to 9' - 11/ from each xn. By lemma

6.2.1 there will be a past-directed limit curve Afrom q to (9' - 11/). As
[-(q) is open and contained in.A-9', [-(q) n9'is empty. Thus Amust
be a null geodesic and must lie in.9'. 0

As an example of the above results, consider j+(:;t") = l+(:;t"), the
boundary of the future of a closed set:;t". By proposition 6.3.1 it is an
achronal manifold and by the above lemma, every point of j(:;t") -:;t"
belongs to [j+(:;t")}N or [j+(:;t")]+. This means that j(:;t") -:;t" is
generated by null geodesic segments which may have future end­
points in j+(:;t") - :;t" but which, if they do have past endpoints, can
have them only on :;t" itself. As figure 34 shows, there may be null
geodesic generating segments which do not have past endpoints at all
but which go out to infinity. This example is admittedly rather
artificial but Penrose (1965a) has shown that similar behaviour
occurs in something as simple as the plane wave solutions; the anti­
de Sitter (§ 5.2) and Reissner-Nordstrom (§ 5.5) solutions provide
other examples. We shall see in §6.6 that this behaviour is connected
with the absence of a Cauchy surface for these solutions.

We shall say that an open set tPJ is causally simple if for every
compact set :;t" c tPJ,

j+(:;t") n tPJ = E+(:;t") n tPJ and j-(:;t") n tPJ = E-(:;t") n tPJ.

This is equivalent to saying that J+(:;t") and J-(:;t") are closed in tPJ.
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6.4 Causality conditions

Postulate (a) of §3.2 required only that causality should hold locally;
the global question was left open. Thus we did not rule out the possi­
bility that on a large scale there might be closed timelike curves (i.e.
timelike Sl's). However the existence of such curves would seem to
lead to the possibility of logical paradoxes: for, one could imagine
that with a suitable rocketship one could travel round such a curve
and, arriving back before one's departure, one could prevent oneself
from setting out in the first place. Of course there is a contradiction
only if one assumes a simple notion of free will; but this is not some­
thing which can be dropped lightly since the whole of our philosophy
of science is based on the assumption that one is free to perform any
experiment. It might be possible to form a theory in which there were
closed timelike curves and in which the concept of free will was modi­
fied (see, for example, Schmidt (1966» but one would be much more
ready to believe that space-time satisfies what we shall call the
chronology condition: namely, that there are no closed timelike curves.
One must however bear in mind the possibility that there might be
points (maybe where the density or curvature was very high) of
space-time at which this condition does not hold. The set of all such
points will be called the chronology violating set of JI and has the
following character:

Proposition 6.4.1 (Garter)

The chronology violating set of Jt is the disjoint union of sets of the
form j+(q) n j-(q), qEJI.

H q is in the chronology violating set of vIt, there must be a future­
directed timelike curve A with past and future endpoints at q. If
r E j-(q) n j+(q), there will be past- and future-directed timelike curves
#1 and #2 from q to r. Then (#1)-1 0 A0 #2 will be a future-directed time­
like curve with past and future endpoints at r. Moreover if

rE[I-(q) n I+(q)] n [I-(p) n I+(p)]

then pEj-(q) n j+(q) = j-(p) n j+(p).

To complete the proof, note that every point r at which chronology is
violated is in the set j-(r) n j+(r). 0

Proposition 6.4.2

If JI is compact. the chronology violating set of JI is non-empty.
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.ft can be covered by open sets of the form I +(q), qE.ft. If the chrono­
logy condition holds at g, then q¢ I+(q). Thus if the chronology
condition held at every point, .ft could not be covered by a finite
number of Bets of the form I+(q). 0

From this result it would seem reasonable to assume that space-time
is non-compact. Another argument against compactness is that any
compact, four-dimensional manifold on which there is a Lorentz
metric cannot be simply connected. (The existence ofa Lorentz metric
implies that the Euler number X(.ft) is zero (Steenrod (1951), p. 207).

I.
Now X = L (-1)"B" whereB" ~ 0 is the nth Betti number of .ft. By,,-0
duality (Spanier (1966), p. 297) Bn = B'_n' Since B o = B, = 1, this
implies that B 1 '* 0 which in turn implies 1T1(.ft) '* 0 (Spanier (1966),
p. 398).) Thus a compact space-time is really a non-compact manifold
in which points have been identified. It would seem physically reason­
able not to identify points but to regard the covering manifold as
representing space-time.

We shall say that the causality condition holds if there are no closed
non-spacelike curves. Similar to proposition 6.4.1, one has:

Proposition 6.4.3

The Bet of points at which the causality condition does not hold is the
disjoint union of sets of the form J-(q) nJ+(q), qE.ft. 0

In particular, if the causality condition is violated at qEJt but the
chronology condition holds, there must be a closed null geodesic
curve y through q. Let v be an affine parameter on y (regarded as a map
ofan open interval ofRI to.ft) and let ... , V_I' vo' VI' V2, ••• be successive
values ofvat q. Then we may compare at q the tangent vector 8/8vlv_vo
and the tangent Vector 8/8vlv_1' obtained by parallelly transporting
8/8vlv_. round y. Since they both point in the same direction, they
must ibe proportional: 8/8vlv_1 = a 8/8vIv-vo' The factor a has the
following significance: the affine distance covered in the nth circuit of
y, (Vn+l - v,,), is equal to a-(vl - vo)' Thus ifa > 1, V neVer attains the
value (VI - vo)(1-a-l)-l and so y is geodesically incomplete in the
future direction even though one can go round an infinite number of
times. Similarly ifa < 1, Y is incomplete in the past direction, while if
a = 1, it is complete in both directions. In the two-dimensional model
of Tauh-NUT space described in §5.7, there is a closed null geodesic
which is an example with a > 1. Since the factor a is a conformal in-
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variant, this incompleteness is independent of the conformal factor.
This kind ofbehaviour, however, can happen only ifthere is a violation
ofcausality in some sense; if the strong causality condition (see below)
holds, a suitable conformal transformation of the metric will make all
null geodesics complete (Clarke (1971».

The factor a has a further significance from the following result.

Proposition 6.4.4

IT y is a closed null geodesic curve which is incomplete in the future
direction then there is a variation of y which moves each point of y
towards the future and which yields a closed timeIike curve.

By §2.6, one can find on Jt a timelike line-element field (V, -V)
normalized so that g(V, V) = -1. As we are assuming that Jt is time­
orientable, one can consistently choose one direction of (V, - V) and
so obtain a future-directed timelike unit vector field V. One can then
define a positive definite metric g' by

g'(X, Y) = g(X, Y) +2g(X, V) g(Y, V).

Let t be a (non-affine) parameter on y which is zero at some point
qey and which is such that g(V, a/at) = - 2-1. Then tmeasures proper
distance alongyin the metricg' and has the range -00 < t < 00. Con­
sider a variation ofywith variation vector o/fJuequal to xV, where x is
a function x(t). By §4.5,

1 a (a a) d (a a) (a D a)20ug m'ot = de
g ou'ae -g fJu'otat

= -2-1(:-xf ) ,

where fa/at = (D/at) (a/at). Now suppose v were an affine parameter
on y .. Then a/av would be proportional to o/at: o/av = h a/at, where
h-1 dh/dt = -f. On going round one circuit of y, a/ov increases by
a factor a > 1. Thur ,(

rfdt = -loga ~ o.

Therefore ifwe take x(t) to be

exp (I>(t')dt' +b-1t loga) ,
where b =fdt, this will give a variation of y to the future and gives
a closed timelike curve. 0
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Proposition 6.4.5

If (a) RQbKaKb ~ 0 for every null vector K;
(b) the generic condition holds, i.e. every null geodesic contains a

point at which KlaRblcdleKllKcKd is non-zero, where K is the tangent
vector;

(e) the chronology condition holds on.A,
then the causality condition holds on.A.

If there were closed null geodesic curves which were incomplete, then
by the previous result they could be varied to give closed timelike
curves. If they were complete, then by proposition 4.4.5 they would
contain conjugate points and so by proposition 4.5.12 they could
again be varied to give closed timelike curves. 0

This shows that in physically realistic solutions, the causality and
chronology conditions are equivalent.

As well as ruling out closed non-spacelike curves, it would seem
reasonable to exclude situations in which there were non-spacelike
curves which returned arbitrarily close to their point of origin or
which passed arbitrarily close to othernon-spacelike curves which then
passed arbitrarily close to the origin of the first curve - and so on. In
fact Carter (1971 a) has pointed out that there is a more than countably
infinite hierarchy ofsuch higher degree causality conditions depending
on the number and order of the limiting processes involved. We shall
describe the first three of these conditions and shall then give the
ultimate in causality conditions.

The future (respectively, past) distinguishing condition (Kronheimer
and Penrose (1967»is said to holdatp E.A ifeveryneighbourhoodofp
contains a neighbourhood of p which no future (respectively, past)
directed non-spacelike curve from p intersects more than once. An
equivalentstatementis thatI+(q) = I+(p) (respectively, I-(q) = I-(p»
implies that q = p. Figure 37 shows an example in which the causality
and past distinguishing conditions hold everywhere but the future
distinguishing condition does not hold at p.

The strong causality condition is said to hold at p if every neighbour­
hood ofp contains a neighbourhood ofp which no non-spacelike curve
intersects more than once. Figure 38 shows an example of violation of
this condition.
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FIGURE 37. A space in which the causality and past distinguishing conditions
hold everywhere, but the future distinguishing condition does not hold at p or q
(in fact,l+(p) = l+(q». The light cones on the cylinder tip over until one null
direction is horizontal, and then tip back up; a strip has been removed, thus
breaking the closed null geodesic that would otherwise occur.
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FIGURE 38. A space-time satisfying the causality, future and past distinguish.
ing conditions, but not satisfying the strong causality condition at p. Two
strips have been removed from a cylinder; light cones are at ± 45°.
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Proposition 6.4.6

If conditions (a) to (c) of proposition 6.4.5 hold and if in addition,
(d) J( is null geodesically complete, then the strong causality condi­
tion holds on J(.

Suppose the strong causality condition did not hold at PEJ(. Let d/I
be a convex normal neighbourhood of p and let ~ c d/I be an infinite
sequence of neighbourhoods of p such that any neighbourhood of p
contains all the ~ for n large enough. For each ~ there would be a
future-directed non-spacelike curve i\n which left d/I and then returned
to ~. By lemma 6.2.1, there would be an inextendible non-spacelike
curve i\ throughp which was a limit curve ofthe i\n' No two points of i\
could have timelike separation as otherwise one could join up some i\n
to give a closed non-spacelike curve. Thus i\ must be a null geodesic.
But by (a), (b) and (d) i\ would contain conjugate points and therefore
points with timelike separation. 0

Corollary

The past and future distinguishing conditions would also hold on J(

since they are implied by strong causality.

Closely related to these three higher degree causality conditions is
the phenomenon of imprisonment.

A non-spacelike curve y that is future-inextendible can do one of
three things as one follows it to the future: it can

(i) enter and remain within a compact set.9',
(ii) not remain within any compact set but continually re-enter

a compact set.9',
(iii) not remain within any compact set f/ and not re-enter any

such set more than a finite number of times.
In the third case y can be thought of as going off to the edge of

space-time, that is either to infinity or a singularity. In the first and
second caseswe shall say that y is totally andpartiallyfuture imprisoned
in.9', respectively. One might think that imprisonment could occur
only if the causality condition was violated, but the example due to
Carter which is illustrated in figure 39 shows that this is not the case.
Nevertheless one does have the following result:
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Identify after
.shifting an
irrational amount

(i) (ii)

FIGURE 39. A space with imprisoned non.spacelike lines but no closed non­
spacelike curves. The manifold is Rl x 8 1 X Sl described by coordinates (t, y, z)
where (t, y, z) and (t, y, z+ 1) are identified, and (t, y, z) and (y, y+ 1, z+a) are
identified, where a is an irrational number. The Lorentz metric is given by

dBI = (cosht-1)I(dtl-dyl)+dtdy-dzl.

(i) A section {z = constant} showing the orientation of the null cones.
(ii) The section t =0 showing part of a null geodesic.

Proposition 6.4.7

If the strong causality condition holds on a compact set .9, there can
be no future-inextendible non-spacelike curve totally or partially
future imprisoned in .9.

.9 oan be covered by a finite number of convex normal coordinate
neighbourhoods d/li with compact closure, such that no non-spacelike
curve intersects any d/li more than once. (We shall call such neighbour­
hoods, local causality neighbourhoods.) Any future-inextendible non­
spacelike curve which intersects one of these neighbourhoods must
leave it again and not re-enter it. 0

Proposition 6.4.8

If the future or past distinguishing condition holds on a compact
set .9, there can be no future-inextendible non-spacelike curve
totally future imprisoned in.9. (This result is included for its interest
but is not needed for what follows.)

Let {1';.}, (ex = 1,2,3, ...), be a countable basis of open sets for J(

(i.e. any open set in J( can be represented as a union of the 1';.). As
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the future or past distinguishing condition holds on .9', any point
p E.9' will have a convex normal coordinate neighbourhood d/I such
that no future (respectively, past) directed non-spacelike curve from p
intersects d/I more than once. We definej(p) to be equal to the least
value of ex such that -t: contains p and is contained in some such
neighbourhood d/I.

Suppose there were a future-inextendible non-spacelike curve i\
which was totally future imprisoned in .9'. Let qEi\. be such that
N = i\. nJ+(q) is contained in.9'. Define do to be the closed, non­
empty set consisting of all points of.9' which are limit points of i\.. Let
Po Edo be such that j(po) is equal to the smallest value of j(P) on do·
Through Po there would be an inextendible non-spacelike curve Yo
every point of which was a limit point of i\.'. No two points of Yo could
have timelike separation since otherwise some segment of N could be
deformed to give a closed non-spacelike curve. Thus 'Yo would be an
inextendible null geodesic which was totally imprisoned in .9' in both
the past and future directions. Let d 1 be the closed set consisting of
all limit points ofYo nJ +(Po) (or, in the Case tpat the past distinguishing
condition holds on.9', Yo nJ-<po»' As every such point would also be
a limit point of N, d 1 c do. Since "f/Cpol could contain no limit point
of Yo nJ+(Po) (respectively, Yo nJ-(po»' Jali would be strictly smaller
than do. We would thus obtain an infinite sequence of closed sets
do::> d 1 ::> d 2 ::> ... ::> d p ::> .... Each d'p would be non-empty,
being the set ofall limit points of the totally future (respectively, past)
imprisonednullgeodesicYp_l nJ+(pp_l) (respectively, Yp-l nJ-(PP_l»'
Let .Yt = n Jafp. As.9' is compact, .Yt would be non-empty since the

P
intersection of any finite number of the d p would be non-empty
(Hocking and Young (1961), p. 19). Suppose rE.Yt. Thenj(r) =j<Pp)

for some fl. But "f/CPIl) nJafp+1 would be empty so r could not be in
Jafp+1 and so could not be in.Yt. This shows that there can be no future­
inextendible non-spacelike curve totally future imprisoned in.9'. 0

The causal relations on (1, g) may be used to put a topology on 1
called the Alexandrov topology This is the topology in which a set is
defined to be open ifand only ifit is the union ofone or more sets of the
form I+(P) nI-(q), p, qE1. As /+(p) nI-(q) is open in the manifold
topology, any set which is open in the Alexandrov topology will be
open in the manifold topology, though the converSe is not necessarily
true.

Suppose however that the strong causality condition holds on 1.
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Then about any point r E J( one ca.n find a local causality neighbour­
hood d/I. The Alexandrov topology of (d/I, ~14f) regarded as a space­
time in its own right, is clearly the same as the manifold topology ofd/l.
Thus the Alexa.ndrov topology of J( is the same as the manifold
topology since J( can be covered by local causality neighbourhoods.
This mea.ns that if the strong causality condition holds, one can
determine the topological structure of space-time by observation of
causal relationships.

Cut out

""
----:C::-U-t-ou~t---;--"-9"', good....

/
I

Cut out

Identify

FIGURE 40. A space satisfying the strong causality condition, but in which
the slightest variation of the metric would permit there to be closed timelike
lines through p. Three strips have been removed from a cylinder; light cones
are at ± 45°.

Even imposition of the strong casuality condition does not rule out
all causal pathologies, as figure 40 shows one can still have a space­
time which is on the verge ofviolating the chronology condition in that
the slightest variation of the metric can lead to closed timelike curves.
Such a situation would not seem to be physically realistic since
General Relativity is presumably the classical limit of some, as yet
unknown, quantum theory of space-time and in such a theory the
Uncertainty Principle would prevent the metric from having a.n exact
value at every point. Thus in order to be physically significa.nt, a
property of space-time ought to have some form of stability, that is
to say, it should also be a property of 'nearby' space-times. In order
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to givea precise meaning to' nearby' one has to define a topology on the
set of all space-times, that is, all non-compact four-dimensional mani­
folds and all Lorentz metrics on them. We shall leave the problem of
uniting in one connected topological space manifolds of different
topologies (this can be done); and shall just consider putting a topology
on the set of all Or Lorentz metrics (r ~ 1) on a given manifold. There
are various ways in which this can be done, depending on whether one
requires a 'nearby' metric to be nearby in just its values (CO topology)
or also in its derivatives up to the kth order (Ok topology) and whether
one requires it to be nearby everywhere (open topology) or only on
compact sets (compact open topology).

For our purposes here, we shall be interested in the CO open topology.
This may be defined as follows: the symmetric tensor spaces Ts~(P) of
type (0,2) at every point pEJI form a manifold (with the natural
structure) Ts~(JI), the bundle of symmetric tensors of type (0, 2) over
JI. A Lorentz metric~ on JI is an assignment ofan element of Ts~(JI)
at each point pEJI and so can be regarded as a map or cross-section
~:JI-+ Tsg(JI) such that1TO~ = 1where1TistheprojectionT~(JI)-+JI
which sends x E Ts~(P) to p. Let d/I be an open set in Ts~(JI) and let
O(d/I) be the set of all CO Lorentz metrics ~ such that ~(JI) is contained
in d/I (figure 41). Then the open sets in the Co open topology of the 0'
Lorentz metrics on JI are defined to be the union of one or more sets
of the form O(d/I).

We say that the stable causality condition holds on JI if the space­
time metric ~ has an open neighbourhood in the CO open topology
such that there are no closed timelike curves in any metric belonging
to the neighbourhood. (It would not make any difference if one used
the Ok topology here, but one could not use a compact open topology
since in that topology each neighbourhood of any metric contains
closed timelike curves.) In other words, what this condition means is
that one can expand the light cones slightly at every point without
introducing closed timelike curves.

Proposition 6.4.9

The stable causality condition holds everywhere on JI if and only if
there is a function! on JI whose gradient is ev;erywhere timelike.

Remark. The function! can be thought of as a sort of cosmic time in
the sense that it increases along every future-directed non-spacelike
curve.
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Proof. The existence of a function f with an everywhere timelike
gradient implies the stable causality condition since there can be no
closed timelike curves in any metric h which is sufficiently close to ~

that for every point p E JI, the null cone ofp in the metric h intersects
the surface {f = constant} through p only at p. To show that the con­
verse is true we introduce a volume measureP (unrelated to the volume
measure defined by the metric ~) on JI such that the total volume of

x

11

--------+--------.If
P

FIGURE 41. An open set 011 in the Co open topology on the space Ts~(1) of
symmetric tensors of type (0,2) on1.

JI is one. One way of doing this is as follows: choose a countable atlas
(t1Ia;, ¢a;) forJl such that¢a;(t1Ia;) is compactinR4. Let Po be the natural
Euclidean measure on R4 and let fa; be a partition of unity for the atlas
(t1Ia;, ¢a;). Then P may be defined as Lfa;2-a;[po(t1Ia;)]-I¢a;*Po.

a;
Now if the stable causality condition holds one can find a family of

0" Lorentz metrics h(a), aE [0, 3], such that:
(1) h(O) is the space-time metric~;

(2) there are no closed timelike curves in the metric h(a) for each
aE [0, 3];

(3) if aI' ~ E [0,3] with a l < a2, then every non-spacelike vector in
the metric heal) is timelike in the metric h(~).
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For p E.A, let 8(p, a) be the volume of [-(P,.A, h(a» in the measure
p where we use [-(f/, d/I, h) to denote the past of f/ relative to d/I in
the metric h. For a given value of aE (0,3), 8(p, a) will be a bounded
function which increases along every non-spacelike curve. It may not,
however, be continuous: as figure 42 shows, it may be possible that
a slight alteration of position may allow one to see past an obstruction
and so greatly increase the volume of the past. One thus needs some
way ofsmearing out 8(p, a) so as to obtain a continuous function which

PI\ ~
/ y' .

}'8St of p / . \ \..
'- ./ / \ '.
~. \

/ / \ -.....':..:---
RemoveJ / / ;? ,·x..Past of q

;" '.. ,
/ ,

/ "

/ \ ,
/ "

/ "

FIGURE 42. A sma.ll displacement ofa point from p to q results in a large ohange
in the volume of the past of the point. Light cones are at ± 450 and a strip has
been removed as shown.

increases along every curve which is future-directed and non-spacelike
in the metric h(O). One can do this by averaging over a range of a: let

ll(p) = f: 8(p,a)da.

We shall show that ll(p) is continuous on.A.
First to show that it is upper semi-continuous: given 6 > 0, let fJ/ be

a ball about p such that the volume of fJ/ in the measure p is less than
le. By property (3), for a1, ~E[0, 3] with ~ < a2 one can find a
neighbourhood §(~,~) ofpin fJ/ such that

[[-(§(a1, a2), 11, h(al» n~] c [I-(p, iIJ, h(~» n~.

Let n be a positive integer greater than 26-1• Then we define the set t:§

to be t:§ = n§(1 + lin-1, 1+Hi +1)n-1), i = 0, 1, ... , 2n. t:§ will be
i
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a neighbourhood of p and will be contained in §(a,a+n-1) for any
aE [1, 2]. Therefore I-(q,JI, h(a))-gj will be contained in

I-(p,JI,h(a+n-1))-gj for qEl§ and aE[1,2].

Thus 8(q,a) ~ 8(p,a+le)+le

and so ll(q) ~ ll(p)+e, showing that II is upper semi-continuous. The
proof that it is lower semi-continuous is similar. To obtain a differenti­
able function one can average II over a neighbourhood of each point
with a suitable smoothing function. By taking the neighbourhood
small enough one can obtain a functionfwhich has everywhere a time­
like gradient in the metric g. Details of this smoothing procedure are
given in Seifert (1968). 0

The spacelike surfaces {f = constant} may be thought of as surfaces
of simultaneity in space-time, though of course they are not unique.
If they are all compact they are all diffeomorphic to each other, but
this is not necessarily true if some of them are non-compact.

6.5 Cauchy developments

In Newtonian theory there is instantaneous action-at-a-distance and
so in order to predict events at future points in space-time one has to
know the state of the entire universe at the present time and also to
assume some boundary conditions at infinity, such as that the
potential goes to zero. In relativity theory, on the other hand, it
follows from postulate (a) of §3.2 that events at different points of
space-time can be causally related only if they can be joined by a
non-spacelike curve. Thus a knowledge of the appropriate data on
a closed set .9 (if one knew data on an open set, that on its closure
would follow by continuity) would determine events in a region D+(.9)
to the future of.9 called the future Oauchy development or domain of
dependence of .9, and defined as the set of all points p E J( such that
every past-inextendible non-spacelike curve through p intersects .9
(N.B. D+(.9) ::> .9).

Penrose (1966, 1968) defines the Cauchy development of.9 slightly
differently, as the set of all points pEJ( such that every past­
inextendible timelike curve through p intersects .9. We shall denote
this set by D+(.9). One has the following result:
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Proposition 6.5.1

D+(fIl) = D+(fIl).

Clearly D+(fIl) ::> D+(fIl). IfqEJ( -D+(fIl) there is a neighbourhood 0/1
of q which does not intersect fIl. From q there is a past-inextendible
curve;\ which does not intersect fIl. If rE;\ n I-(q,o/1) then J+(r, 0/1) is
an open neighbourhood of q in J( - D+(fIl). Thus J( - D+(fIl) is open
and the set D+(fIl) is closed. Suppose there were a point p E D+(fIl)
which had a neighbourhood 1/" which did not intersect D+(fIl). Choose
a point xEI-(p, 1/"). From x there would be a past-inextendible non­
spacelike curve y which did not intersect fIl. Let y" be a sequence of
points on y which did not converge to any point and which were such
that y"+1 was to the past of y". Let "If"" be convex normal neighbour­
hoods of the corresponding points y" such that "If""+l did not intersect
il"~. Let z" be a sequence of points such that

There would be an inextendible timelike cur,'e from p which passed
through each point z" and which did not intersect fIl. This would con­
tradict p E D+(fIl). Thus D+(fIl) is contained in the closure of D+(fIl),

and 80 D+(fIl) = D+(fIl). 0

The future boundary ofD+(fIl), that is D+(fIl) - I-(D+(fIl» , marks the
limit of the region that can be predicted from knowledge ofdata on fIl.
We call this closed achronal set the future Oauchy horizon of fIl and
denote it by H+(fIl). As figure 43 shows, it will intersect fIl if fIl is null
or if fIl has an •edge'. To make this precise we define edge (fIl) for an
achronal set fIl as the set of all points qE g such that in every neigh­
bourhood 0/1 of q there are points pEI-(q,o/1) and rEI+(q,0/1) which
can be joined by a timelike curve in 0/1 which does not intersect fIl. By
an argument similar to that in proposition 6.3.1 it follows that if
edge (fIl) is empty for a non-empty achronal set fIl, then fIl is a three­
dimensional imbedded 0 1- submanifold.

Proposition 6.5.2

For a closed achronalset fIl,

edge(H+(fIl» = edge (fIl).

Let 0/1" be a sequence of neighbourhoods of a point qE edge (H+(fIl»
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such that any neighbourhood of q encloses all the ~.. for n sufficiently
large. In each~.. there will be points p ..e1-(q,~..) and r .. e1+(q,~..)
which can be joined by a timelike curve -\a which does not intersect

H+(.9). This means that -\a cannot intersect D+(.9). By proposition
6.5.1, qeD+(.9) and so 1-(q) c 1-(D+(.9)) c 1-(.9) uD+(.9). Thus P..
must lie in 1-(.9). Also every timelike curve from q which is inextend­
ible in the past direction must intersect.9. Therefore for each n, there

Edge (9') and
edge H+(9')

FIGURE 43. The future Cauchy development D+(9') and future Cauchy horizon
H+(9') of a closed set 9' which is partly null and partly spacelike. Note tha.t
H+(9') is not necessarily connected. Null lines are'at ± 450 and a strip has been
removed.

must be a point of.9 on every timelike curve in ~n between q and P..
and so q must lie in !/. As the curves A.. do not intersect.9, q lies in
edge (.9). The proof the other way round is similar. 0

Proposition 6.5.3

Let.9 be a closed achronal set. Then H+(.9) is generated by null
geodesic segments which either have no past endpoints or have past
endpoints at edge (.9).

The set!F == D+(.9) u]-(.9) is a past set. Thus by proposition 6.3.1
fI; is an achronal 0 1- manifold. H+(.9) is a closed subset of :F. Let q be
a point of H+(.9)-edge(.9). If q is not in .9 then qe1+(.9) since
qeD+(.9). As.9 is achronal one can find a convex normal neighbour-
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FIGURE 44. Y is a connected
spacelikehypersurfacewithout
edge in JI. It is not a partial
Cauchy surface; however each
ima.ge 7T-1(y) of Y in the Wli-

versal covering manifold.JIof
JI, is a partial Cauchy surface
in..il.
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hood"lr ofg which does not intersect [-(.9'). Alternatively ifg is in.9',
let "Ir be a convex normal neighbourhood of g such that no point of
[+(g, "Ir) can be joined to any point in [-(g, "Ir) by a timelike curve
in "Ir which does not intersect .9'.
In either case, if p is any point in
[+(g) there must be a past-directed time­
like curve from P to some point of
JI - IF - "Ir since otherwise P would be
in D+(.9'). Therefore by condition (i) of
lemma 6.3.2, applied to the future set
JI-IF, gEFNU:F+, 0

Corollary

Hedge (.9') vanishes, then H+(.9'),ifnon­
empty, is an achronal three-dimensional
imbedded Cl- manifold which is gener­
ated by null geodesic segments which
have no past endpoint.

We shall call an acausal set.9' with no
edge, a partial Cauchy Burface. That is, a
partial Cauchy surface is a spacelike
hypersurface which no non-spacelike
curve intersects more than once. Suppose
there were a connected spacelike hyper­
surface.9' (with no edge) which some non­
spacelike curve Aintersected at points PI
and P2' Then one could join PI and Pi by
a curve p in.9' and p UAwould be a closed
curve which crossed.9' once only. This
curve couldnot becontinuouslydeformed
to zero since such a deformation could
change the number of times it crossed.9'
by an even number only, Thus JI could
not be simply connected. This means we
could' unwrap'JI by going to the simply
connected universal covering manifold ..il in which each connected
component of the image of.9' is a spacelike hypersurface (with no
edge) and is therefore a partial Cauchy surface in.il (figure 44). How­
ever going to the universal covering manifold may unwrap JI more
than is required to obtain a partial Cauchy surface and may result in



6.5J CAUCHY DEVELOPMENTS 205

the partial Cauchy surface being non-compact even though !7 was
compact. For the purposes of the following chapters we would like
a covering manifold which unwrapped JI sufficiently so that each con­
nected component of the image of!7 was a partial Cauchy surface but
so that each such component remained homeomorphic to !7. Such a
covering manifold may be obtained in at least two different ways.

Recall that the universal covering manifold may be defined as the
set of all pairs of the form (p, [AJ) where pEJI and where [AJ is an
equivalence class of curves in JI from some fixed point qE..A to p,
which are homotopic modulo q and p. The covering manifold ..AH is
defined as the set of all pairs (P, [AJ) where now [AJ is an equivalence
class of curves from !7 to p homotopic modulo!7 and p (i.e. the end­
points on!7 can be slid around). JlH may be characterized as the
largest covering manifold such that each connected component of the
image of !7 is homeomorphic to !7. The covering manifold ..Ao
(Geroch (1967b» is defined as the set of all pairs (P, [AJ) where this
time [AJ is an equivalence class of curves from a fixed point q to p
which cross!7 the same number oftimes, crossings in the future direc­
tion being counted positive and those in the past direction, negative.
Jlo may be characterized as the smallest covering manifold in which
each connected component of the image of!7 divides the manifold into
two parts. In each case the topological and differential structure of the
covering manifold is fixed by requiring that the projection which maps
(p, [AJ) to p is locally a diffeomorphism.

Define D(!7) = D+(!7) uD-(!7). A partial Cauchy surface!7 is said
to be a global Cauchy surface (or simply, a Oauchy Burface) if D(!7)
equals JI. That is, a Cauchy surface is a spacelike hypersurface which
every non-spacelike curve intersects exactly once. The surfaces
{x4 = constant} are examples of Cauchy surfaces in Minkowski space,
but the hyperboloids

{(X4)2_ (X3)2_ (X2)2_ (xl)2 = constant}

are only partial Cauchy'surfaces since the past or future null cones of
the origin are Cauchy horizons for these surfaces (see §5.1 and
figure 13). Being a Cauchy surface is a property not only of the surface
itself but also of the whole space-time in which it is imbedded. For
example, if one cuts a single point out of Minkowski space. the
resultant space-time admits no Cauchy surface at all.

If there were a Cauchy surface for..A, one could predict the state of
the universe at any time in the past or future ifone knew the relevant
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data on the surface. However one could not know the data unless one
was to the future ofevery point in the surface, which would be impos­
sible in most cases. There does not seem to be any physically com­
pelling reason for believing that the universe admits a Cauchy surface;
in fact there are a number of known exact solutions of the Einstein
field equations which do not, among them the anti-de Sitter space,
plane waves, Tauh-NUT space and Reissner-Nordstrom solution, all
described in chapter 5. The Reissner-Nordstrom solution (figure 25)
is a specially interesting case: the surface f/ shown is adequate for
predicting events in the exterior regions I where r > r+ and in the
neighbouring region II where r_ < r < r+' but then there is a Cauchy
horizon at r = r_. Points in the neighbouring region III are not in
D+(f/) since there are non-spacelike curves which are inextendible in
the past direction and which do not cross r = r_ but approach the
points i+ (which may be considered to be at infinity) or the singularity
at r = 0 (which cannot be considered to be in the space-time; see §8.1).
There could be extra information coming in from infinity or from the
singularity which would upset any predictions made simply on the
basis of data on f/. Thus in General Relativity one's ability to predict
the future is limited both by the difficulty of knowing data on the
whole of a spacelike surface and by the possibility that even if one did
it would still be insufficient. Nevertheless despite these limitations
one can still predict the occurrence of singularities under certain
conditions.

6.6 Global hyperbolicity

Closely related to Cauchy developments is the property of global
hyperbolicity (Leray (1952»). A set%is said to be globally hyperbolic
if the strong causality assumption holds on.tVand iffor any two points
p, qE.tV, J+(P) nJ-(q) is compact and contained in %. In a sense this
can be thought of as saying that J+(P) nJ-(q) does not contain any
points on the edge of space-time, i.e. at infinity or at a singularity.
The reason for the name'global hyperbolicity' is that on .tV, the wave
equation for a 8-function source at p E.tV has a unique solution which
vanishes outside % -J+(p,%) (see chapter 7).

Recall that % is said to be causally simple if for every compact set
% contained in .tV, J+(%) n% and J-(%) n% are closed in %.



6.6] GLOBAL HYPERBOLICITY 207

Proposition 6.6.1

An open globaliy hyperbolic set.;V is causally simple.

Let P be any point of .;V. Suppose there were a point

qE (J+(p) -J+(p» n.;V.

As .;V is open, there would be a point rE (I+(q) n';v). But then

qEJ+(P) nJ (r), which is impossible as J+(P) nJ-(r) would be compact
and therefore closed. Thus J+(p) n.;V and J-(p) n.;V are closed in';v.

Now suppose there exists a point q E(J+(%) - J+(%» n.;v. Let q"
be an infinite sequence of points in I+(q) n.;v converging to q, with
q,,+1 EI-(q,,). For each n, J-(q,,) n% would be a compact non-empty
set. Therefore n {J-(q,,) n$} would be a non-empty set. Let p be a

"point of this set. Then J+(P) would contain q" for all n. But J+(P) is
closed. Therefore J+(p) contains q. 0

Oorollary

If~ and~ are compact sets in';v, J+(~)nJ-(.Yt,.) is compact.

One can find a finite number of points Pi E';v such that

{U J +(Pi)} ::> ~.
i

Similarly, there will be a finite number ofpoints qj with.x;; contained in

UJ-(qj)'
j

Then J+(~)nJ-(.Yt,.) will be contained in

U {J+(Pi) nJ-(qj)}
i, i

and will be closed. o
Leray (1952) did not, in fact, give the above definition of global

hyperbolicity but an equivalent one which we shall present: for points
p, qEJI such that strong causality holds on J+(P) nJ-(q), we define
O(p, q) to be the space of all (continuous) non-space-like curves from
p to q, regarding two curves yet) and .\(u) as representing the same
point ofO(p, q) ifone is a reparametrization of the other, i.e. if there is
a continuous monotonic function feu) such that y(f(u» = .\(u).
(O(p, q) can be defined even when the strong causality condition does
not hold on J+(P) nJ-(q), but we shall only be interested in the case in
which its does hold.) The topology of O(p, q) is defined by saying that
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a neighbourhood of y in O(p, g) consists of all the curves in O(p, g)
whose points in Jllie in a neighbourhood "Ir of the points of yin JI
(figure 45). Leray's definition is that an open set.IV is globally hyper­
bolic if O(p, g) is compact for all p, gE.IV. These definitions are equi­
valent, as is shown by the following result.

,.....

/
/

~/
r /' )

I .,..
/

,/

/

FIGURE 45. A neighbourhood 11'" ofthe points ofr in.L. A neighbourhood ofr
in C(P. q) consists ofall non-spacelike curves from p to q whose points lie in 11"'.

Proposition 6.6.2 (Seifert (1967), Geroch (1970b».

Let strong causality hold on an open set .IV such that

.IV = J-(.IV) nJ+(.IV).

Then .IV is globally hyperbolic if and only if O(p, q) is compact for all
p, qE.IV.

Suppose first that O(p, g) is compact. Let rn be an infinite sequence of
points in J +(P) nJ -(g) and let An be a sequence ofnon-spacelike curves
from p to g through the corresponding rn' As O(p, g) is compact, there
will be a curve A to which some subsequence A'n converges in the
topology on O(p, g). Let OJI be a neighbourhood ofAinJl such that iii is
compact. Then OJI will contain all A'n and hence all r'n for n sufficiently
large, and so there will be a point r EOJI which is a limit point of the r'n'

Clearly r lies on A. Thus every infinite sequence in J+(P) nJ-(g) has a
limit point in J+(p) nJ-(g). Hence J+(p) n J-(g) is compact.

Conversely, suppose J+(p)n J-(g) is compact. Let An be an infinite
sequence ofnon-spacelike curves fromp to g. By lemma 6.2.1 applied
to the open set JI-g, there will be a future-directed non-spacelike
curve Afrom p which is inextendible in JI - g, and is such that there is
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a subsequence A'n which converges to r for every reA. The curve A
must have a future endpoint at q since by proposition 6.4.7 it cannot be
totally future imprisoned in the compact set J+(P) n J-(q), and it
cannot leave the set except at q.

Let 0/1 be any neighbourhood of Ain JI and let ri (1 ~ i ~ k) be a
finite set of points on A such that "1 = p, rk = q and each r i has a
neighbourhood 1'; with J +(1';) nJ -(1';+1) contained in 0/1. Then for
sufficiently large n, A'n will be contained in 0/1. Thus A'n converge to A
in the topology onO(p, q) and so O(p, q) is compact. 0

The relation between global hyperbolicity and Cauchy developments
is given by the following results.

Propo8ition 6.6.3

Iff/ is a closed achronal set, then int (D(f/» == D(f/) -D(f/), ifnon­
empty, is globally hyperbolic.

We first establish a number ofIemmas.

Lemma 6.6.4

H peD+(f/)-H+(f/), then every past-inextendible non-spacelike
curve through p intersects I-(f/).

Let p be in D+(f/) - H+(f/) and let y be a past-inextendible non­
spacelikecurvethroughp. Then one can find a point qe D+(f/) n I+(p)
and a past-inextendible non-spacelike curve Athrough q such that for
each pointxeA there is a point yey with yeI-(x). As Awill intersect
f/ at some point Xl there will be a Yl eyn I-(f/). 0

Oorollary

H p e int (D(f/» then every inextendible non-spacelike curve through
p intersects I-(f/) and I+(f/).

int(D(f/» = D(f/)-{H+(f/)UH-(f/)}. H peI+(f/) or I-(f/) the
result follows immediately. HpeD+(f/) -I+(f/) thenpef/ c D-(f/)
and the result again follows. 0

Lemma 6.6.5
The strong causality condition holds on intD(f/).

Suppose there were a closed non-spacelike curve A through
peint(D(f/». By the previous result there would be points
qeAn I-(f/) and reAn I+(f/). As reJ-(q), it would also be in I-(f/)
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which would contradict the fact that9' is achronal. Thus the causality
condition holds on int (D(9'». Now suppose that the strong causality
condition did not hold at p. Then as in lemma 6.4.6 there would be an
infinite sequence of future-directed non-spacelike curves A" which
converged to an inextendible null geodesic y through p. There would
be points qEyn 1-(9') and rEyn 1+(9') and so there would be some
A" which intersected [+(9') and then 1-(9'), which would contradict
the fact that 9' was achronaI. 0

Proof of proposition 6.6.3. We wish to show that G(p, q) is compact
for p, qEint(D(9'». Consider first the case that p, qEI-(9') and sup­
pose p EJ-(q). Let A" be an infinite sequence of non-spacelike curves
from q to p. By lemma 6.2.1 there will be a future-directed non­
spacelike limit curve from p which is inextendible inJI- q. This must
have a future endpoint at q since otherwise it would intersect9' which
would be impossible as qEI-(9'). Consider now the case that
p EJ-(9'), qEJ+(9') n J+(p).lfthe limit curve Ahas an endpoint at q,
it is the desired limit point in G(p, q). If it does not have an endpoint
at q, it would contain a point YEI+(9') since it is inextendible in
JI - q. Let A'n be a subsequence which converges to r for every point r
on A between p and y. Let Abe a past-directed limit curve from q of
the A'n.IfA has a past endpoint atp, it would be the desired limit point
in G(p, q).IfA passed through y, it could be joined up with Ato provide
a non-spacelike curve from p to q which would be the desired limit
point in G(p, q). Suppose Adoes not have endpoint at p and does not
pass through y. Then it would contain some point z EI-(9'). Let N'n be
a subsequence of the A'n which converges to r for every point r on A
between q and z. Let "I' be an open neighbourhood ofAwhich does not
contain y. Then for sufficiently large n, all N'nn J+(9') would be con­
tained in "1'. This would be impossible as y is a limit point of the A"n'
Thus there will be a non-spacelike curve from p to q which is a limit
point of the An in G(p, q).

The cases p, qEI-(f/) and pEJ-(9'), qEJ+(9') together with their
duals cover all possible combinations. Thus in all cases we get a non­
spacelike curve from p to q which is a limit point of the An in the
topology on G(p, q). 0

By a similar procedure one can prove:

Proposition 6.6.6

If qEint (D(9'», then J+(f/) n J-(q) is compact or empty. 0
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To show that the whole of D(.9') and not merely its interior is globally
hyperbolic, one has to impose some extra conditions.

Proposition 6.6.7

1f.9' is a closed achronal set such that J+(.9') () J-(.9') is both strongly
causal and either

(1) acausal (this is the case if and only if.9' is acausal), or
(2) compact,

then D(.9') is globally hyperbolic.

Suppose that strong causality did not hold at some point gED(.9').
Then by an argument similar to lemma 6.6.5, there would be an
inextendible null geodesic through g at each point of which strong
causality did not hold. This is impossible, since it would intersect.9'.
Therefore strong causality holds on D(.9').

Ifp, gEI-(.9'), the argument ofproposition 6.6.3 holds. Ifp EJ-(.9'),
gEJ+(.9') one can as in proposition 6.6.3 construct a future-directed
limit curve A from p and a past-directed limit curve ~A from g, and
choose a subsequence N'n which converges to r for every point r on
Aor A. In case (1), Awould intersect.9' in a single point x. Any neigh­
bourhood of x would contain points of A"n for n sufficiently large, and
so would contain x"n' defined as A"n () .9', since.9' is achronal. Therefore
x"n would converge to x. Similarly x"n would converge to ~ == An.9'.
Thus ~ = x and so one could join Aand Ato give a non-spacelike limit
curve in G(p, g).

In case (2), suppose that A did not have a future endpoint at g.
Then Awould leave J-(.9') since it would intersect.9' and by proposi­
tion 6.4.7 it would have to leave the compact set J+(.9') () J-(.9'). Thus
one could find a point x on A which was not in J-(.9'). For each n,
choose a point x"n E.9' n A"n' Since.9' is compact, there will be some
point y E.9' and a subsequence AII/n such that the corresponding points
x'''n converge to y. Suppose that y does not lie on A. Then for suffi­
ciently large n each x'\.-would lie to the future of any neighbourhood

OJI of x. This would imply x EJ-(.9'). This is impossible as x is in J+(.9')
but is not in the compact set J+(.9')() J-(.9'). Therefore Awould pass
throughy. Similarly Awould pass throughy. One could then join them
to obtain a limit curve. 0

Proposition 6.6.3 shows that the existence of a Cauchy surface for an
open set,Al' implies global hyperbolicity of,Al'. The following result
shows that the converse is also true:
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Proposition 6.6.8 (Geroch (1970b))

Ifan open set.tV is globally hyperbolic, then..;fl, regarded as a mani­
fold, is homeomorphic to Rl x [/ where [/ is a three-dimensional
manifold, and for each a ERl, {a} x [/ is a Cauchy surface for .tV.

AB in proposition 6.4.9, put a measure p on .tV such that the total
volume of.tV in this measure is one. For p e:.tV define J+(p) to be the
volume of J+(p,.tV) in the measure p. Clearly J+(P) is a bounded
function on .tV which decreases along every future-directed non­
spacelike curve. We shall show that global hyperbolicity implies that
J+(P) is continuous on .tV so that we do not need to 'average' the
volume ofthe future as in proposition 6.4.9. To do this it will be suffi­
cient to show thatJ+(p) is continuous on any non-spacelike curve A.

Let rEA and let X n be an infinite sequence of points on Astrictly to
the past ofr. LetFbe nJ+(xn,.tV). Suppose thatJ+(p) was not upper

n

semi-continuous on A at r. There would be a point qEF -J+(r,.tV).

Then r¢J-(q,.tV); but each xnEJ-(q,.tV) and so rEJ-(q,.tV), which
is impossible as J-(q,.tV) is closed in .tV by proposition 6.6.1. The
proof that it is lower semi-continuous is similar

As p is moved to the future along an inextendible non-spacelike
curve Ain.tV the value ofJ+(P) must tend to zero. For suppose there
were some point q which lay to the future ofevery point of A. Then the
future-directed curve A would enter and remain within the compact
setJ+(r)n J-(q) for any rEA which would be impossible by proposition
6.4.7 as the strong causality condition holds on.tV.

Now consider the functionJ(p) defined on.tV byJ(P) = J-(P)/J+(P).
Any surface of constant J will be an acausal set and, by proposition
6.3.1, will be a three-dimensional (Jl- manifold imbedded in.tV.Itwill
also be a Cauchy surface for.tV since along any non-spacelike curve,
f- will tend to zero in the past andJ+ will tend to zero in the future.
One can put a timelike vector field V on .tV and define a continuous
map f1 which takes points of.tV along the integral curves ofV to where
they intersect the surface [/ (f = 1). Then (logJ(P),f1(P)) is a homeo­
morphism of.tV onto R x [/. Ifone smoothedJ as in proposition 6.4.9,
one could improve this to a diffeomorphism. d

Thus if the whole of space-time were globally hyperbolic, Le. if there
were a global Cauchy surface, its topology would be very dull.
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6.7 The existence of geodesics

The importance of global hyperbolicity for chapter 8 lies in the
following result:

Proposition 6.7.1

Letp and q lie in a globally hyperbolic set% with q E J+(p). Then there
is a non-spacelike geodesic from p to q whose length is greater than or
equal to that of any other non-spacelike curve from p to q.

.-.,....----.1.

Almost broken almost null
curve from p to q in ...

FIGURE 46. 'PI is an open neighbourhood of the timelike curve A from p to q.
There exist in tW timelike curves from p to q which approximate broken null
curves and are of arbitrarily small length.

We shall present two proofs of this result: the first, due to Avez (1963)
and Seifert (1967), is an argument from the compactness ofG(p, q), and
the second (applicable only when % is open) is a procedure whereby
the actual geodesic is constructed.

The space G(p,q) contains a dense subset G'(p,q) consisting of all
the timelike Gl curves from p to q. The length of one of these curves Ais
defined (cf. §4.5) as

L[A] = S:(-g(a/at, a/at)i dt,

where t is a Gl parameter on A. The function L is not continuous on
G'(p, q) since any neighbourhood of A contains a zig-zag piecewise
almost null curve of arbitrarily small length (figure 46). This lack of
continuity arises because we have used the GO topology which says that
two curves are close if their points in Jt, but not necessarily their
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tangent vectors, are close. We could put a 0 1 topology on O'Cp, q) and
80 make L continuous but we do not do this because O'Cp, q) is not
compact; one gets a compact space only when one includes all the
continuous non-spacelike curves. Instead, we use the Co topology and
extend the definition of L to CCp, q).

Because of the signature of the metric, putting wiggles in a timelike
curve reduces its length. ThusL is not lower semi-continuous. However
one has:

Lemma 6.7.2

L is upper semi-continuous in the 0° topology on O'Cp, q).

Consider a 0 1 timelike curve A(t) from p to q, where the parameter t is
chosen to be the arc-length from p. In a sufficiently small neighbour­
hood tlIt of A, one can find a function I which is equal to t on Aand is
such that the surfaces {f = constant} are spacelike and orthogonal to
alot (Le. rl;bl" == (olat)a). One way to define such an I would be to
construct the spacelike geodesics orth6gonal to A. For a sufficiently
small neighbourhood tlIt ofA, they will give a unique mapping of tlIt to A,
and the value oflat a point in tlIt can be defined as the value of t at the
point on A into which it is mapped. Any curve p in tlIt can be para­
metrized by f. The tangent vector (%/)p to p, can be expressed as

where k is a spacelike vector lying in the surface {f = constant}, i.e.
k;al;a = O. Then

u((~)/ (~)J== r!;al;b+Uab kakb

~ r!;a/;b'

oL[p,] ~ (1 +e)iL[A].

However on A, rl;a!;b = - 1. Thus given any e > 0, one can choose
tlIt' c tlIt sufficiently small that on tlIt', Uab!;a!;b > -1 +e. Therefore for
any curve p, in tlIt',

We now define the length of a continuous non-spacelike curve Afrom'
p to q as follows: let tlIt be a neighbourhood of A in vii and let l(tlIt) be
the least upper bound of the lengths of timellke curves in tlIt from p
to q. Then we define L[A] as the greatest lower bound of l(tlIt) for all
neighbourhoods tlIt of Ain vii. This definition of length will work for all
curves Afrom p to q which have a 0 1 timelike curve in every neighbour-
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hood, i.e. it will work for all points in G(p, q) which lie in the closure of
G'(p,q). By §4.5, a non-spacelike curve from p to q which is not an
unbroken null geodesic curve can be varied to give a piecewise Gl
timelike curve from p to q, and the corners of this curve can be
rounded off to give a Gl timelike curve from p to q. Thus points in

G(p, q) - G'(p, q) are unbroken null geodesics (containing no conjugate
points), and we define their length to be zero.

This definition of L makes it an upper semi-continuous function on

the compact space G'(p, q). (Actually, as a continuous non-spacelike
curve satisfies a local Lipschitz condition, it is differentiable almost
everywhere. Thus the length could still be defined as

f(-g(a/at, a/at)idt,

and this would agree with the definition above.) If G'(p, q) is empty
but G(p, q) is non-empty, p and q are joined by an unbroken null
geodesic and there are no non-spacelike curves from p to q which are

not unbroken null geodesics. If G'(p, q) is non-empty, it will contain
some point at which L attains its maximum value, i.e. there will be
a non-spacelike curve y from p to q whose length is greater than or
equal to that of any other such curve. By proposition 4.5.3, y must be
a geodesic curve as otherwise one could find points x, y e y which lay
in a convex normal coordinate neighbourhood and which could be
joined by a geodesic segment of greater length than the portion of y
between x and y. 0

For the other, constructive, proof, we first define d(p, q) for p, qeJl
to be zero if q ¢ J+(p) and otherwise to be the least upper bound of the
lengths of future-directed piecewise non-spacelike curves from p to q.
(Note that d(p, q) may be infinite.) For sets f/' and lilt, we define
d(f/',liIt) to be the least upper bound of d(p, q), p ef/', q e lilt.

Suppose qeI+(p) and that d(p,q) is finite. Then for any 8 > 0 one
can find a timelike curve i\ of length d(p, q) - i8 from p to q and a
neighbourhood lilt of q such that i\ can be deformed to give a timelike
curve of length d(p, q) - 8from p to any point r e lilt. Thus d(p, q), where
finite, is lower semi-continuous. In general d(p, q) is not upper semi­
continuous but:

Lemma 6.7.3

d(p, q) is finite and continuous in p and q when p and q are contained
in a globally hyperbolic set.Al.
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We shall first prove d(p, q) is finite. Since strong causality holds on the
compact set J+(P) n J-(q), one can cover it with a finite number of
local causality sets such that each set contains no non-spacelike curve
longer than some bound e. Since any non-spacelike curve from p to q
can enter each neighbourhood at most once, it must have finite length.

Now suppose that for p, qe%, there is a 8 > 0 such that every
neighbourhood of q contains a point r e% such that

d(p, r) > d(p, q) +8.

Let X n be an infinite sequence of points in % converging to q such that
d(p, xn ) > d(p, q) +8. Then from each X n one can find a non-spacelike
curve An to P of length> d(p, q) +8. By lemma 6.2.1 there will be
a past-directed non-spacelike curve Athrough q which is a limit curve
of the An' Let lilt be a local causality neighbourhood of q. Then Acannot
intersect ]-(q) n lilt since if it did one of the An could be deformed to
give a non-spacelike curve from p to q of length> d(p, q). Thus An lilt
must be a null geodesic from qand at each point x ofAn lilt, d(p, x) will
have a discontinuity greater than' 8. This argument can be repeated
to show that A is a null geodesic and at each point xeA, d(P,x) has
a discontinuity greater than 8. This shows that Acannot have an end­
point at p, since by proposition 4.5.3, d(p, x) is continuous on a local
causality neighbourhood ofp. On the other hand, Awould be inextend­
ible in J( - p and 80 if it did not have an endpoint at p, it would have
to leave the compact set J+(P) n J-(q) by proposition 6.4.7. This shows
that d(p, q) is upper semi-continuous on %. 0

In the case that % is open, one can easily construct the geodesic of
maximum length from p to q by using the distance function. Let
lilt c % be a local causality neighbourhood ofp which does not contain
q and let xeJ+(p) n J-(q) be such that d(p, r) +d(r, q), reOU, is maxi­
mized for r = x. Construct the future-directed geodesic y from p
through x. The relation d(p, r) +d(r, q) = d(p, q) will hold for all points
r on y between p and x. Suppose there were a point y e J -(q) - q which
was the last point on y at which this relation held. Let "Y c % be
a local causality neighbourhood of y which does not contain q and
let zeJ+(y) n J-(q) n -f" be such that dey, r) +d(r, q), rej/', attains its
maximum value dey, q) for r = z. If z did not lie on y, then,

d(p, z) > d(p, y) +dey, z) and d(p, z) +d(z, q) > d(p, q)

which is impossible. This shows that the relation

d(p, r) +d(r, q) = d(p, q)
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must hold for all reyf\ J-(q). AB J+(P)f\ J-(q) is compact, y must
leave J-(q) at some point y. Suppose y oF q; then y would lie on a
past-directed null geodesic i\ from q. Joining y to i\ would give a non­
spacelike curve from p to q which could be varied to give a curve
longer than d(p, q), which is impossible. Thus y is a geodesic curve
from p to q of length d(p, q). 0

Corollary

If 51' is a C2 partial Cauchy surface, then to each point qeD+(5P)
there is a future-directed timelike geodesic curve orthogonal to 51' of
length d(5P, q), which does not contain any point conjugate to 51'
between 51' and q.

By proposition 6.5.2, H+(5P) and H-(5P) do not intersect51' and so are
not in D(5P). Thus D(5P) = intD(5P) is globally hyperbolic by proposi­
tion 6.6.3. By proposition 6.6.6, 51' f\ J-(q) is compact and so d(p, q),
pe5P, will attain its maximum value of d(5P, q) at some point re5P.
There will be a geodesic curve y from r to q oflength d(5P, q) which by
lemma 4.5.5 and proposition 4.5.9 must be orthogonal to 51' and not
contain a point conjugate to [/' between [/' and q. 0

6.8 The causal boundary of space-time

In this section we shall give a brief outline of the method of Geroch,
Kronheimer and Penrose (1972) for attaching a boundary to space­
time. The construction depends only on the causa1structure of (1, g).
This means that it does not distinguish between boundary points at a
finite distance (singular points) and boundary points at infinity. In
§8.3 weshall describe a different construction which attaches a bound­
ary which represents only singular points. Unfortunately there does
not seem to be any obvious relation between the two constructions.

We shall assume that (1, g) satisfies the strong causality condition.
Then any pointpin{1, g) is uniquely determined by its chronological
past ]-(P) or its future ]+(p), Le.

]-(p) = ]-(q) <:>]+(P) = ]+(q)<:>p = q.

The chronological past ir == ]-(P) of any point pe1 has the
properties:

(1) ir is open;
(2) ir is a past set, Le. I-fir) c ir;
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(3) "II' cannot be expressed as the union of two proper subsets
which have properties (1) and (2).

We shall call a set with properties (1), (2) and (3) an indecomposable
paBt set, abbreviated as IP. (The definition given by Geroch, Kron­
heimer and Penrose does not include property (1). However it is
equivalent to the definition given here, since by •a past set' they mean
a set which equals its chronological past, rather than merely con­
tainingit.) One can define an IF, or indecomposablefuture set, similarly.

One can divide IPs into two classes: proper IPs (PIPs) which are
the pasts of points in Jt, and terminal IPs (TIPs) which are not the
past of any point in Jt. The idea is to regard these TIPs and the
similarly defined TIFs as representing points of the causal boundary
(c-bounda~y) of (Jt, g). For instance, in Minkowski space one would
regard tIle shaded region in figure 47 (i) as representing the point p
on J+. Note that in this example, the whole of Jt is itself a TIP and
also a TIF. These can be thought ofas representing the points i+ and i­
respectively. In fact all the points of the conformal boundary of
Minkowski space, except iO, can be represented as TIPs or TIFs. In
some cases, such as anti-de Sitter space, where the conformal boundary
is timelike, points of the boundary will be represented by both a TIP
and a TIF (see figure 47 (ii)).

One can also characterize TIPs as the pasts of future-inextendible
timelike curves. This means that one can regard the past I-(y) of
a future-inextendible curve y as representing the future endpoint of y
on the c-boundary. Another curve y' has the same endpoint if and
only if I-(y) = I-(y').

Proposition 6.8.1 (Geroch, Kronheimer and Penrose)

A set "II' is a TIP if and only if there is a future-inextendible timelike
curve y such that I-(y) = "11'.

Suppose first that there is a curve y such that I-(y) ="11'. Let
"II' = %' U"Y where %' and "Yare open past sets. One wants to show
that either %' is contained in "Y, or "Y contained in %'. Suppose tha.t,
on the contrary, %' is not contained in "Y and "Y not contained in 'it.
Then one could find a point q in %' - "Y and a point r in "Y -%'. Now
q,reI-(y), so there would be points q',/ey such that qeI-(q') and
reI-(r'). But whichever of %' or "Y contained the futuremost of q', r'
would also contain both q and r, which contradicts the original defini­
tions of q and r.
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TIl" representing
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1&11-T1PrepresentingI pointp

(iiI

FIGURE 47. Penrose diagrams of Minkowski space and anti-de Sitter space (cf.
figures 15 and 20), showing (i) the TIPrepresentinga pointp onJ+ in Minkowski
space, and (ii) the TIP and the TIF representing a point p on J in anti·de Sitter
space.

Conversely, suppoSe "II' is a TIP. Then one must construct a time­
like curve y such that "II' =: [-(y). Now ifp is any point of "11/', then
"II' =: [-("II' n [+(P)).u [-("II' -[+(P)). However "II' is indecomposable,
so either "II' = [-("II' n[+(P)) or "II' = [-("II' - [+(P)). The point p is
not contained in [-("II' - [+(p)), so the second possibility is eliminated.
The conclusion may be restated in the following form: given any pair
of points of "11', then "II' contains a point to the future of both of them.
Now choose a countable dense family Pn of points of"II' . Choose a point



220 CAUSAL STRUCTURE [6.8

qo in "II' to the future ofPo' Since qo and PI are in "11', one can choose
a point ql in ir to the future of both of them. Since ql andp2 are in ir,
one can choose q2 in ir to the future of both of them, and BO on. Since
each point qn obtained in this way lies in the past ofits successor, one
can find a timelike curve yin ir through all the points of the sequence.
Now for each point pe"lf", the set "If" n I+(P) is open and non-empty,
and so it must contain at least one of the P", since these are dense.
But for each k, Pk lies in the past of qk' whence P itself lies in the past
of y. This shows that every point of "II' lies to the past of y, and so
since y is contained in the open past set "Jr, one must have
ir = I-(y). 0

We shall denote by .ii the set of all IPs of the space ("II, g). Then .ii
represents the points of .,II plus a future c-boundary; similarly,.A, the
set of all IFs of (.,II, g), represents .,II plus a .(last c-boundary. One can
extend the causal relations I, J and E to Ji and Jl in the following
way. For each lilt, "Y c .ii, we shall say

lilt e J-("Y,.II) if lilt c "Y,

liIteI-(f,.II) if lilt c I-(q) for some point qe"Y,

liIteE-("Y,.II) if liIteJ-("Y,.II) but not liIteI-(f,.II).

With these relations, the IP-space .ii is a causal space (Kronheimer
and Penrose (1967)). There is a natural injective map I-: .,II~.ii
which sends the point peJl into I-(p)e..L. This map is an iso­
morphism of the causality relation J- as p eJ-(q) if and only if
I-(P) e J-{I-(q), .ii). The causality relation is preserved by 1- but not
by its inverse, Le. peI-(q) => I-(p) eI-(I-(q), "II). One can define
causal relations on Jl similarly.

The idea now is to write .iiand Jl in some way to form a space .,11*

which has the form "II U 6. where 6. will be called the c-boundanJ of
(.,II, g). To do so, ooe needs a method of identifying appropriate IPs
and IFs. One starts by forming the space .,11# which is the union of
.ii and Jl, with each PIF identified with the corresponding PIP. In
other words, ,,11# corresponds to the points of "II together with the
TIPs and TIFs. However as the example ofanti-de Sitter space shows.,
one also wants to identify some TIPs with some TIFs. One way of
doing this is to define a topology on .,11#, and then to identify some
points of .,11# to make this topology Hausdorff.

AB was mentioned in §6.4, a basis for the topology of the topological
space .,II is provided by sets of the form I+(P) n I-(q). Unfortunately
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one cannot use a similar method to define a basis for the topology of
J(# as there may be some points of J(# which are not in the chrono­
logical past of any points of J(#. However one can also obtain a
topology of J( from a sub-basis consisting of sets of the form ]+(p),

]-(P), J( - ]+(P) and J( - ]-(P). Following this analogy, Geroch,
Kromheimer and Penrose have shown how one can define a topology
on J(#. For an IF d E.L, one defines the sets

dl.nt == {f: fE.Jl and fn d =1= 0},
"-

and d ext == {f: fE.L and f = ]-(''/1'") => ]+("#'") ¢ dl.
"-

For an IP ~E.L, the sets ~I.nt and ~xt are defined similarly. The
open sets of J(# are then defined to be the unions and finite inter­
sections ofsets of the form dl.nt, d ext,~t and ~xt. The sets d1.nt and
£?tj'l.nt are the analogues in J(# of the sets]+(P) and]-(q). If in particular
d = ]+(P) and f = ]-(q) then f E dl.nt if and only if qE ]+(P).

However the definitions enable one also to incorporate TIPS into
dl.nt. The sets d ext and ~xt are the analogues of J( -]+(P) and
J( -]-(q).

Finally one obtains J(* by identifying the smallestnumber ofpoints
in the space J(# necessary to make it a Hausdorffspace. More precisely
J(* is the quotient space J(#IR" where R" is the intersection of all
equivalence relations R c J(# X J(# for which J(#IR is Hausdorff.
The space J(* has a topology induced from J(# which agrees with the
topology of J( on the subset J( of J(*. In general one cannot extend
the differentiable structure of J( to 6., though one can on part of 6. in
a special case which will be described in the next section.

6.9 Asymptotically simple spaces

In order to study bounded physical systems such as stars, one wants
to investigate spaces which are asymptotically flat, i.e. whose metrics
approach that of Minkowski space at large distances from the system.
The Schwarzschild, Reissner-Nordstrom and Kerr solutions are
examples of spaces which have asymptotically flat regions. As we saw
in chapter 5, the conformal structure of null infinity in these spaces is
similar to that of Minkowski space. This led Penrose (1964, 19615b,
1968) to adopt this as a definition of a kind of asymptotic flatness. We
shall only consider strongly causal spaces. Penrose does not make the
requirement of strong causality. However it simplifies matters and im­
plies no loss of generality in the kind ofsituation we wish to consider.
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A time-andspace-orientablespace (..I, g)issaid to beaBYmptotically
simple if there exists a strongly causal space (.A, ~) and an imbedding
(): ..I~.Awhich imbeds ..I as a manifold with smooth boundary 8..1
in .A, such that:

(1) there is a smooth (say 0 8 atloost) function 0 on.A such that on
()(.L), 0 is positive and 02g = ()*(~) (Le. ~ is conformal to g on ()(.L»;

(2) on 0..1, 0 = 0 and dO =1= 0;
(3) every null geodesic in.-"l has two endpoints on 0..1.
We shall write ..I u0..1 == .ii.
In fact this definition is rather more general than one wants since

it includes cosmological models, such as de Sitter space. In order to
restrict it to spaces which are asymptotically flat spaces, we will say
that a space (..I, g) is aBYmptotically empty and simple if it satisfies
conditions (1), (2), and (3), and

(4) R ab = 0 on an open neighbourhood of 0..1 in vii. (This condition
can be modified to allow the existence of electromagnetic radiation
near 0..1).

The boundary 0..1 can be thought'of as being at infinity, in the
sense that any affine parameter in the metric g on a null geodesic in ..I
attains unboundedly large values near 0..1. This is because an affine
parameter v in the metric g is related to an affine parameter v in the
metric ~ by dvldv = 0-2. Since 0 = 0 at 8.-"1, fdv diverges.

From conditions (2) and (4) it follows that the boundary 8..1 is a
null hypersurface. This is because the Ricci tensor Bab of the metric
gab is related to the Ricci tensor Rab of gab by

B b - 0-2R b_ 20-1(0) g-bc+{_ 0-10 +30-20 0 };;Cd8 ba - a lac led Ie Id If a

where I denotes covariant differentiation with respect to gab' Thus

B = 0-2R- 60-10,edyed + 30-20IeOld~'

Since the metric (jab is 0 8, B is 0 1 at 8.-"1 where 0 = O. This implies
that Ole O,dyed = o. However by condition (2), Ole =1= O. Thus 0leyed is
a null vector, and the surface 8..1 (0 = 0) is a null hypersurface.

In the case of Minkowski space, 0..1 consists of the two null surfaces
J+ and J-, each of which has the topology Rl x 8 2. (Note that it does
not include the points iO, i+ and i- since the conformal boundary is not
a smooth manifold at these points.) We shall show that in fact 0..1 has
this structure for any asymptotically simple 'and empty space.

Since 0..1 is a null surface, ..I lies locally to the past or future of it.
This shows that 0..1 must consist of two disconnected components:
J+ on which null geodesics in.-"l have their future endpoints, and J-
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on which they have their past endpoints. There cannot be more than
two components of a.At, since there would then be some point peJt
for which some future-directed null geodesics would go to one com­
ponent and others to another component. The set of null directions
at p going to each component would be open, which is impoBBible,
since the set of future null directions at p is connected.

We next establish an important property.

Lemma 6.9.1

An asymptotically simple and empty space (.At,~) is causally simple.

Let "If/" be a compact set of .At. One wants to show that every null
geodesic generator of j+("If/") has past endpoint at "If/". Suppose there
were a generator that did not have endpoint there. Then it could not
have any endpoint in .At, so it would intersect J-, which is im­
pOBBible. 0

Proposition 6.9.2

An asymptotically simple and empty space (.At,~) is globally
hyperbolic.

The proof is similar to that of proposition 6.6.7. One puts a volume
element on.At such that the total volume of.At in this measure is unity.
Since (.At,~) is causally simple, the functions f+(P), f-(P) which are
the volumes of!+(p), ] -(P) are continuous on.At. Since strong causality
holds on .At, f+(P) will decrease along every future-directed non­
spacelike curve. Let i\ be a future-inextendible timelike curve. Sup­
pose that§" = n ]+(P) was non-empty. Then §" woul'd be a future set

peA
and the null generators of the boundary of§" in.At would have no past
endpoint in.At. Thus they would intersect J-, which again leads to
a contradiction. This shows thatf+(p) goes to zero as p tends to the
future on i\. From this it follows that every inextendible non-spacelike
curve intersects the surface .*' ={p: j+(P) = f-(P)}, which is therefore
a Cauchy surface for .At. 0

Lemma 6.9.3

Let "If/" be a compact set of an asymptotically empty and simple space
(.At, ~). Then every null geodesic generator ofJ+ intersects j+("If/", vii)
once, where . indicates the boundary in vii.
Let P E i\, where i\ is a null geodesic generator ofJ +. Then the past set
(in .At) J-(p, vii) n .At must be closed in .At, since every null geodesic
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generator of its boundary must have future endpoint on J+ at p.
Since strong causality holds on.ii,.At -J-(p, Ji) will be non-empty.
Now suppose that i\ were contained in J+(ir, Ji). Then the past set
n (J-(p,.it) n.At) would be non-empty. This would be impossible,
peA

since the null generators of the boundary ofthe set would intersect J +.
Suppose on the other hand that i\ did not intersect J+(ir, .it). Then
.At - U (J-(p,.it) n.At) would be non-empty. This would again lead

peA
to a contradiction, as the generators of the boundary of the past set
U (J-(p,Ji)n.At) would intersect J+. 0

peA

Corollary

J+ is topologically Rl x (j+(ir,.it) n CJ.At).

We shall now show that J + (and J -) and.At are the sarne topologically
as they are for Minkowski space.

Proposition 6.9.4 (Geroch (1971»

In an asymptotically simple and empty space (.At, ~), J+ and J- are
topologically RI x 8 2, and.At is R4.

Consider the set N of all null geodesics in.At. Since these all intersect
the Cauchy surface ${', one can define local coordinates on N by the
local coordinates and directions of their intersections with ${'. This
makes N into a fibre bundle of directions over ${' with fibre 8 2• How­
ever every null geodesic also intersects J +. Thus N is also a fibre
bundle over J+. In this case, the fibre is 8 2 minus one point which
corresponds to the null geodesic generator ofJ+ which does not enter
.At. In other words, the fibre is R2. Therefore N is topologically
J+ x R2. However J+ is Rl x (j+(ir, Ji) n o.At). This is consistent
with N ::::: ${'?:. 8 2 only if ${' ::::: R8 and J + ::::: Rl x 8 2• 0

Penrose (1965b) has shown that this result implies that the Weyl
tensor of the metric ~ vanishes on J + and J -. This can be interpreted
as saying that the various components of the Weyl tensor of the
metric ~ 'peel off', that is, they go as different powers of the affine
parameter on a null geodesic near J+ or J-. Further Penrose (1963),
Newman and Penrose (1968) have given conservation laws for the
energy-momentum as measured from J+, in terms ofintegrals on J+.

The null surfaces J+ and J- form nearly all the c-boundary !1 of
(.At,~) defined in the previous section. To see this, note first that any
point peJ+ defines a TIP I-(p,Ji)n.At. Suppose i\ is a future-
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inextendible curve in JI. IfAhas a future endpoint at p e J +, then the
TIP I-(A) is the saIne as the TIP defined by p. If A does not have a
future endpoint on J+, then JI - I-(A) must be empty, since if it were
not, the null geodesic generators of 1-(A) would intersect J+ which is
impossible as A does not intersect J+. The TIPs therefore consist of
one for each point of J+, and one extra TIP, denoted by i+, which is
JI itself. Similarly, the TIFs consist of one for each point of J-, and
one, denoted by i-, which again is JI itself.

One now wants to verify that one does not have to identify any
TIPs or TIFs, i.e. that JI/I is Hausdorff. It is clear that no two TIPs
or TIFs corresponding to J+ or J- are non-Hausdorff separated. If
peJ+ then one can find qeJl such that p¢I+(q,Ji). Then
(I+(q, .il))ext is a neighbourhood in JI# of the TIP I-(p,.il) n JI, and
(I+(q, Ji))int is a disjoint neighbourhood of the TIP i+. Thus i+ is
Hausdorff separated from every point of J +. Similarly it is Hausdorff
separated from every point of J-. Thus the c-boundary of any
asymptotically simple and empty space (JI,~) is the same as that of
Minkowski space-time, consisting ofJ+, J- and the two points i+, i-.

Asymptotically simple and empty spaces include Minkowski space
and the asymptotically flat spaces containing bounded objects such as
stars which do not undergo gravitational collapse. However they do
not include the Schwarzschild, Reissner-Nordstrom or Kerr solutions,
because in these spaces there are null geodesics which do not have
endpoints on J+ or J-. Nevertheless these spaces do have asympto­
tically flat regions which are similar to those of asymptotically empty
and simple spaces. This suggests that one should define a space (JI. ~)
to be weakly MYmprotically 8imple and empty if there is an asymp­
totically simple and empty space (JI', ~') and a neighbourhood tlIt' of
aJl' in JI' such that tlIt' n JI' is isometric to an open set tlIt of JI. This
definition covers all the spaces mentioned above. In the Reissner­
Nordstrom and Kerr solutions there is an infinite sequence of asymp­
totically flat regions .fjf which are isometric to neighbourhoods tlIt' of
asymptotically simple spaces. There is thus an infinite sequence of
null infinities J+ and J-. However we shall consider only one asymp­
totically flat region in these spaces. One can then regard (A,~) as
being conformally imbedded in a space (.ii, g) such that a neighbour­
hood tlIt of aJl in .ii is isometric to fjf'. The boundary aJl consists of
a single pair of null surfaces J+ and J-.

We shall discuss weakly asymptotically simple and empty spaces
in §9.2 and §9.3.
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The Cauchy problem in General Relativity

In this chapter we shall give an outline of the Cauchy problem in
General Relativity. We shall show that, given certain data on a space­
like three-surface sP, there is a unique maximal future Cauchy
development D+(sP) and that the metric on a subset lilt of D+(sP)
depends only on the initial data on J-(liIt) nsP. We shall also show
that this dependence is continuous if lilt has a compactclosure inD+(sP).
This discussion is included here because of its intrinsic interest,
because it uses some ofthe results of the previous chapter, and because
it demonstrates that the Einstein field equations do indeed satisfy
postulate (a) of §3.2 that signals can only be sent between points that
can be joined by a non-spacelike curve. However it is not really needed
for the remaining three chapters, and so could be skipped by the
reader more interested in singularities.

In §7.1, we discuss the various difficulties and give a precise formu­
lation of the problem. In §7.2 we introduce a global background
metric A to generalize the relation which holds between the Ricci
tensor and the metric in each coordinate patch to a single relation
which holds over the whole manifold. We impose four gauge conditions
on the covariant derivatives of the physical metric ~ wjth respect to
the background metric A. These remove the four degr~s of freedom
to make diffeomorphisms of a solution of Einstein's equations, and
lead to the second order hyperbolic reduced Einstein equations for ~
in the background metric A. Because of the conservation equations,
these gauge conditions hold at all times if they and their first deriva­
tives hold initially.

In §7.3 we show that the essential part of the initial data for ~ on
the three-dimensional manifold sP can be expressed as two three­
dimensional tensor fields hab, Xab on sP. The three-dimensional mani­
fold sP is then imbedded in a four-dimensional manifold J( and a
metric ~ is defined on sP such that hab and xab become respectively the
first and second fundamental forms ofsP in ~. This can be done in such
a way that the gauge conditions hold onsP. In §7.4 we establish some

[ 226]
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basic inequalities for second order hyperbolic equations. These relate
integrals of squared derivatives of solutions of such equations to their
initial values. These inequalities are used to prove the existence and
uniqueness of solutions of second order hyperbolic equations. In § 7.5
the existence and uniqueness of solutions of the reduced empty space
Einstein equations is proved for small perturbations ofan empty space
solution. The local existence and uniqueness ofempty space solutions
for arbitrary initial data is then proved by dividing the initial surface
up into small regions which are nearly flat, and then joining the
resulting solutions together. In §7.6 we show there is a unique maximal
empty space solution for given initial data and that in a certain sense
this solutiondepends continuouslyonthe initialdata. Finally in §7 .7 we
indicate how these results may be extended to solutions with matter.

7.1 The nature of the problem

The Cauchy problem for the gravitational field differs in several
important respects from that for other physic"al fields.

(1) The Einstein equations are non-linear. Actually in this respect
they are not so different from other fields, for while the electromagnetic
field, the scalar field, etc., by themselvesobey linear equations in a given
space-time, they form a non-linear system when their mutual inter­
actions are taken into account. The distinctive feature of the gravita­
tional field is that ~t is self-interacting: it is non-linear even in the
absence of other fields. This is because it defines the space-time over
which it propagates. To obtain a solution of the non-linear equations
one employs an iterative method on approximate linear equations
whose solutions are shown to converge in a certain neighbourhood of
the initial surface.

(2) Two metrics ~l and ~20na manifold.At are physicallyequivalent
if there is a diffeomorphism ¢:.At~.At which takes ~l into ~2

(¢*~l = ~2)' and clearly ~l satisfies the field equations if and only if~2
does. Thus the solutions ofthe field equations can be unique only up to
a diffeomorphism. In order to obtain a definite member of the equiva­
lence class of metrics which represents a space-time, one introduces
a fixed •background' metric and imposes four •gauge conditions' on
the covariant derivatives of the physical metric with respect to the
background metric. These conditions remove the four degrees of
freedom to make diffeomorphisms and lead to a unique solution for
the metric components. They are analogous to the Lorentz condition
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which is imposed to remove the gauge freedom for the electromagnetic
field.

(3) Since the metric defines the space-time structure. one does not
know in advance what the domain ofdependence of the initial surface
is and hence what the region is on which the solution is to be deter­
mined. One is simply given a three-dimensional manifold sP with
certain initial data w on it. and is required to find a four-dimensional
manifold.At. an imbedding f):[/~.At and a metric ~ on.At which
satisfies the Einstein equations. agrees with the initial values on f)(sP)
and is such that f)([/) is a Cauchy surface for.At. We shall say that
(.At. f), ~), or simply.At, is a development of (sP, w). Another develop­
ment (.At', f)', ~') of (sP. w) will be called an extension of.At if there is
a diffeomorphism a of.At into .At' which leaves the image of[/ point­
wise fixed and takes ~'into ~ (Le. f)-la-If)' = id on ~ and a*~' = ~).

We shall show that provided the initial data w satisfies certain
constraint equations on sP. there will exist developments of (sP. w) and
further. there will be a development which is maximal in the sense
that it is an extension of any development of (Y. w). Note that by
formulating the Cauchy problem in these terms we have included the
freedom to make diffeomorphisms, since any development is an
extension of any diffeomorphism of itself which leaves the image of[/
pointwise fixed.

7·2 The reduced Einstein equations

In chapter 2. the Ricci tensor was obtained in terms of coordinate
partial derivatives of the components of the metric tensor. For the
purposes of this chapter it will be convenient to obtain an expression
that applies to the whole manifold .At and not just to each coordinate
neighbourhood separately. To this end we introduce a background
metric Aas well as the physical metric ~. With two metries one has to
be careful to maintain the distinction between covariant and contra­
variant indices. (To avoid confusion. we shall suspend the usual con­
ventions for raising and lowering indices.) The covariant and contra­
variant forms of ~ and Aare related by

(7.1)

It will be convenient to take the contravariant form gab of the metric
to be more fundamental and the covariant form gab as derived from it
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by (7.1). Using the alternating tensor ~<Jbed defined by the background
metric, this relation can be expressed explicitly as

where

1
gab = 3! !fdg"lgil(det~) ~ocei~bdli'

(det ~)-l == ;! gab!fdg"lgil~ocei ~bd/1

(7.2)

is the determinant of the components of gab in a basis which is ortho­
normal with respect to the metric A.

The difference between the connection r defined by ~ and the con­
nection f' defined by Ais a tensor, and can be expressed in terms ofthe

"covariant derivative of ~ with respect to r (cf §3.3):

8ra
be == r a

be - f'abe

= igillk(gbigclgak-gbi8kc8al-gci8kb8al)' (7.3)

where we 'have used a stroke to denote covariant differentiation with
respect to f' and the symbol 8 to denote the difference between
quantities defined from ~ and A. Then from (2.20),

8Rab = 8rdab,d-8rdadlb+8rdab8retk-8rdae8rebd' (7.4)
Thus

8(Rab - igabR) = gaigb18Rii + 28gi(agbllfli/- 8gai8gb1flil

- i8gabfl- igab(8gilflil +gi/8Ril )

= igil8gablil- gi(aJ/rblli + igab(J/ri1i - gcdgiI8!fd1i/)

+ (terms in 8!fd1i and 8g"/), (7.5)

J/rb == gbcrc-igbCg,ugderc = (det~)-l«(det~)gbc)Jc = (det~)-l¢bclc (7.6)

and ¢bc == (det~)8gbc.

The plan is now as follows. We choose some suitable background
metric Aand expreBB the Einstein equations in the form

Rab_iRgab = 8(Rab_iRgab)+flab-i~bfl = 81TTab. (7.7)

One regards this as a second order non-linear set of differential equa­
tions to determine ~ in terms ofthe values ofit and its first derivatives
on some initial surface. Of course to complete the system one has to
specify the equations governing the physical fields which make up the
energy-momentum tensor Tab. However even when this is done one
does not have a system of equations which uniquely determines the
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time development in terms of the initial values and first derivatives.
The reason for this is, as was mentioned above, that a solution of the
Einstein equations can be unique only up to a diffeomorphism. In
order to obtain a definite solution one removes this freedom to make
diffeomorphiBms by imposing four gauge conditions on the covariant
derivatives of ~ with respect to the background metric A. We shall use
the so-called 'harmonic' conditions

J/rb = ¢bclC = 0

which are analogous to the Lorentz gauge conditions A'; • = 0 in
electrodynamics. With this condition one obtains the reduced Ei'Mtein
equations

g1.i¢M"i+ (terms in ¢cd1e and ¢ab) = 161TTab- 2flab + frbfl. (7.8)

We shall denote the left-hand side of (7.8) by Eabcd(¢cd), where Eabcd is
the Ei'Mtein operator. For suitable forms of the energy-momentum
tensor Tab these are second order hyperbolic equations for which we
shall demonstrate the existence and 'uniqueness of solutions in §7.5.
We still have to check that the harmonic conditions are consistent
with the Einstein equations. That is to say: we derived (7.8) from the
Einstein equations by aBBuming that ¢bC1c was zero. We now have to
verify that the solution that (7.8) gives rise to does indeed have this
property. To do this, differentiate (7.8) and contract. This gives an
equation of the form

(7.9)

where a semi-colon denotes differentiation with respect to g, and the
tensors Bcbi and Ccb depend on {f'b, flabcd, gab and gab/c' Equations (7.9)
may be regarded as second order linear hyperbolic equations for J/rb.
Since the right-hand side vanishes, one can use the uniqueness
theorem for such equations (proposition 7.4.5) to show that J/rb will
vanish everywhere if it and its first derivatives are zero on the initial
surface. We shall see in the next section that this can be arranged by
a suitable diffeomorphism.

We still have to show that the unique solution obtained by imposing
the harmonic gauge condition is related by a diffeomorphism to any
other solution of the Einstein equations ~ith the same initial data.
This will be done in §7.4 by making a special choice of the background
metric.
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7.3 The initial data

AB (7.8) is a second order hyperbolic system it seems that to determine
the solution one should prescribe the values of yab and gableue on the
initial surface 0(.51'), where ue is some vector field which is not tangent
to 0(.51'). However not all these twenty components are significant or
independent: some can be given arbitrary initial values without
changing the solution by more than a diffeomorphism, and others have
to obey certain consistency conditions.

Consider a diffeomorphism p:.At~.Atwhich leaves 0(.51') pointwise
fixed. This will induce a map p. which takes gab at p e 0(.51') into a new
tensor p.gab at p. If naeT·p is orthogonal to 0(.51') (Le. naVa = 0 for
any va e Tp tangent to 0(.51'» and normalized so that nabab~ = - 1
then, by suitable choice ofp, naP.gab can be made equal to any vector
at p which is not tangent to 0(.51'). Thus the components nagab are not
significant. On the other hand as p leaves 0(.51') pointwise fixed, the
induced metric hab = O·gab on .51' will remain unchanged. It is therefore
only this part of~ which lies in 0(.51') which need be given to determine
the solution. The other components nagab can be prescribed arbitrarily
without changing the solution by more than a diffeomorphism.
Another way of seeing this is to recall that we formulated the Cauchy
problem in terms of certain data on a disembodied three-manifold .51'
and then looked for an imbedding into some four-manifold.At. Now
on .51' itself one cannot define a four-dimensional tensor field like ~ but
only a three-dimensional metric h, which we shall take to be positive
definite. The contravariant and covariant forms of h are related by

(7.10)

(7.11 )

where now 8tJe is a three-dimensional tensor in .51'. The imbedding 0 will
carry hab into a contravariant tensor field O.hab on 0(.51') which has
the property

As nagab is arbitrary, one may now define ~ on 0(.51') by

yab = O.hab-uaub, (7.12)

where ua is any vector field on 0(.51') which is nowhere zero or tangent
to 0(.51'). Defining gab by (7.1), one has:

hab = O·gab' nagab = -nauaub, gabuaUb = -1. (7.13)

Thus hab is the metric induced on .51' by ~ and ua is the unit vector
orthogonal to 0(.51') in the metric ~.
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(7.17)

(7.18)

The situation with the first derivatives g"blCuc is similar: nag"b,cUC
can be given any value by suitable diffeomorphisms. However there is
now an additional complication in that g"b,c depends not only on ~ but
also on the background metric Aon.At. In order to give a description
of the significant part of the first derivative of~ in terms only of tensor
fields defined on!/', we proceed as {ollows. We prescribe a symmetric
contravariant tensor field Xab on !/'. Under the imbedding Xab is
mapped into a tensor field O.~ on O(!/'). We require that this is
equal to the second fundamental form (see § 2.7) of the submanifold
o(!/') in the metric ~. This gives

O.Xab = O.h4CO.hbd(uegec);d

= O.h4CO.hbd«uegec)/d-8r'cduegej)' (7.14)

Using (7.3), one has

O.Xab = 10.h4CO.hbd( -gcigd;gi;lkUk+gbiui,c+gciuilb)' (7.15)

This may be inverted to give gablc UCin terms of°.Xab:

l!f'b,cuc = - °.Xab +O.h4CO.hbdgiCcU\'ll+u(aWbl, (7.16)

where Wb is some vector field on O(!/'). It can be given any required
value by a suitable diffeomorphism }to

The tensor fields hab and Xab cannot be prescribed completely
independently on!/'. For multiplying the Einstein equations (7.7) by
na, one obtains four equations which do not contain g"bICducUd, the
second derivatives of ~ out of!/'o Thus there must be four relations
between gab, g"b/cuc and naTab. Using (2.36) and (2.35), they can be
expressed as equations in the three-manifold !/':

XCdUdhce- XCdnehcd = 81TO·(TtUud ),

where a double stroke" denotes covariant differentiation in!/' with
respect to the metric h, and R' is the curvature scalar of h.

The data w on!/' that is required to determine the solution therefore
consists of the initial data for the matter fields (in the case of a scalar
field ¢ for example, this would consist of two functions on!/' repre­
senting the value of ¢ and its normal derivative) and two tensor fields
hab and~ on!/' which obey the constraint equations (7.17-18). These
contraint equations are elliptic equations on the surface!/' which
impose four constraints on the twelve independent components of
(hab, Xab). In such situations, one can show one can prescribe eight of
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(7.19)

these components independently and then solve the constraint equa­
tions to find the other four, see e.g. Bruhat (1962). We shall call a pair
(g, w) satisfying these conditions, an initial data set. We then imbed g
in some suitable four~manifold J( with metric g and define gab on
O(g) by (7.12) for some suitable choice of ua • We shall take ua to be
gabnb. Thus it will be the unit vector orthogonal to O(g) in both the
metric g and~. We shall also exploit our freedom of choice of Wa in
the definition of gab,c UC by (7.16) to make 1Jrb zero on O(g). This requires

Wb = -gbcldgceO.hed+f.gedgcdleO.heb

+ub(gcd° .X:d- gic ui'dO.hed).

(Note that all the derivatives in (7.19) are tangent to O(g) as is required
by the fact that the fields involved have been defined only on O(g).) To
ensure that 1Jrb vanishes everywhere one also needs 1Jrb1cUC to be zero
on O(g). However this now follows from the constraint equations
providing the reduced Einstein equations (7.8) hold on O(g). One
may therefore proceed to solve (7.8) as a second order non-linear
hyperbolic system on the manifold J( with metric ~.

(Note that there are 10 such equations for the ¢J's; in proving the
existence of solutions of these 10 equations we do not split them into
a set of constraint equations and a set of evolution equations, and so
the question as to whether the constraint equations are conserved does
not arise.)

7.4 Second order hyperbolic equations

In this section we shall reproduce some results on second order
hyperbolic equations given in Dionne (1962). They will be generalized
to apply to a whole manifold, not just one coordinate neighbourhood.
These results will be used in the following sections to prove the exist­
ence and uniqueness of developments for an initial data set (g, w).

We first introduce a number of definitions. We use Latin letters to
denote multiple contravariant or covariant indices; thus a tensor of
type (r, s) will be written as KIJ' and we denote by III = r the number
ofindices that the multiple index I represents. We introduce a positive
definite metric eab on J( and define

r times r times
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where III = IJI = r. We then define the magnitude IKIJI (or simply,
IKI> as (KIJKLMeneJM)l where repeated multiple indices imply
contraction over all the indices they represent. We define IDmKIJ I
(or simply, IDmKI) to be IKIJ1LIwhere ILl = m and as before, I indi­
cates covariant differentiation with respect to ~.

Let % be an imbedded submanifold of JI with compact closure
in JI. Then IIKIJ,.lVllm is defined to be

L~ofK (IDPKIJ I)lI dUy,

011KIJI " IKIJI' "OllIKIJI on %,

qIIKIJ•.lVnm" IIKIJ,.IV]m' " OllIIKIJ,.IV[m'and

where du is the volume element on.IV induced bye. We also define

II K, .IV[m to be the same expression where the derivatives a:e taken

only in directions tangent to %. Clearly, "K,.IV"~ ~ IIK,.lVllm.
The Sobolev spaces Wm(r, s,%) (or simply Wm(%» are then defined

to be the vector spaces of tensor fields KIJ of type (r, s) whose values
and derivatives (in the sense ofdistributions) are defined almost every­
where on.tV (i.e. except, possibly, on a set of measure zero; for the
rest of this section 'almost everywhere' is to be understood almost

everywhere) and for which IIKIJ•.lVrm is finite. With the norms

II •.IV[m the Sobolev spaces are Banach spaces in which the om tensor
fields of type (r, 8) form dense subsets. He' is another continuous posi­
tive definite metric on JI then there will be positive constants 01 and
0llsuch that

Thus II ,.lVllm' will be an equivalent norm. Similarly another Om
background metric ~' will give an equivalent norm. In fact it follows
from two lemmas given below that if ~" E wm(.IV) and 2m is greater
than the dimension of.IV, then the norm obtained using the covariant
derivatives defined by ~" is again equivalent.

We now quote three fundamental results on Sobolev spaces. The
proofs can be derived from results given in Sobolev (1963). They
require a mild restriction on the shape of%. A sufficient condition wilt
be that for each point p of the boundary o.tV it should be possible to
imbed an n-dimensional half cone in .R with vertex at p, where n is
the dimension of %. In particular this condition will be satisfied if
the boundary o.IV is smooth.
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Lemma 7.4.1

There is a positive constant PI (depending on JV, e and ~) such that
for any field KIJE Wm(JV) with 2m > n, wherenis the dimension ofJV,

IKI ~ PIIIK,JVllm onJV.

From this and the fact that the vector space of all continuous fields
KIJ on JV is a Banach space with norm sup IKI, it follows that if

K

KIJ E Wm(JV) where 2m > n, then KIJ is continuous on JV. Similarly
if KIJ E Wm-tP(JV), then KIJ is CP on JV.

Lemma 7.4.2

There is a positive constant Pa (depending on JV, e and ~) such that
for any fields KIJ' V Q E Wm(JV) with 4m ~ n,

IIKIJ LPQ ,JVllo ~ P21IK,JVllmIIL ,JV)llm'
From this and the previous lemma it follows that ifn ~ 4 and 2m > n,
then for any two fields KIJ, LPQEWm(JV), the product KIJLPQ is
also in Wm(JV).

Lemma 7.4.3

IfJV' is an (n-l)~dimensionalsubmanifoldsmoothly imbedded inJV,
there is a positive constant Pa (depending on JV, JV', e and ~) such
that for any field KIJ E wm+1(JV),

We shall prove the existence and uniqueness of developments for
(9', w) when hab E W4+a(9') and Xab E Wll+a(9') where a is any non~

negative integer. (If9' is non-compact, we mean by habE wm(9') that
habE wm(JV) for any open subset JV of 9' with compact closure.)
A sufficient condition for this is that hab be CHa and Xab be C3+a on 9';
by lemma 7.4.1, a neceSsary condition is that hab be C2+a and Xab be
Ql+a. The solution obtained for gab will belong to WHa(£) for each
smooth spacelike surface £ and so the (2+a)th derivatives will be
bounded, i.e. gab will be C(2+a)- on JI.

These differentiability conditions can be weakened to cases such as
shock waves where the solution departs from W4 behaviour on well­
behaved hypersurfaces; see Choquet-Bruhat (1968), Papapetrou and
Hamoui (1967), Israel (1966), and Penrose (1972a). However no proof
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is known for cases in which such departures occur generally. The W4
condition for the existence and uniqueness of developments is an
improvement on previous work (Choquet-Bruhat (1968» but it is
somewhat stronger than one would like since the Einstein equations
can be defined in a distributional sense if the metric is continuous and
its generalized derivatives are locally square integrable (i.e. if g is Co
and WI). On the other hand any WP conditions for p less than 4 would

I(t')

'It'

FXGUlUl: 48. 'W is an open set with compact closure in the manifold'"=.J't' X Rl.
"lI+ is the region of'W for which t;;.. 0 and "lI(t') is the region of'W between t =0
and t = t' > o.

not guarantee the uniqueness of geodesics, or, for p less than 3, their
existence. Our own view is that these differences of differentiability
conditions are not important since as explained in §3.1, the model for
space-time may as well be taken to be C«>.

In order to prove the existence and uniqueness of developments we
now establish some fundamental inequalities (lemmas 7.4.4 and 7.4.6)
for second order hyperbolic equations, in a manner similar to that of
the conservation theorem in §4.3.

Consider a manifold .Jjof the form .Jft' x Rl where .Jft' is a three­
dimensional manifold. Let "lI be an open set of.Awith compact closure
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which has boundary aiJll and which intersects £(0), where £(t)
denotes the surface £ x {t}, teRI. Let iJIl+ and iJIl(t') denote the parts
of iJIl for which t ~ 0 and t' ~ t ~ 0 respectively (figure 48). On iJIl+ let
~ be a 0 2- background metric and let e be a 0 1- positive definite
metric. We shall consider tensor fields KIJ which obey second order
hyperbolic equations of the form

L(K) == AabKIJ1ab + BaPIQJ KQPla +OPIQJKQp = FIJ> (7.20)

where A is a Lorentz metric on iJIl+ (i.e. a symmetric tensor field of
signature + 2), B, C and F are tensor fields of type indicated by their
indices, and I denotes covariant differentiation with respect to the
metric ~.

Lemma 7.4.4

If(1) aiJll n qj+ is achronal with respect to A.
(2) there exists some Q1 > 0 such that on qj+

and

Aabtla~b ~ -Ql

AabJv..~ ~ Q1 eabJv..~

for any form W which satisfies Aabt'a~ = 0,
(3) there exists some Q2 such that on qj+

then there exists some positive constant Pt (depending on iJIl, e, ~,

Ql and QlI) such that for all solutions KIJ of (7.20),

11K, £(t) n tW+II1 ~ ~{IIK, £(0) n tW+ll l + IIF, tW(t)IIo}'

One forms the 'energy tensor' 8ab for the field KIJ in analogy to the
energy-momentum tensor of a scalar field of unit mass (§ 3.2):

(7.21 )

The tensor Sab obeys the dominant energy condition (§4.3) with
respect to the metric A (i.e. if Wa is timelike with respect to A then
SabJf"~ ~ 0 and SabJf" is non-spacelike with respect to A). Moreover
by conditions (2) and (3) there will be positive constants Qaand Qt
such that

Qa<lKllI+ IDKI2) ~ Sabt,a~b ~ Qt(IKI2+ IDKI2). (7.22)

We now apply lemma 4.3.1 to 8 ab.. taking iJIl+ as the compact region!F
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and using the volume element df> and covariant differentiation defined
by the metric~:

f - Sabt/adUb" f _ sabt/adUb
I(t) n 'i'+ 1(0) n4f+

+ ft{f _ (Psabtla+~/a)dUb}dt' (7.23)Jo I(t')n'i'+

where P is a positive constant independent of Sab. (The sign has been
changed in the first term on the right-hand side since the surface
element dUb of the surface 4f"(t) is taken to have the same orientation
as tlb' i.e. dUb = t/bdO' where dO' is a positive definite measure on 4f"(t).)
Since e and ~ are continuous there will be positive constants Q6 aI}d Q6

such that on ~+ Q6 du " dO' "Q6 du• (7.24)

where du is the area element on 4f"(t) induced bye. Thus by (7.22)
and (7.23) there is some Q7 such that

11K. ~(t) n "11+1112
" Q7 {11K. 4f"(0) n tW+1112

+f)K. ~(t')n "II+II12dt' +f: (Sab/b~adU)dt'}' (7.25)

By (7.20),

Sab1b = A~KIJ/cFPQ eJQeIP+ (terms quadratic in KIJ and

KPQ/c with coefficients involving Acd. ACd/e•

llcde/' ])CPrQJ and CPIQJ). (7.26)

Since the coefficients are all bounded on tW+. there is some Qasuch that

sablbt/a " Qa{lFpl+ IKjll+ IDKI2}. (7.27)

T~us there is some Q& such that, from (7.25) and (7.27).

11K. 4f"(t) n tW+lh2
" Q&{ 11K, 4f"(0) n tW+1112

+f: 11K,4f"(t') n tW+II12dt' + IIF , tW(t)1102}.
This is of the form dx/dt " Q&{x+y}, (7.28)

where x(t) = f: 11K,~(t') n tW+II12dt'.

Therefore x " eQ•tf: e-Q.t·y(t') dt'. (7.29)
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Since y is a monotonically increasing function of t and since t is
bounded on ~+, there is some QIO such that

x ~ QIOY'

Thus 11K, ~(t) n tfi+III ~ ~{IIK, ~(O) n tfi+lll + IIF, tfi(t)llo}, where

P4 = (Q& +Qlo)l. 0

With this inequality one can immediately prove the uniqueness of
solutions of second order hyperbolic equations which are linear, i.e.
for which A, B, C and F do not depend on K. For suppose KllJ and
K2IJ were solutions of the equation L(K) = F which had the same
initial values and first derivatives on ~(O) (l tfi. Then one can apply
the above result to the equation L(Kl-K2) = 0 and obtain

IIK1- K2, ~(t) (l tfi+II1 = o.
Therefore Kl = K2 on ~+. One has thus

Prop08ition 7.4.5

Let A be a Cl- Lorentz metric on .Jj and let B, C, and F be locally
bounded. Let~ c vii be a three-surface which is spacelike and acausal
with respect to A. Then if1"" is a set in D+(~,A), the solution on 1"" of
the linear equation (7.20) is uniquely determined by its values and
the values of its first derivatives on ~(l J-(1"",A).

By proposition 6.6.7, D+(~,A) is of the form ~XRI. H qe1"", then
by proposition 6.6.6, J-(q)(l J+(~) is compact and so may be taken
for ~+. 0

Thus a physical field obeying a linear equation of the form (7.20) will
satisfy the causality postulate (a) of §3.2 provided the null cone of A
coincides with or lies within the null cone of the space-time metric g.

In order to prove the existence of solutions of the equations (7.20)
we shall need inequalities for higher order derivatives of K. We shall
now take the background metric ~ to be at least C6+a where a is a non­
negative integer and we shall take "lI to be such that ~(O) (l t:Pi has
a smooth boundary and such that there is a diffeomorphism

.:\: (~(O)(l t:Pi) x [O,tl]~~+

which has the property that for each te [0, ~],

.:\{(~(O)(l ~),t} = ~(t)(l t:Pi+.

We do this so that there shall be upper bounds PI' P2 and Pa to the
constants PI'~ and Pain lemmas 7.4.1-7.4.3 for the surface ~(t)n tfi+.
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Lemma 704.6

H conditions (1) and (2) of lemma 70404 hold and if
(4) there is some Qa such that

IIA, "l1+IIHa < Qa, liB, "l1+IIa+a < Qa, IIC, "l1+lla+a < Qa

(by lemma 704.1, this implies condition (3», then there exist positive
constants P5, a (depending on tW, e, ~, a, Q1 and Qa) such that

11K, ~(t) n "l1+IIHa ~ ~.a{lIK, ~(O) n "l1+IIHa + II F , "l1(t)lIa+a}' (7.30)

From lemma 70404 one has an inequality for 11K, ~(t) n tW+lll' To obtain
an inequality for 11K, ~(t) n "l1+112 one forms the 'energy' tensor 8ab

for the first derivatives KIJ/c and proceeds as before. The divergence
Sab,b can now be evaluated by differentiating equations (7.20):

Sab1b = AadKIJ1cdFPQle eeceJQeIP + (terms quadratic in KIJ •

KIJlc and KIJlcil with coefficients involving A cd,

Acdle,llcckf,llcckflD' BePIQJ, BePIQJ/d , CPIQJ

and CPIQJ/d ). (7.31)

With the possible exceptions ofBeNQJ/d and CPIQJ,d' these coefficients
are all bounded on ~+ in the case a = O. When integrated over the
surface ~(t') n tW+, the term in (7.31) involving BCPIQJ/d is

-f AabKIJlcbBdPRQs/eKsRldeceeQJepId&a' (7.32)
I(t')n'i'+

There is some Q4 such that for all t', (7.32) is less than or equal to

Q4f IDBIIDKIID2KI du
I(t')n'i'+

~ 1Q4f (ID2KI2 + IDBlllIDKr~) duo (7.33)
I(t')n'i'+

By lemma 7.4.2,

f IDBIllIDKI2du " PIl2I1 B , ~(t') n tW+II11211 K, ~(t') n "l1+II112,
I(t')n'i'+

where, by condition (4) and lemma 7.4.3, IIB,~(t')n tW+112 < PaQa.
The term involving CPIQJ/d can be bounded similarly. Thus by lemma,
4.3.1 there is some constant Q6 such that

f (ID2KI + IDKI2)du " Q6{J (ID2KI2+ IDKI2)du
IU) n ...+ 1(0) n 'i'+

+ftIlK,~(t')n "l1+1122dt'+f IDFI2dU}. (7.34)Jo 'i'(t)
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By lemma 7.4.4,

f IKp1du" 11K, £(t)n "11+1112
I(On'i'+

" 2~2{1IK, £(0) n "111112+ IIF, "lI(t)llo2}. (7.35)
Adding this to (7.34), one obtains

IIK,£(t)n "11+1122 " Qe{IK, £(o)n "111122

+ I)K,£(t')n "II+11 22dt'+IIF,"II(t)1112}. (7.36)

where Qe = Q6 + 2P4. By a similar argument to that in lemma 7.4.4,
there is some constant Q7 such that

11K, £(t)n "11+112" Q7{IIK, £(O)n "lI1I2+ IIF, "lI(t)IIJ· (7.37)

From lemma 7.4.1 it now follows that on "lI+'

IKI " PI Q7{IIK, £(0) n "11112 + IIF, "lI(t)lIo}. (7.38)

Using this one may proceed in a similar way to establish an inequality
for 11K, £(t)n "lI+lla. The divergence of the 'energy' tensor now gives
a term of the form

Qsf (ID3KI2+ID2BI 2IDKI2)du. (7.39)
I(t')n'i'+

By lemma 7.4.2 the second term above is bounded by

QsP2211B,£(t')n "II+llillK,£(t')n "lI+11 22,

where by condition (4), liB, £(t) n "lI+11a is defined for almost all
values of t' and is square integrable with respect to t'. Thus one can
obtain an inequality for 11K, £(t) n "lI+lla in the same manner as for
11K, £(t)n "lI+112. The procedure for higher order derivatives is
similar. 0

Corollary

There exist constants Pe,a and ~.a such that

IIK,£(t)n "II+II4+a" Pe,a{lIK,~(O)n "IIi4+a
- -+ II KIJlaua, ~(O) n "lIlla+a + IIF,"lI+lla+a}'

and 11K, "II+II4+a " ~ a{ditto},

where ua is some CHa vector field on ~(O) which is nowhere tangent
to ~(O).
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(7040)

By (7.20), the second and higher derivatives of K out of the surface
£(0) may be expressed in t:erms of F and its derivatives out of £(0),
KIJ1aua and derivatives ofK in the surface £(0). By lemma 7.4.3,

IIA, £(0) n tWlla+a < PaQs,

liB, £(O)n "IIlllI+a < PsQs,

lie, £(0) n tWll2+a < PaQa,

IIF, £(0) n tWll2+a < PaIIF, tW+lla+a·

Thus there will be some constant Qt such that

IIK,£(O)n "IIIIHa" Qt{IIK,£(O)n "IIllt+a
- -+ II K1Jlaua, £(0) n tWIIs+a + IIF, "II+II3+a}. (7.41)

The second result follows immediately, since t is bounded on "11+. 0

We can now proceed to prove the existence of solutions of linear
equations of the form (7.20). We firs~ suppose that the components of
A, B, C; F, u and ~ are analytic functions of the local coordinates
Xl, Xli, XS and xt (xt = t) on a coordinate neighbourhood ,v and take the
initial data KIJ = oKIJ and KIJ1aua = IKIJ to be analytic functions
of the coordinates Xl, Xli andx3 on £(O)n ,v. Then from (7.20) one can
calculate the partial derivatives 82(KIJ )/8t2, (}3(KIJ )/8tll (}xi, 8S(KIJ )/8t3,

etc. of the components of K out of the surface £(0) in terms of
derivatives ofoKand IKin £(0). One can then express KIJ as a formal
power series in Xl, x2, x3 and t about the origin ofcoordinates 'P. By the
Cauchy-Kowaleski theorem (Courant and Hilbert (1962), p. 39) this
series will converge in some ball ,v(r) of coordinate radius r to give a
solution of (7.20) with the given initial conditions. One now selects
an analytic atlas from the C'~ atlas of Jf, covers £(0) n ijj with co­
ordinate neighbourhoods of the form ,v(r) from this atlas, and in each
coordinate neighbourhood constructs a solution as above. One thus
obtains a solution on a region "II(ta) for some tll > o. One then repeats
the process using £(t2 ). By the Cauchy-Kowaleski theorem, the ratio
of successive intervals of t for which the power series converges is
independent of the initial data and so the solution can be extended to
the whole of "II+ in a finite number of steps. This proves the existence
ofsolutions oflinear equations of the form (7.20) when the coefficients,
the source term and the initial data are all analytic. We shall now
remove the requirement of analyticity.
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Propo8ition 7.4.7

If conditions (1), (2) and (4) hold and if

(5) Fe W3+a("lI+),

(6) oK e W4+a( .n"(0) n qj), IKe W3+a( .n"(0) n qj),

then there exists a unique solution K e W4+a("lI+) ofthe linear equation
(7.20) such that on .n"(O), KIJ = OKIJ and KIJla uP = lKIJ'

We prove this result by approximating the coefficients and initial data
by analytic fields and showing that the analytic solutions obtained
converge to a field which is a solution of the given equations with the
given initial conditions. Let A.. (n = 1,2,3, ... ) be a sequence of
analytic fields on qj+ which converge strongly to A in WHa("lI+). (A.. is
said to converge strongly to A in Wm if /I A .. - A/lm converges to zero.)
Let B.., C.. and Fn be analytic fields On qj+ which converge strongly
to B, C and F respectively in W3+a(tfI+), and let oK.. and 1K.. be analytic
fields on .n"(0) n qj which converge strongly to oK and lK in
W4+a(.n"(O) n "lI) and W3+a(.n"(0) n "lI) respectively. For each value
of n there will be an analytic solution K.. to (7.20) with the initial
values K,.IJ = oX,.IJ' K ..IJ1aua = lK..IJ . By the corollary to lemma
7.4.6,IIK.., "lI+IIHa will be bounded as n~CO. Therefore by a theorem
of Riesz (1955) there will be a field Ke W4+a("lI+) and a subsequence
K... of the K.. such that for each b, 0 ~ b ~ 4+a, DbK... converges
weakly to DbK. (A sequence of fields J..I J on.AI is said to converge
weakly to JIJ iffor each 0 00 field JIJ'

f".,. J,.IJJJIdu~ f".,. JIJJJIdU.)

Since A.., B.. and C.. converge strongly to A, Band C in W3("lI+),

sup IA-A.. I, sup IB-B../ and sup IC-G,.I will converge to zero.
Thus L ...(K,..) will converge weakly to L(K). But L ...(K,.,.) is equal to F...
which converges strongly to F. Therefore L(K) = F. On .n"(0) n qj
K ..l J and K ..l Jla u a will converge weakly to KIJ and KIJla u a which
must therefore be equal to oKIJ and lKIJ respectively. Thus K is a
solution of the given equation with the given initial conditions. By
proposition 7.4.5 it is unique. Since each K.. satisfies the inequality in
lemma 7.4.6, K will satisfy it also. 0
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7.5 The existence and uniqueness of developments for the
empty space Einstein equations

We shall now apply the results of the previous section to the Cauchy
problem in General Relativity. We shall first deal with the Einstein
equations for empty space (Tab = 0), and shall discuss the effect of
matter in §7.7.

The reduced Einstein equations

Eabcd(¢cd) ::= 81TTab_(!lab-I!lDab) (7.42)

are quasi-linear second order hyperbolic equations. That is, they have
the form (7.20) where the coefficients A, Band C are functions of
K and DK (actually, in this case Aab = gab is a function of ¢ab and
not of ¢ab/c)' To prove the existence of solutions of these equations we
proceed as follows. We take some suitable trial field ¢'ab and use this
to determine the values ofthe coefficients A, Band C in the operator E.
Using these values we then solve (7.~2) as a linear equation with the
prescribed initial data and obtain a 'new field ¢!'ab. We thus have a
map a which takes r/J' into r/J", and we show that under suitable condi­
tions this map has a fixed point (i.e. there is some ¢ such that
a(r/J) = r/J). This fixed point will be the desired solution of the quasi­
linear equation.

We shall take the background metric ~ to be a solution of the empty
space Einstein equations and choose the surfaces ~(t) (1 ~+ and
ad/l (1 ~+ to be spacelike in ~. Then by lemma 7.4.1 there will be Bome
positive constants Qa such that if for some value of a ~ 0

(7.43)

then the coefficients A', B' and C' determined by r/J' satisfy conditions
(1), (2) and (4) of lemma 7.4.6 for given values of Q1 and Qa" From
(7.41) one then has

I/r/J", d/I+IIHa ~ ~. a{~or/J, ~(O) (1 ~~4+a + II lr/J, $(0) (1 ~Wa+a}'

Thus the map a: W4+a(d/I+)~W4+a(d/I+) will take the closed ball W(r)
ofradiuB r (r < Qa) in WHa(tf/+) into i~selfprovidedthat

llor/J, ~(O) (1 ~ffHa ~ !r.P7•a-1

and II1r/J, ~(0)(1 ~ia+a ~ !rP7.a-1. (7.44)

We shall show that a has a fixed point if (7.44) holds and if r is
sufficiently small.
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(7.45)

Suppose r/Jl' and r/J2' are In W(r). The fields r/J1" = a(r/J1') and
r/J2" = a(r/J2') satisfy E1'(r/Jl") = 0, E2'(r/J2") = 0 where E1' is the
Einstein operator with coefficients AI" B1' and C1' determined. by r/J1'.
Thus

Since the coefficients AI" B1' and C1' depend differentiably on r/J1' and
Dr/J1' for r/J1' in W(r), there will be some constant Q4 such that on qj+

IA'1- A'21 "Q41r/J\-r/J'al, }
IB'1- B'21" Q4(1r/J'1-r/J'21+IDr/J'1- Dr/J'21),

IC'l - c'21 " Q4(1r/J'1 - r/J'21 + IDr/J'l - Dr/J'21)·

(7.46)

Therefore by lemmas 7.4.1 and 7.4.6,

I(E'1-E'2) (r/J"2>1 " 3rQ4PIP7.~P6.IJOr/J'1- r/J' 21 + IDr/J\ - Dr/J'2/)'

We now apply lemma 7.4.4 to (7.45) to obtain the result

where Q5 is some constant independent of r. Thus for sufficiently
small r, the map a will be contracting in the II III norm (i.e.
Ila(r/J1) - a(r/Ja)II 1< II r/J1 - r/J2~1) and the sequence an (r/J'1) will converge
strongly in W1("II+) to some field r/J. But by the theorem ofRiesz some
subsequence of the an (r/J'1) will converge weakly to some field
cf) eW(r). Thus r/J must equal cf) and so be in W(r). Therefore a(r/J) will
be defined. Now

Ila(r/J) - an+1(r/J'1)' "11+111" rQ511r/J- an (r/J'l)' "11+111'

As n~oo, the right-hand side tends to zero. This implies that
Ila(r/J) - r/J, "11+111 = 0 and so that a(r/J) = r/J. Since the map a is con­
tracting the fixed point is unique in W(r). We have therefore proved:

Proposition 7.5.1

If ~ is a solution of the empty space Einstein equations, the reduced
empty space Einstein equations have a solution r/Je WHIJ("II+) if

IIor/J,~(O)(1 qjUHIJ and Illr/J,~(O)(1 qj~3+a are sufficiently small.
IIr/J, ~(O) (1 qj+IIHIJ will be bounded and so r/J will be at least C(2+IJ)-. 0

This solution will be locally unique even among solutions which are
not in W4("II+).
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(7.48)

where

Proposition 7.5.2
Let cf) be a ()1- solution of the reduced empty space Einstein equations
with the same initial data on an open set 1/ c .n"(O) n "lI. Then cf) = ep
on a neighbourhood of "Y in tfI+.

Since cf) is continuous one can find a neighbourhood "lI' of"Y in tfI such
that the conditions oflemma 7.4.4 hold for A, Band C. AB before one
has

Similarly there will be some Q6 such that

Applying lemma 7.4.4 to (7.48) one obtains an inequality of the form

dx/dt ~ Q,x,

x = f: llcf)-ep,.n"(t')n tfI~llldt'.

Therefore cf) = ep on qf~. o
Proposition 7.5.1 shows that if one makes a sufficiently small
perturbation in the initial data of an empty space solution of the
Einstein equations one obtains a solution in a region tfI+. What one
wants however is to prove the existence of developments for any initial
data hab and XOb which satisfy the constraint equations on a three­
manifold .9. To do this we proceed as follows. We take J( to be R4,
e to be the Euclidean metric and ~ to be the flat, Minkowski metric
(this is a solution of the empty space Einstein equations). In the usual
Minkowski coordinates Xl, x2, xl! and x4 (x4 = t) we take tfI to be such
that a"lln qf+ is spacelike and .n"(O)n dij consists of the points for
which (X1)2+ (X2)2+ (X3)2 ~ 1, x4 = o. The idea now is that any metric
appears nearly flat if looked at on a fine enough scale. Therefore ifone
maps a sufficiently small region of .9 onto .n"(O) n dij, one can use
proposition 7.5.1 and obtain a solution on tfI+. We then repeat this for
other portions of.9 and join up the resulting solutions to form a
manifold J( with metric ~ which is a development of (.9, w).

Let,v;. be a coordinate neighbourhood in.9 with coordinates yl, y2
and y3 such that at p, the origin of the coordinates, the coordinate
components of hab equal8ab• Let ,v;.(/l) be the open ball of coordinate
radius 11 about p. Define an imbedding °1: ~(/l) ~ tfI by Xi = Il-lyi
(i = 1,2, 3), x4 = o. By the UBuallaw of transformation of a basis, the
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(7.49)

components of O*hab and O*Xab with respect to the coordinates {x} are
11-ll times the components of hab and Xab with respect to the co­
ordinates {y}. We define new fields h'ab and X'ab on~ by h'ab = 1111hab
and X'ab = 113 Xab. Then since h is continuous (in fact CHa) on gone
can make g'ab_DQb and g'ab1cuc arbitrarily small on ~(O) (1 "lI by
taking 11 sufficiently small, where g'ab and g'ab1cU C are defined from
h'ab and X'ab in the manner of §7.3. The derivatives of g'ab and g'ab1c U C

in the surface ~(O) will also become smaller as 11 is made smaller.
Thus "otP',~(O)(1 qj~4+a and "ltP',~(O)(1 qjW3+a can be made small
enough that proposition 7.5.1 can be applied and a solution for tP'
obtained on "lI+. Then g'f = 11-2 g'ab will be a solution of the reduced
Einstein equations with the initial data determined by hab and Xab.
Similarly one can 0 btain a solution on "lI_, the part of"ll on which t ~ O.

One can now cover g by coordinate neighbourhoods ~(/a.) of the
form ~(/1)' map them by imbeddings 0a to neighbourhoods "lIa. of the
form "lI and obtain solutions ga.ab on "lIa.. The problem now is to
identify suitable points in the overlaps to make the collection of the
"lIa. into a manifold with a metric ~. To do this we make use of the
harmonic gauge condition

A.bc _ gbc _ 1~beg gdc = 0
'f' Ie - Ie W de Ie •

By the definition (7.3) of 8ra
be, this is equivalent to gde 8rb

de = O.
Therefore for any function z,

(7.50)

If the background metric is the Minkows&i metric and z is one of the
Minkowski coordinates Xl, x2 , x3 and x4, the right-hand side of (7.50)
will vanish. Suppose now one has an arbitrary WHa Lorentz metric ~
011 a manifold .,,1(. In some neighbourhood qy c."l( one can find four
solutions Zl, Z2, Z3 and Z4 of the linear equation

(7.51)

which are such that their gradients are linearly independent at each
point of qy. We may then define a diffeomorphism p: qy~..Ii by
xli = za (a = 1,2,3,4). This diffeomorphism will have the property
that the metric p*gab on..li will satisfy the harmonic gauge condition
with respect to the Minkowski metric ~ on 1. Thus if the metric ~ is
a solution of the Einstein equations on .,,1(, the metric p* ~ will be
a solution ofthe reduced Einstein equations on ..Iiwith the background
metric ~.
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The procedure to identify points in the overlap between two neigh­
bourhoods 'PI", and 'PIp is therefore to solve (7.51) on 'PI", for the coordi­
nates xl, xl, xl and xl using the initial values for xl and Xpa'bub
determined by the overlap of the coordinate neighbourhoods r.. and
"I/J on 9'. In fact x/,aua = 0 (i = 1, 2, 3) and xl,aua = 1 where
ua = O/ox",ais the unit vector in 'PI",orthogonal to ~(O)inthe metric~.

Thusxl = x",4though x/willnotin general be equal tox",i. Byproposi­
tion 7.4.7. the coordinates xl will be O(2+a)- functions on 'PI",. (In
proposition 7.4.7 the background metric with respect to which the
covariant derivatives are taken has to be Q<5+a)-. Thus it cannot be
applied directly to (7.51), since the covariant derivatives are taken
with respect to ~, which is only WHa. However one can introduce
a C5+a background metric g and express (7.51) in the form

Znabg"b+znaB" = 0,

where II indicates covariant differentiation with respect to g. Proposi­
tion 7.4.7 can then be applied to this equation.)

Since the gradients of xpa are linearly independent on~(O) (1 'PI""
they will be linearly independent on BOme neighbourhood 'PI"", of
~(O) in 'PI",. The metric P,.g': will be at least Cl- on p,('PI"",) in
'PIp. Since it will obey the reduced empty space Einstein equations
on 'PIp in the background metric ~ and since it has the same initial data
on 0p("y.. (1 "Ip), it must coincide with ~p on some neighbourhood 'PI/of
Op("y.. (1 "Ip) in 'PIp. This shows that one may join together 'PI"", and 'PI'p
to obtain a development of the region "y.. U"Ip of 9'. Taking the
covering {"y..} of 9' to be locally finite, one may proceed in a similar
fashion to join together the subsets of the other neighbourhoods {'PI",}
to obtain a development of9', i.e. a manifold ..,I( with a metric ~ and
an imbedding 0: 9' ~..,I(such that ~ satisfies the empty space Einstein
equations and agrees with the prescribed initial data won 0(9'), which
is a Cauchy surface for ..,1(. If (..,1(', ~/) is another development of(9',w)
one can by a similar procedure establish a diffeomorphism p, between
some neighbourhood of 0'(9") in..,l(' and BOme neighbourhood of 0(9')
in..,l( such that P,.g'ab = gab. We have therefore proved:

The local Cauchy development theorem

IfhabE WHa(9') and XabE W3+a(9') satisfy the empty space constraint
equations there exist developments (..,I(,~) for the empty space
Einstein equations such that ~E W4+a(..,I() and ~E WHa(~) for any
smooth spacelike surface ~. These developments are locally unique
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in that if (..,((', g') is another W4+a development of (9', w) then (..A, g)
and (..,((', g') are both extensions of some common development of
(9',w).

That g E WHapf') follows from lemma 7.4.6 since the surfaces of
constant t can be chosen arbitrarily. 0

7.6 The maximal development and stability

We have shown that if the initial data satisfied the empty space
constraint equations one can find a development, i.e. one can construct
a solution some distance into the future and past of the initial surface.
In general, this development can be extended further into the future
and past to give a larger development of (9', w). However we shall
show by an argument similar to that of Choquet-Bruhat and Geroch
(1969) that there is a unique (up to a diffeomorphism) development
(..,((, g) of (9', w) which is an extension of any other development
of (9', w).

Recall that (..,((1' gl) is an extension of (..,((2' g2) if there is an imbed­
ding p,: ..A2~..,((1 such that P,.g2 = gl' and such that ()1-1p,()2 is the
identity map on sP. Given a point qE9', and a distance 8 one can
uniquely determine points PI E.A'l and P2E..,((2 by going a distance 8

along the geodesics orthogonal to ()1(9') and ()2(9') through ()l(q) and
()2(q) respectively. Since P,(P2) must equal PI' the imbedding p, must be
unique. One can therefore partially order the set of all developments
of (9', w), writing (..,((2' g2) " (..,((1' gl) if (..AI' gl) is an extension of
(..,((2' g2)· Ifnow {(..,((.., g,.)} is a totally ordered set (a set d is said to be
totally ordered if for every pair a, b of distinct elements of .91, either
a " b or b " a) of developments of (9', w), one can form the manifold
..A' as the union of all the ..,((.. where for (..,((a' gGt) ~ (..,((p, gp) each
P.. E..,((a is identified with P,ap(Pa) E..,((p, where P,..p: Jt,.~Jlp is the
imbedding. The manifold ..,((' will have an induced metric g' equal to
P,... g,. on each P,a(JI..) where P,..: ..,((..~..,((' is the natural imbedding.
Clearly (..A', g') will also be a development of (9', w); therefore every
totally ordered set has an upper bound, and so by Zorn's lemma (see,
for example, Kelley (1965), p. 33) there is a maximal development
(.ii, g) of (9', w) whose only extension is itself.

We shall now show that (.ii, g) is an extension ofevery development
of (9', w). Suppose (..,((', g') is another development of (9', w). By the
local Cauchy theorem, there exist developments of (9', w) of which
(.ii, g) and (..A', g') are both extensions. The set of all such common
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developments is likewise partially ordered and so again by Zorn's
lemma there will be a maximal development (..L", ~") with the imbed­
dings ft:..L" ~JI and p,':..L" ~..L', etc. Let ..L+ be the union of
JI,..L' and vIt", where each p" E..L" is identified with fi(p")EJI and
p,'(p") E..L'. If one can show that the manifold ..L+ is Hausdorff, the
pair (..L+, ~+) will be a development of (.9", w). It will be an extension
of both (JI, g) and (vIt', ~'). However the only extension of (JI, g) is
(.Ii, g) itself, and so (JI, g) must equal (..L+, ~+) and be an extension
of (..L', ~').

Suppose that ..L+ were not Hausdorff. Then there exist points
p E(ft(vIt"»" c JI and p' E(p,'(vIt"»" c ..L' such that every neighbour­
hood tfI/ of p has the property that p,'(fl-l(iJIl» contains p'. Now since
(..L", ~") is a development, it will be globally hyperbolic as will its
image ft(..L") in .Ii. Therefore the boundary of ft(..L") in JI must be
achronaI. Let y be a timelike curve in JI with future endpoint at p.
Then p' must be a limit point in..L' of the curve p,'ft-1(y). In fact it
must be a future endpoint, since stro~ causality holds in (vIt', ~').

'rhus the point p' is unique, given p. Further, by continuity vectors
at p' can be uniquely associated with vectors at p. Thus one can find
normal coordinate neighbourhoods tilofp in.4 and iJIl' ofp' in vIt' such
that under the map p,'ft-1points oft:Pi (1 ft(..L") are mapped into points
of iJIl' (1 p,'(..L") with the same coordinate values. This shows that the
setS&" of all 'non-Hausdorff' points of (fl(..L"»" is open in (fl(..L"»".
We shall suppose thatS&" is non-empty, and so obtain a contradiction.

IfXis a past-directed null geodesic in;;; through PES&", then since
one can associate directions atp with directionsatp', one can construct
a past-directed null geodesic A' through p' in vIt' in the corresponding
direction. To each point of X(1 (fl(..L"»" there will correspond a point
of A' (1 (p,'(..L"»" and so every point ofA(1 (fl(vIt"»" will be inS&". Since
0(.9") is a Cauchy surfacefor.4, Amust leave (fi(..L"»" at some point q.
There will be some point i ES&" in a neighbourhood ofqsuch that there
is a spacelike surface .II through i which has the property that
(.i! - i) c ft(vIt"). There will be a corresponding spacelike surface
:;It" = (p,'ft-1(.II-i» ur' in..L' through the corresponding point r'.
The surfaces .it' and :;It" may be regarded as images of a three­
dimensional manifold :;It' under imbeddings lj/::;It'~;;; and
Yr': :;It'~..L' such that lj/-1ftp,'-IYr' is the idehtity map On :;It' _lj/-l(p).
The induced metrics lj/.(g) and Yr' .(~') On .Ye will agree since :it - P
and :;It" - p' are isometric. By the local Cauchy theorem, they will be
in W4+a(:;It'). Similarly the second fundamental forms will agree and
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be in W3+a(on"). Neighbourhoods of.# in.J( and on'" in."l(' would be
W4+a developments of .Yt'. By the local Cauchy theorem they must be
extensions of the same common development (.,,1(*, g*). Joining
(.,,1(*, g*) to (.,,1(", g") one would obtain a larger development of (9', w),
of which (1, g) and (.,,1(', g') would be extensions. This is impossible,
since (.,,1(", g") was the largest such common development. This shows
that .,,1(+ must be Hausdorff, and so that (.J(, g) must be an extension
of (.,,1(', g').

We have therefore proved:

The global Cauchy development theorem

Ifhab E W4+a(9') and Xab E W3+a(9') satisfy the empty space constraint
equations, there exists a maximal development (."I(, g) of the empty
space Einstein equations with g E W4+a(."I() and g E W4+a(~) for any
smooth spacelike surface on". This development is an extension of any
other such development.

We have so far only proved that this development is maximal among
W4+a developments. If a is greater than zero, there will also be
W4+a-l, W4+a-2, "', W4 developments which are extensions of the
W4+a development. However, Choquet-Bruhat (1971) has pointed out
that these developments must all coincide with the W4 development.
This is because one can differentiate the reduced Einstein equations
and then regard them as linear equations on the W4 development, for
the first derivatives of gab. Then using proposition 7.4.7 one can show
that gab is W5 on the W4 development, if the initial data is W5. By
continuing in this way, one can show that if the initial data is C<Xl, there
will be a Ccr> development which will in fact coincide with the W4

development.
We have proved the existence and uniqueness of maximal develop­

ments only for W4 or higher metrics. In fact, it is possible to prove the
existence of developments for W3 initial data, but we have not been
able to prove the uniqueness in this case. It may be possible to extend
the W4 maximal development either 80 that the metric does not remain
in W4, or so that 0(9') does not remain a Cauchy surface. In the latter
case, a Cauchy horizon occurs; examples of this were given in
chapter 6. On the other hand it may be that some sort of singularity
occurs, in which case the development cannot be extended with a
metric which is sufficiently differentiable to be interpreted physically.
In fact, theorem 4 of the next chapter will show that if9' is compact
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and XObhab is negative everywhere on 9', then the development cannot
be extended to be geodesically complete with a 0 2- metric, Le. with
locally bounded curvature.

We have shown there is a map from the space of pairs of tensors
(hab,~) on 9' which satisfy the constraint equations to the space of
equivalence classes of metrics g on a manifold."l(, which, by proposi­
tion 6.6.8, is diffeomorphic to 9' x Ri. If two pairs (hCb,~) and
(h'ab, X'ab) are equivalent under a diffeomorphism A: 9'~9' (i.e.
A. hab == h'ab and A* Xcb = X'ab) they will produce equivalent metrics g.
We thus have a map from equivalence classes of pairs (hab, xab ) to
equivalence classes ofmetrics g. Now hab and Xcb together have twelve
independent components. The constraint equations impose four rela­
tions between these, and the equivalence under diffeomorphisffiS may
be regarded as removing a further three arbitrary functions, leaving
five independent functions. One of these functions may be regarded as
specifying the position of 0(9') within the development (."I(, g). There­
fore maximal developments of the empty space Einstein equations
are specified by four functions of three variables.

One would like to show that the map from equivalence classes of
(hab,~) to equivalence classes of g is continuous in some sense. The
appropriate topology on the equivalence classes for this is the
W r compact-open topology (cf. §6.4). Let ~ be a Or Lorentz metric on ."I(
and "lI be an open set with compact closure. Let V be an open set in
Wr("lI) and let 0("lI, V) be the set of all Lorentz metrics on."l( whose
restrictions to "lI lie in V. The open sets of the Wr compact open
topology on the space ~(."I() of all Wr Lorentz metrics On vIt are
defined to be the unions and finite intersections of sets of the form
O(U, V). The topology of the space ~*(."I() of equivalence classes of
wr metrics on vIt is then that induced by the projection

1T: ~(vIt) ~ !l;.*(..4)

which assigns a metric to its equivalence class (i.e. the open sets of
!l;.*(vIt) are of the form 1T(Q) where Q is open in !l;.(."I(». Similarly the
Wr compact open topology on the space Or(9') of all pairs (hab,~l
which satisfy the constraint equations is defined by sets of the form
O("lI, V, V') consisting of the pairs for which 1J,ab e V and~eV' where
V and V' are open sets in Wr(9') and Wr- i (9') respectively. The Oa>
metrics on J( form a subspace ~ro(."I() of the space!l' (vIt) of all
Lorentz metrics on vII. Since a Oro metric is Wr for any r, one has the
Wr topology on !l'",(vIt). One can then define the Oro or W'" topology
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on .9'00(.A) as that given by all the open sets in the Wr topologies on
.9'00(.A) for every r. The Coo topology on .9'00*(.A) and on 0 00(.9") are
defined similarly.

One would like to show that the map d r from the space Or*(.9") of
equivalence classes of pairs (hab,xm') to the space !l';.*(.A) of equiva­
lence classes of metrics is continuous with the Wr compact open
topology on both spaces. In other words, suppose one has initial data
hab E Wr(.9") and Xab E wr-l(.9") which gives rise to a solution g E Wr(.A)
on .A. Then if"I' is a region of.A with compact closure, and e > 0, one
would like to show there was some region dJI of.9" with compact closure
and some 8 > 0 such that II g' - g, "I'llr < e for all initial data (h'ab, X'ab)- -
such that II h' - h, dJlllr < 18and 1Ix' - x, dJlllr-l < 18. This result may
be true, but we have been unable to prove it. What we can prove is
that this result holds if the metric is Or+1)-. This follows immediately
from proposition 7.5.1, taking g to be the background metric and t1f
to be some suitable neighbourhood ofJ-("I') (1 J+(O(.9"». In fact if one
examines lemma 7.4.6, one sees that the condition on the background
metric can be weakened from Or+l)- to W1r+l), but not to Wr, since the
(r-1)th derivatives of the Riemann tensor of the background metric
appear. (By the background metric being Wr+l we mean that it is
Wr+l with respect to a further Or+l background metric.) Thus the map
d r : 0r*(.9")-+!l';.*(.A) from the equivalence classes of initial data to
the equivalence classes ofmetrics will be continuous in the Wr compact
open topology at every Wr+l metric. Although the Wr+l metrics form
a dense set in the Wr metrics, there is a possibility that the map might
not be continuous at a Wr metric which was not also a Wr+I metric.
However 00+ 1 = 00 and so the map d oo : 0*00(.9")-+.9'*00(.A) will be
continuous in the ceo topology on both spaces.

One can express this result as:

The Oauchy stability theorem

Let (.A, g) be the W6+a (0 =5;; a =5;; 00) maximal development of initial
data hE W6+a(.9") and XE W4+a(.9"), and let "I' be a region of J+(O(.9"»
with compact closure. Let Z be a neighbourhood of g in.9'6+a('t'") and
t1f be an open neighbourhood in 0(.9") of J-("I') (1 0(.9") with compact
closure. Then there is some neighbourhood Y of (h, X) in 0li+a(t1f) such
that for all initial data (h', X') E Y satisfying the constraint equations,
there is a diffeomorphism p,: .A' -+.A with the properties

(1) 0-1p,0' is the identity on 0-1(t1f),
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(2) fl*g'EZ,
where (.A', g') is the maximal development of (h', X'). 0

Roughly speaking what this theorem says is that if the perturbation
of initial data on the Cauchy surface 0(.9') is small on J-(1/) n0(.9'),
then one gets a new solution which is near the old solution in "/1". In
fact the perturbation of the initial data has to be small on a slightly
larger region of the Cauchy surface than J-("/I") n0(.9'), since the null
cones will be slightly different in the new solution and so "/I" may not
lie in the Cauchy development ofJ-("/I") n0(.9').

7.7 The Einstein equations with matter

For simplicity we have so far considered the Einstein equations only
for empty space. However similar results hold when matter is present
providing that the equations governing the matter fields 'Yli)IJ obey
certain physically reasonable conditions. The idea is to solve the
matter equations with the prescribed initial conditions in a given
space-time metric g'. One then solves'the reduced Einstein equations
(7.42) as linear equations with the coefficients determined by g' and
with the source term T'ab determined by g' and by the solution for the
matter fields. One thus obtains a new metric gn and repeats the
procedure with g" in place of g'. To show that this converges to a
solution of the combined Einstein and matter equations one has to
impose certain conditions on the matter equations. We shall require:

(a) if {o'!'(t)}E W 4+a(lK) and {1'!'(t)}E W8+a(,*,,) are the initial data on
an a.chronal spacelike surface lK in a W4+a metric g, there exists a
unique solution of the matter equations in a neighbourhood of lK in
D+(lK) with {'i'li)}E W4+a(lK') for any smooth spacelike surface lK',
and ttl _ ttl U? I ua _ U? I on .~.

'X(i> - o'Xli), T (tl Jla - 1T (t) Jon,

(b) if {'i'w} is a W6+a solution in the W6+a metric g on the set '11+,
then there exist positive constants 01 and 011 such that

L 11,!,'(t) - '!'(i)' '11+~4+a =5;; Oll{llg' - g, '11+114+a
(f)

+L Ilo'!"w- o'!'w. lK(O) n '1Ii4+a +L 111'!"(i) -1'!'W. ,*,,(0) n '1IUS+a}
(i) (i) ,

for any W4+a solution {'i"w} in the metric g~ such that

Ilg'-g,'1I+IIHa < 01
and
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(e) the energy-momentum tensor Tab is polynomial in

'Y(i/J' 'Y(.{J;a and gab.

Condition (a) is the local Cauchy theorem for the matter field in
a given space-time metric. Condition (b) is the Cauchy stability
theorem for the matter field under a variation of the initial conditions
and under a variation of the space-time metric g. If the matter
equations are quasi-linear second order hyperbolic equations, these
conditions may be established in a similar manner to that for the
reduced Einstein equations, providing that the null cones of the
matter equations coincide with or lie within the null cone ofthe space­
time metric g. In the case of the scalar field or the electromagnetic
potential which obey linear equations, these conditions follow from
proposition 7.4.7. One can also deal with a scalar field coupled to the
electromagnetic potential; one fixes the metric and the electro­
magnetic potential, solves the scalar field as a linear equation in that
metric and potential, and then solves the electromagnetic field in the
given metric with the scalar field as the source. Iterating this procedure
one can show that one converges on a set of the form t1f+ to a solution
of the coupled scalar and electromagnetic equations in the given
metric, providing that the initial data are sufficiently small. One then
shows, by rescaling the metric and the fields, that for t1f+ sufficiently
small (as measured bythespace-timemetricg) onecan obtain a solution
for any suitable initialdata. The same procedurewillworkforanyfinite
number of coupled quasi-linear second order hyperbolic equations,
where the coupling does not involve derivatives higher than the first.

The equations ofa perfect fluid are not second order hyperbolic, but
form a quasi-linear first order system. (For the definition ofa first order
hyperbolic system, see Courant and Hilbert (1962), p. 577.) Similar
results can be obtained for such systems providing that the ray cone
coincides with or lies within the null cone of the space-time with
metric g. The requirement that the matter equations should be second
order hyperbolic equations or first order hyperbolic systems with their
cones coinciding with or lying within that of the space-time metric g,
may be thought of as a more rigorous form of the local causality
postulate of chapter 3.

With the conditions (a), (b) and (e) one can establish propositions
7.5.1 and 7.5.2 for the combined reduced Einstein's equations and the
matter equations; from these, the local and global Cauchy develop­
ment theorems and the Cauchy stability theorem follow.
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Space-time singularities

In this chapter, we use the results of chapters 4 and 6 to establish some
basic results about space-time singularities. The astrophysical and
cosmological implications of these results are considered in the next
chapters.

In §8.1, we discuss the problem of defining singularities in space­
time. We adopt b-incompleteness, a generalization of the idea of
geodesic incompleteness, as an indication that singular points have
been cut out of space-time, and characterize two possible ways in
which b-incompleteness can be associated with some form of curvature
singularity. In §8.2, four theorems are given which prove the existence
of incompleteness under a wide variety of situations. In §8.3 we give
Schmidt's construction of the b-boundary which represents the
singular points of space-time. In §8.4 we prove that the singularities
predicted by at least one of the the theorems cannot be just a dis­
continuity in the curvature tensor. We also show that there is not only
one incomplete geodesic, but a three-parameter family of them. In
§8.5 we discuss the situation in which the incomplete curves are totally
or partially imprisoned in a compact region of space-time. This is
shown to be related to non-Hausdorff behaviour of the b-boundary.
We show that in a generic space-time, an observer travelling on one of
these incomplete curves would experience infinite curvature forces.
We also show that the kind of behaviour which occurs in Tauu-NUT
space cannot happen if there is some matter present.

8·1 The definition of singularities

By analogy with electrodynamics one might think it reasonable to
define a space-time singularity as a point wheJ.;tl the metric tensor was
undefined or was not suitably differentiable. However the trouble with
this is that one could simply cut out such points and say that the
remaining manifold represented the whole of space-time, which would
then be non-singular according to this definition. Indeed, it would seem

[ 256 ]
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inappropriate to regard such singular points as being part of space­
time, for the normal equations of physics would not hold at them and
it would be impossible to make any measurements. We therefore
defined space-time in §3.1 as a pair (.A, g) where the metric g is
Lorentzian and suitably differentiable and we ensured that no regular
points were omitted from the manifold .A along with the singular
points by requiring that (.A, g) could not be extended with the
required differentiability.

The problem of defining whether space-time has a singularity now
becomes one of determining whether any singular points have been
cut out. One would hope to recognize this by the fact that space-time
was incomplete in some sense.

In the case of a manifold .A with a positive definite metric g, one
can define a distance function p(x, y) which is the greatest lower bound
of the length of curves from x to y. The distance function p(x,y) is
a metric in the topological sense ; that is, a basis for the open sets of.A
is provided by the sets £lA(x, r) consisting of all points y E.A such that
p(x, y) < r. The pair (.A, g) is said to be metrically complete (m-complete)
if every Cauchy sequence with respect to the distance function p
converges to a point in.A. (A Oauchy sequence is an infinite sequence
of points x" such that for any e > 0 there is a number N such that
p(x",x1l.) < e whenever nand m are greater than N.) An alternative
formulation is that (.A, g) is m-complete if every 0 1 curve of finite
length has an endpoint in the sense of §6.2 (note that the curve need
not be 0 1 at the endpoint). It therefore follows that m-completeness
implies geodesic completeness (g-completeness), that is every geodesic
can be extended to arbitrary values of its affine parameter. In fact it
can be shown (see Kobayashi and Nomizu (1963» that g-completeness
and m-completeness are equivalent for a positive definite metric.

A Lorentz metric, on the other hand, does not define a topological
metric and so one is left only with g-completeness. One can distinguish
three kinds of g-incOlI~pleteness:that of timelike, null and spacelike
geodesics. If one cuts a regular point out of space-time, the resulting
manifold is incomplete in all three ways and so one might hope that
a space-time which was complete in one ofthe above senses would also
be complete in the other two. Unfortunately this is not necessarily so
(Kundt (1963», as is shown by the following example given by Geroch
(1968b). Consider two-dimensional Minkowski space with coordinates
x and t and metric galr Define a new metric Dab = 0.2gab where the
positive function 0. has the properties:
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(1) 0 = 1 outside the region between the vertical lines x = - 1 and
x= +1;

(2) 0 is symmetric about the t-axis, that is, O(t, x) = O(t, - x);

(3) on the t-axis, t20 -+- 0 as t -+- 00.

By (2) the t-axis is a timelike geodesic which by (3) is incomplete as
t -+- 00. However every null and spacelike geodesic must leave and not
re-enter the region between x = -1 and x = + 1. Therefore by (1) the
space is null and spacelike complete. In fact one can construct
examples which are incomplete in any of the three possible ways and
complete in the ~maining two.

Timelike geodesic incompleteness has an immediate physicalsignifi­
cance in that it presents the possibility that there could be freely
moving observers or particles whose histories did not exist after (or
before) a finite interval of proper time. This would appear to be an
even more objectionable feature than infinite curvature and so it
seems appropriate to regard such a space as singular. Although the
affine parameter on a null geodesic does not have quite the same
physical significance as proper time does on timelike geodesics, one
should probably also regard a null geodesically incomplete space-time
as singular both because null geodesics are the histories of zero rest­
mass particles and because there are some examples (such as the
Reissner-Nordstrom solution, §5.5) which one would think of as
singular but which are timelike but not null geodesically complete.
As nothing moves on spacelike curves, the significance of spacelike
geodesic incompleteness is not so clear. We shall therefore adopt the
view that timelike and nuU geodesic completeness are minimum condi­
tions for space-time to be considered singularity-free. Therefore if a
space-time is timelike or null geodesically incomplete, we shall say
that it has a singularity.

The advantage of taking timelike and/o~ null incompleteness as
being indicative of the presence of a singularity is that on this basis
one can establish a number of theorems about their occurrence. How­
ever, the class of timelike and/or null incomplete space-times does not
include all those one might wish to consider as singular in some sense.
For example Geroch (1968b) has constructed a space-time which is
geodesically complete but which contains an inextendible timelike
curve of bounded acceleration and finite length. An observer with
a suitable rocketship and a finite amount of fuel could traverse this
curve. After a finite interval of time he would no longer be represented
by a point of the space-time manifold. Ifone is going to say that there
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is a singularity in a space-time in which a freely falling observer comes
to an untimely end, one should presumably do the same for an
observer in a rocketship. What one needs is some generalization of the
concept of an affine parameter to all 0 1 curves, geodesic or non­
geodesic. One could then define a notion of completeness by requiring
that every Q1 curve of finite length as measured by such a parameter
had an endpoint. The idea we are going to use seems to have been first
suggested by Ehresman (1957), and has been reformulated in an
elegant manner by Schmidt (1971).

Let A(t) be a 0 1 curve through p EJI and let {Ei } (i = 1,2,3,4) be
a basis for Tp • One can parallelly propagate {Ei } along A(t) to obtain
a basis for TACt) for each value of t. Then the tangent vector
V = (fJlfJt)".w can be expressed in terms ofthe basis as V = Viet) E i , and
one can define a generalized affine parameter u on A by

E i = ~A/El"
j'

As {Ei ,} and {Et } are parallelly transported along A(t), this relation is
maintained with constant A[. Thus

u = f (~ViVi)ldt.
p •

The parameter u depends on the point p and the basis {Ei } atp. If{Ed
is another basis at p, then there is some non-singular matrix Ai such
that

V'~(t) = ~Al Viet).
j

Since A/ is a non-singular matrix, there is some constant 0 > 0 such
that

o~ ViVi '" ~ V'·Vi' '" 0-1~ PVi.
i t' i

Thus the length of a curve Ais finite in the parameter u if and only if
it is finite in the parameter u'. IfAis a geodesic curve then u is an affine
parameter on A, but the beauty ofthe definition is that u can be defined
on any Q1 curve. We shall say that (JI,I1) is b-complete (short for
bundle complete, see §8.3) if there is an endpoint for every 0 1 curve
of finite length as measured by a generalized affine parameter. If the
length is finite in one such parameter it will be finite in all such
parameters, so one loses nothing by restricting the bases to be ortho­
normal bases. lithe metric g is positive definite, the generalized affine
parameter defined by an orthonormal basis is arc-length and so
b-completeness coincides with·m-completeness. However b-complete­
ness can be defined even ifthe metric is not positive definite; in fact it
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can be defined providing there is a connection on .,,1(. Clearly
b-completeness implies g-completeness, but the example quoted
shows that the converse is not true.

We shall therefore define a space-time to be singularity-free if it is
b-complete. This definition conforms with the requirement made
above, that timelike and null geodesic completeness are minimum
conditions for a space-time to be considered singularity-free. One
might possibly wish to weaken this condition slightly, to say that
space-time is singularity-free it it is only non-spacelike b-complete,
Le. if there is an endpoint for all non-spacelike 0 1 curves with finite
length as measured by a generalized affine parameter. However this
definition would appear rather awkward in the bundle formulation of
b-completeness which we shall give in §8.3. In fact each ofthe theorems
we give in §8.2 implies that (.,,1(, 11) is timelike or null g-incomplete and
hence has a singularity by both the above definitions.

One feels intuitively that a singularity ought to involve the curva­
ture becoming unboundedly large near a singular point. However
since we have excluded singular points from 'bur definition of space­
time, difficulty arises in defining both'near' and' unboundedly large' .
One can say that points on a b-illcomplete curve are near the singu­
larity if they correspond to values of a generalized affine parameter
which is near the upper bound of that parameter. 'Unboundedly
large' is more difficult, since the size of components of the curvature
tensor depend on the basis in which it is measured. One possibility is
to look at scalar polynomials in gab' 7Jabcd' and Rabcd• We shall say that
a b-incomplete curve corresponds to a scalar polynomial curvature
singularity (s.p. curvature singularity) if any of these scalar poly­
nomials is unbounded on the incomplete curve. However, with a
Lorentz metric these polynomials do not fully characterize the
Riemann tensor since, as Penrose has pointed out, in plane-wave
solutions the scalar polynomials are all zero but the Riemann tensor
does not vanish. (This is similar to the fact that a non-zero vector may
have zero length.) Thus the curvature might become very large in
some sense even though the scalar polynomials remained small.
Alternatively one might measure the components of the curvature'
tensor in a basis that was parallelly propagated along a curve. We shall
say that a b-incomplete curve corresponds to' a curvature singularity
with respect to a parallelly propagated basis (a p.p. curvature singu­
larity) if any ofthese components is unbounded on the curve. Clearly
an s.p. curvature singularity implies a p.p. curvature singularity.
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One might expect that in any physically realistic solution, a
b-incomplete curve would correspond both to an s.p. and a p.p.
curvature singularity. However an example of a solution where this
does not seem to be true is provided by Taub-NUT space (§5.8). Here
the incomplete geodesics are totally imprisoned in a compact neigh­
bourhood of the horizon. As the metric is perfectly regular on this
compact neighbourhood, the scalar polynomials in the curvature
remain finite. Because of the special nature of this solution, the com­
ponents of the curvature in a parallelly propagated basis along the
imprisoned geodesics remains bounded. Since the imprisoned geo­
desics are contained in a compact set, one could not extend the
manifold ."I( to a larger four-dimensional Hausdorff paracompact
manifold .,,1(', in which the incomplete geodesics could be continued.
Thus there is no possibility of the incompleteness having arisen from
the cutting out ofsingular points. Nevertheless it would be unpleasant
to be moving on one of the incomplete timelike geodesics for although
one's world-line never comes to an end and would continue to wind
round and round inside the compact set, one would never get beyond
a certain time in one's life. It would, therefore, seem reasonable to say
that such a space-time was singular even though there is no p.p. or s.p.
curvature singularity. By lemma 6.4.8, such totally imprisoned in­
completeness can only occur if strong causality is violated. In §8.5 we
shall show that in a generic space-time, a partially or totally im­
prisoned b-incomplete curve will correspond to a p.p. curvature
singularity. We shall also show that the Taub-NUT kind of totally
imprisoned incompleteness cannot occur if there is some matter
present.

8.2 Singularity theorems

In §5.4 it was shown that there would be singularities in spatially
homogeneous solutions UJlder certain reasonable conditions. Similar
theorems can be obtained for a number of other types of exact sym­
metry. Such results, although suggestive, do not necessarily have any
physical significance because they depend on the symmetry being
exact and clearly in any physical situation this will not be the case. It
was therefore suggested by a number of authors that singularities
were simply the result of symmetries and that they would not occur in
general solutions. This view was supported by Lifshitz, Khalatnikov
and co-workerswho showed that certain classesofsolutions with space-
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like singularities did not have the full number of arbitrary functions
expected in a general solution of the field equations (see Lifshitz and
Khalatnikov (1963) for an account of this work). This presumably
indicates that the Cauchy data which gave rise to such singularities
is of measure zero in the set of all possible Cauchy data and so should
not occur in the real universe. However more recently Belinskii,
Khalatnikov and Lifshitz (1970) have found other classes ofsolutions
which seem to have the full number of arbitrary functions and to
contain singularities. They have therefore withdrawn the claim that
singularities do not occur in general solutions. Their methods are
interesting for the light they shed on the possible structure of singu­
larities but it is not clear whether the power series which are used will
converge. Neither does one obtain general conditions which imply that
a singularity is inevitable. Nevertheless we may take their results as
supporting our view that the singularities implied by the theorems of
this section involve infinite curvature in general.

The first theorem about singularities which did not involve any
assumption of symmetry was given 'by Penrose (1965c). It was
designed to prove the occurrence of a singularity in a star which
collapsed inside its Schwarzschild radius. If the collapse were exactly
spherical, the solution could be integrated explicitly and a singularity
would always occur. However it is not obvious that this would be the
case if there were irregularities or a small amount of angular
momentum. Indeed in Newtonian theory the smallest amount of
angular momentum could prevent the occurrence of infinite density
and cause the star to re-expand. However Penrose showed that the
situation was very different in General Relativity: once the star had
passed inside the Schwarzschild surface (the surface r = 2m) it could
not come out again. In fact the Schwarzschild surface is defined only
for an exactly spherically symmetric solution but the more general
criterion used by Penrose is equivalent for such a solution and is
applicable also to solutions without exact symmetry. It is that there
should exist a closed trapped surface ff. By this is meant a 0 2 closed
(Le. compact, without boundary) spacelike two-surface (normally, 8 2)

such that the two families of null geodesics orthogonal to ff are con-'
verging at ff (Le. l~abyab and ~abyabare negative, where l~ab and ~ab

are the two null second fundamental forms of ff. In the following
chapters we shall discuss the circumstances under which such a surface
would arise.) One may think of ff as being in such a strong gravita­
tional field that even the 'outgoing' light rays are dragged back and
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are, in fact, converging. Since nothing can travel faster than light, the
matter within ff is trapped inside a succession of two-surfaces of
smaller and smaller area and so it seems that something must go
wrong. That this is so is shown rigorously by Penrose's theorem:

Theorem 1

Space-time (.A, g) cannot be null geodesically complete if:

(1) RabKaKb ~ °for all null vectors Ka (cf. §4.3);
(2) there is a non-compact Cauchy surface.Ye in.A;
(3) there is a closed trapped surface ff in.A.

Note: the method of proof is to show that the boundary of the future
of ff would be compact if .A were null geodesically complete. This is
then shown to be incompatible with.re' being non-compact.

Proof. The existence of a Cauchy surface implies that .A is globally
hyperbolic (proposition 6.6.3) and therefore causally simple (proposi­
tion 6.6.1). This means that the boundaryofJ+(ff) will beE+(ff) and
will be generated by null geodesic segments which have past endpoints
on ff and which are orthogonal to ff. Suppose .A were null geo­
desically complete. Then by conditions (1) and (3) and proposition
4.4.6 there would be a point conjugate to ff along every future­
directed null geodesic orthogonal to ff within an affine distance 2c-1

where c is the value of n~abgab at the point where the null geodesic
intersects ff. By proposition 4.5.14, points on such a null geodesic
beyond the point conjugate to ff would lie in 1+(ff). Thus each
generating segment of j+(ff) would have a future endpoint at or
before the point conjugate to ff. At ff one could assign, in a con­
tinuous manner, an affine parameter on each null geodesic orthogonal
to ff. Consider the continuous map p: ff x [0, b] x Q-+-~-K (Q is the
discrete set 1, 2) defined by taking a point pEff an affine distance
v E[0, b] along one or other of the two future-directed null geodesics
through p orthogonal 1(0 ff. Since ff is compact, there will be some
minimum value Co of ( - ~abgab) and (- ~abgab). Then if bo = 2co-I,

P(ff x [0, bo] x Q) would contain j+(ff). Thus j+(ff) would be
compact being a closed subset ofa compact set. This would be possible
if the Cauchy surface .Ye were compact because then j+(ff) could
meet up round the back and form a compact Cauchy surface homeo­
morphic to .YI' (figure 49). However there is clearly going to be trouble
if one demands that .YI' is non-compact. To show this rigorously one
can use the fact (see §2.6) that.A admits a past-directed 0 1 timelike
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FIGURE 49. A two-dimensional section of a geodesically complete space with
a compact Cauchy surface 3t'. The two-sphere fT has a compact boundary
J+(fT) to its future J+(fT). as the outgoing null geodesics from fT meet up
round the back of the cylinder.

vector field. Each integral curve of this field will intersect .Ye (as it is
a Cauchy surface) and will intersect j+(5") at most once. Thus they
will define a continuous one-to-one map a: j+(5")-+-.Ye. If j+(5") were
compact, its image a(j+(5"» would also be compact and would be
homeomorphic to j+(5"). However as .Ye is non-compact, a(j+(5"»
could not contain the whole of .Ye and would therefore have to have
a boundary in .Ye. This would be impossible since by proposition 6.3.1,
j+(5"), and therefore a(j+(5"», would be a three-dimensional mani­
fold (without boundary). This shows that the assumption that J( is
null geodesically complete (which we made in order to prove j+(5")
compact) is incorrect. 0

Condition (1) of this theorem (that R ab KaKb ~ ofor any null vector K)
was discussed in §4.3. It will hold no matter what value the value of
the constant A, provided that the energy density is positive for every
observer. It will be shown in chapter 9 that condition (3) (that there is
a closed trapped surface) should be satisfied in at least some region
of space-time. This leaves condition (2) (that there is a non-compact
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spacelike surface £' which is a Cauchy surface) to be discussed. By
proposition 6.4.9, the existence of spacelike surfaces is guaranteed
provided one assumes stable causality. That the spacelike surface £'
be non-compact is not too serious a restriction since the only place it
was used was to show that a(j+(9"» could not be the whole of £'.
This could also be shown if, instead of taking .Ye to be non-compact,
one required that there exist a future-directed inextendible curve
from £' which did not intersect j+(9"). In other words, the theorem
would still hold even if .Ye were compact, provided there was some
observer who could avoid faIling into the collapsing star. This might
not be possible if the whole universe were collapsing also, but in such
a case one would expect singularities anyway as will be shown
presently. The real weakness of the theorem is the requirement that
.Ye be a Cauchy surface. This was used in two places: first, to show that
J( was causally simple which implied that the generators of j+(9")
had past endpoints on 9", and second, to ensure that under the map a
every point of j+(9") was mapped into a point of .Ye. That the Cauchy
surface condition is necessary is shown by an example due to Bardeen.
This has the same global structure as the Reissner-NordstrOm solution
except that the real singularities at r = 0 have been smoothed out so
that they are just the origins of polar coordinates. The space-time
obeys the condition Rah KaKb ~ 0 for any null but not timelike vector
K, and contains closed trapped surfaces. The only way in which it fails
to satisfy the conditions of the theorem is that it does not have
a Cauchy surface.

It therefore seems that what the theorem tells us is that in a col­
lapsing star there will occur either a singularity or a Cauchy horizon.
This is a very important result since in either case our ability to pre­
dict the future breaks down. However it does not answer the question
of whether singularities occur in physically realistic solutions. To
decide this we need a theorem which does not assume the existence of
Cauchy surfaces. One ofthe conditions ofsuch a theorem must be that
RabKaKb ~ 0 for all timelike as well as null vectors, since failure to
obey this condition is the only way in which Bardeen's example is
unreasonable. The theorem we shall give below requires this condition
and also the chronology condition that there be no closed timelike
curves. On the other hand it is applicable to a wider class of situations
since the existence of a closed trapped surface is now only one of three
possible conditions. One of these alternative conditions is that theJ'('
should be a compact partial Cauchy surface, and the other is that therE'
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FIGURE 50. A point p whose past light cone sta.rts reconverging.

[8.2

should be a point whose past (or future) light cone starts converging
again (figure 50). The first of these other conditions is satisfied in
a spatially closed solution while the second is closely related to the
existence of a closed trapped surface but is in a form which is more
convenient for some purposes; for in the case in which the light cone
is our own past light cone, one can directly determine whether this
condition is satisfied. In the last chapter it will be shown that recent
observations of the microwave background indicate that it is.

The precise statement is:

Theorem 2 (Hawking and Penrose (1970))

Space-time (.A, 11) is not timelike and null geodesically complete if:
(1) RabKaKb ~ 0 for every non-spacelike vector K (cf. §4.3).
(2) The generic condition is satisfied (§4.4), Le. every non-spacelike

geodesic contains a point at which K[aRblcdreK/1KcKd =1= 0, where K is
the tangent vector to the geodesic.

(3) The chronology condition holds on.L (i.e. there are no closed
timelike curves).

(4) There exists at least one of the following:
(i) a compact achronal set without edge,
(ii) a closed trapped surface,



8.2] SINGULARITY THEOREMS 267

(iii) a. point p such that on every past (or every future) null geodesic
from p the divergence () of the null geodesics from p becomes negative
(i.e. the null geodesics from p are focussed by the matter or curvature
and start to reconverge).

Remark. An alternative version of the theorem is that the following
three conditions cannot a.ll hold:

(a) every inextendible non-spacelike geodesic contains a pair of
conjugate points;

(b) the chronology condition holds on...K;
(e) there is an achronal setsP such that E+{sP) or E-{sP) is compact.

(We shall say that such a set is, respectively, future trapped or past
trapped).

In fact it is this form of the theorem that we shall prove. The other
version will then follow since if...K were timelike and null geodesically
complete, (1) and (2) would imply (a) by propositions 4.4.2 and 4.4.5,
(3) is the same as (b), and (1) and (4) would imply (e), since in case (i)
[I' would be the compact achronal set without edge and

E+([I') = E-([I') = sP;

in cases (ii) and (iii) [I' would be the closed trapped surface and the
point p respectively, and by propositions 4.4.4, 4.4.6, 4.5.12 and
4.5.14 E+([I') and E-(sP) would be compact respectively, being the
intersections of the closed sets j+([I') and j-([I') with compact sets
consisting of all the null geodesics of some finite length from sP.

Proof. As the proof is rather long, we shall break it up by first estab­
lishing a lemma and corollary. We note that by an argument similar
to that of proposition 6.4.6, (a) and (b) imply that strong causality
holds on ...K.

Lemma 8.2.1

If [I' is a closed set and if the strong causality condition holds on
J+([I') then H+(E+([I'» is non-compact or empty (figure 51).

By lemma 6.3.2, through every point qej+(sP) -[I' there is a past­
directed null geodeflie flegmellt lying in .i+(.9') which haH a paHt Mr)·

point if and only if qeE+(.9'). (Note that as we no longer assume the
existence of a Cauchy surface, ...K may not be causally simple and so
j+(sP)-E+([I') maybe non-empty.) Therefore if qeJ+([I')-E~([I'),

there is a past-inextendible null geodesic through q which lies in J+(sP)
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FIGURE 51. A future trapped set.9"; null lines are at ± 45°, three lines have been
identified and the points q are at infinity. The a.chronal sets E+(.9"). J +(.9") and
H+(E+(.9")) are shown. A future-inextendible time1ike curve ')'ED+(E+(.9")) is
shown.

and so does not intersect I-(j+(.9». From lemma 6.6.4 it then follows
that q is not in D+(j+(.9)) -H+(j+(.9)). Hence

D+(E+(.9))-H+(E+(.9)) = D+(j+(.9))-H+(J+(.9'))

and .H+(E+(.9» c H+(j+(.9)).

Now suppose that H+(E+(.9)) was non-empty and compact. Then
it could be covered by a finite number of local causality neighbour­
hoods '1Ii . Let PI be a point of J+(.9) n ['1II -D+(j+(.9'))]. Then from
PI there would be a past-inextendible non-spacelike curve Al which did
not intersect either j+(.9') or D+(E+(.9)). Since the '11( have compact
closure, Al would leave '111 ' Letql be a point on Al not in '111 ' Then since
ql eJ+(.9) there would be a non-spacelike curve PI from ql to.9'. This
curve would intersect D+(E+(.9» and hence would intersect some '11(
other than '111 (say, '112 ), Then letp2 be a point ofPI n ['1I2 -D+(j+(.9))]
and continue as before.

This leads to a contradiction since there were only a finite number
of the local causality neighbourhoods '11(, and one could not return to
an earlier '1Ij because no non-spacelike curve can intersect a '1Ii more
than once. Thus H+(E+(.9')) must be non-compact or empty. 0

Corollary

If .9' is a future trapped set, there is a future-inextendible timelike
curve 'Y contained in D+(E+(.9')).
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Put a timelike vector field on .,,1(. If every integral curve of this field
which intersected E+(Y) also intersected H+(E+(.9» they would
define a continuous one-one mapping of E+(.9) onto H+(E+(.9» and
hence H+(E+(Y» would be compact. The intersection of 1+(.9) with
a curve which does not intersect H+(E+(.9») gives the desired curve y
(figure 51 indicates one possible situation). 0

Now consider the compact set ff defined as E+(Y) nJ-(y). Since
y was contained in int1+(E+(sP», E-(ff) would consist of ff and
a portion of j-(y). Since y was future inextendible, the null geodesic
segments generating J-(y) could have no future endpoints. But by (a)

every inextendible non-spacelike geodesic contains a pair of conjugate
points. Thus by proposition 4.5.12, the past-inextendible extension 1/'

of each generating segment 1/ ofJ-(y) would enter 1-(y). There would

be a past endpoint for 1/ at or before the first point p of 1/' n 1 (y).

As 1-(y) would be an open set, a neighbourhood of p would contain
points in 1-(y) on neighbouring null geodesics. Thus the affine distance
of the points p from ff would be upper semi-continuous, and E-(§)
would be compact being the intersection of the closed set j-(y) with
a compact set generated by null geodesic segments from ff of some
bounded affine length. It would then follow from the lemma that
there would be a past-inextendible timelike curve A contained in
intD-(E-(§» (figure 52). Let an be an infinite sequence of points on A
such that:

(I) an+l E1-(a..),
(II) no compact segment of A contains more than a finite number

of the an.

Let bn be a similar sequence on y but with 1+ instead of1- in (I) and
with bi E1+(al ).

As y and A were contained in the globally hyperbolic set
intD(E-(§» (proposition 6.6.3), there would be a non-spacelike geo­
desic "'n of maximum lel1gth between each an and the corresponding
bn (proposition 6.7.1). Each would intersect the compact set E+(.9).
Thus "there would be a qEE+(sP) which was a limit point of the
"'n n E+(sP) and a non-spacelike direction at q which is a limit of the
directions of the "'n. (The point q and the direction at q define a point
of the bundle of directions over."l(. Such a limit point exists because
the portion of the bundle over E+(Y) is compact.) Let """ be a
subsequence of the "'n such that ""'lin E+(.9) converges to q and such
that the directions of the "" nat E+(Y) converge to the limit direction.
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FIGURE 52. 1u figure 51, but with three further lines identified.!F is the set
E+(S") nJ-(y); the points p are past endpoints of null geodesic generating
segments ofE-(!F). The curve A is a past-inextendible timelike curve contained
in intD-(E-(!F».

(More precisely, the points defined bythe,u'" in the bundle ofdirections
over E+(sP) converge to the limit point.) Let ,u be the inextendible
geodesic through q in the limit direction. By (a) there would be
conjugate points x and yon,u with yeI+(x). Let x' and y' be on,u to
the past and future ofx and y respectively. By proposition 4.5.8, there
is some E > 0 and some timelike curve a from x' to y' whose length
is E plus the length of,u from x' to y'. Let t'/t and "f'" be convex normal
coordinate neighbourhoods of x' and y' respectively, each of which
contains no curve of length IE. Let x" and y" be 4t na and Y'"n a
respectively. Let x'" and y'" be points on ,u'" converging to x' and y'
respectively. For n sufficiently large, the length,u'" from x'" to y'" will
be less than ie plus the length of,u from x' to y'. Also for n sufficiently
large, x'" and y'" would be in I-(x", t'/t) and I+(y", "f'") respectively.
Then going from x'" to x", along a to y", and from y" to y'" would
give a longer non-spacelike curve than ,u'" from x'" to y'~. But by
property (II), a'n would lie to the past of x'n ~n ,u'n and b'" would lie
to the future of y'" on ,u'", for n large enough. Therefore ,u'n ought to
be the longest non-spacelike curve from x'n to y'". This establishes the
desired contradiction. 0
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While this theorem establishes the existence of singularities under
very general conditions, it has the disadvantage of not showing
whether the singularity is in the future or the past. In case (ii) of
condition (4), when there is a compact spacelike surface, one has no
reason to believe that it should be in the future rather than in the past,
but in case (i) when there is a closed trapped surface, one would expect
the singularity to be in the future, and in case (iii) when the past null
cone starts reconverging, one would expect the singularity to be in the
past. One can show that there is a singularity in the past if condition
(iii) is strengthened somewhat to say that all past-directed timelike
as well as null geodesics from p start to reconverge within a compact
region in J-(p).

Theorem 3 (Hawking (1967))

If (1) RabKaKb ~ 0 for every non-spacelike vector K (cf. §4.3);
(2) the strong causality condition holds on (.A,I1);
(3) there is some past-directed unit timelike vector W at a point p

and a positive constant b such that if V is the unit tangent vector to
the past-directed timelike geodesics through p, then on each such
geodesic the expansion (J == va: a of these geodesics becomes less than
- 3cfb within a distance ble from p, where c == - Wav."
then there is a past incomplete non-spacelike geodesic through p.

Let Ka be the parallelly propagated tangent vector to the past­
directed non-spacelike geodesics throughp, normalized byKa~ = - 1.
Then for the timelike geodesics through p, Ka = c-1Va and so
Ka: a = c-I Va:a. Since Ka: a is continuous on the non-spacelike geo­
desics, it will become less than - 3fb on the null geodesics through p
within an affine distance b. If YI' Y2' Ya and Y4 are a pseudo-ortho­
normal tetrad on these null geodesics with YI and Y2 spacelike unit
vectors and Ya and Y4 null with yaaY4a = -1 and Y4 = K, the expan­
sion () of the null geodesics through p is defined as

() = Ka:b(YlaYl+~aYl)

= Ka:a+Ka:b(YaaYl+~aYab).

The second term is zero because Ka is parallelly propagated. The third
term can be expressed as I(KaKa):bYab, which is less than zero as
K aKa is zero on the null geodesics and negative for timelike geodesics.
This shows that ()will become less than - 3fb within an affine distance b
along each null geodesic from p. Thus if all past-directed null geodesics
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from p were complete, E-(P) would be compact. Any point
qeJ-(E-(p» -E-(P) would be in ]-(P). Thus it could not be in
J +(E-(P» since E-(P) is achronal. Therefore

J+(E-(p» n J-(E-(P» = E-(P)

and so would be compact. Then by proposition 6.6.7, D-(E-(P» would
be globally hyperbolic. By proposition 6.7.1, each point reD-(E-(p»
would be joined to p by a non-spacelike geodesic which did not contain
any point conjugate to p between r and p. Thus by proposition 4.4.1,
D-(E-(P» would be contained in expp (F) where F is the compact
region of Tp consisting of all past-directed non-spacelike vectors Ka
such that KalYa ~ - 2b. Ifall past non-spacelike geodesics from p were
complete, expp (Ka) would be defined for every Ka eF, and so expp (F)
would be compact being the image ofa compact set under a continuous
map. However by the corollary to lemma 8.2.1, D-(E-(P» contains
a past-inextendible timelike curve. By proposition 6.4.7 this could not
be totally imprisoned in the compact set expp(F), therefore the
assumption that all past-directed non-spacelike geodesics from pare
complete must be false. 0

Theorems 2 and 3 are the most useful theorems on singularities since
it can be shown that their conditions are satisfied in a number of
physical situations (see next chapter). However it might be that what
occurred was not a singularity but a closed timelike curve, violating
the causality conditions. This would be much worse than the mere
breakdown of prediction which was the alternative after theorem 1,
and it is our personal opinion that it would be physically more objec­
tionable than a singularity. Nevertheless one would like to know
whether such causality violations would prevent the occurrence of
singularities. The following theorem shows that they cannot in certain
situations. This means that we have to take singularities seriously and
it gives us confidence that, in general, causality breakdowns are not
the way out.

Theorem 4 (Hawking (1967»

Space-time is not timelike geodesica1ly complete if:

(1) RabKaKb ~ 0 for every non-spacelike vector K (cf. §4.3);
(2) there exists a compact spacelike three-surface !/ (without

edge);
(3) the unit normals to !/ are everywhere converging (or every­

where diverging) on !/.
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Remarks. Condition (2) may be interpreted as saying that the universe
is spatially closed and condition (3) as saying that it is contracting
(or expanding). As explained in §6.5 one may take a covering manifold
..II in which each connected component of the image of 09 is diffeo­
morphic to 09 and is a partial Cauchy surface in..ll. We shall work in.Ji
and shall denote by!? one connected component of the image of g.
Considering the Cauchy evolution problem in ..II one sees that the
occurrence of singularities (though not necessarily their nature) is a
stable property of the Cauchy data on !? since a sufficiently small
variation of the data on !? will not violate condition (3). This is a
counterexample to the conjecture by Lifshitz and Khalatnikov that
singularities occur only for a set of Cauchy data of measure zero,
though it must be remembered that the definition of a singularity
adopted here is not that used by Lifshitz and Khalatnikov

Proof. By conditions (2) and (3) the contraction Xaa of the second
fundamental form of!? has a negative upper bound on g. Thus if .A'
(and hence JI) was timelike geodesica1ly complete there would be
a point conjugate to !? on every future-directed geodesic orthogonal
to !? within a finite upper bound b of distance from!? (proposition
4.4.3). But by the corollary to proposition 6.7.1, to every point
q ED+(!?) there is a future-directed geodesic orthogonal to !? which
does not contain any point conjugate to!? between!? and q. Let
fJ:!? x [O,b]~..IIbe the differentiable map which takes a point pE!?
a distance 8 E[0, b] up the future-directed geodesic through P ortho­
gonal to g. Then fJ(!? x [0, b]) would be compact and would contain
D+(!?). Thus 15+(!?) and hence H+(!?) would be compact. If one
assumed the strong causality condition the desired contradiction
would follow from lemma 8.2.1. However even without strong
causality one can obtain a contradiction. Consider a point qEH+(!?).
Since every past-directed non-spacelike curve from q to !? would
consist of a (possibly zero) null geodesic segment in H+(!?) and then
a non-spacelike curve in D+(!?), it follows that d(!?, q) would be less
than or equal to b. Thus, as d is lower semi-continuous, one could find
an infinite sequence of points rn ED+(!?) converging to q such that
d(!?, rn) converged to d(!?, q). To each rn there would correspond at
least one elementfJ-l(r,,) of!? x [0, b] Since!? x [0, b] is compact there
would be an element (p,8) whic.h was a limit point of the p-l(r,,). Bv
continuity 8 = d(!?,q) and P(p,8) = q. Thus to every point qEH+(:7)
there would be a timelike geodesic of length d(!?, q) from !? Now let
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gl EH+(.?) lie to the past of g on the same null geodesic generator Aof
H+(.?). Joining the geodesic of length d(.?,gl) from.? to gl to the
segment ofAbetween 2'1 and 2', one would obtain a non-spacelike curve
of length d(.?, gl) from.? to 2' which could be varied to give a longer
curve between these endpoints (proposition 4.5.10). Thus d(.?, g),
gEH+(.?) , would strictly decrease along every past-directed generator
of H+(.?). But by proposition 6.5.2, such generators could have no
past endpoints. This leads to a contradiction since as d(.?, g) is lower
semi-continuous in g, it would have a minimum on the compact
set H+(.?). 0

Condition (2) that9' is compact is necessary, since in Minkowski space
(.-K, Yj) the non-compact surface 9': (X1)2 + (X2)2+ (xa)2- (X4)2 = -1,

x4 < 0, is a partial Cauchy surface with Xaa = - 3 at all points. If one
took the region of Minkowski space defined by

x4 < 0, (X1)2 + (X2)2 + (X8)2 - (X4)2 < 0,

one could identify points under a discrete group of isometries G such
that9'IG was compact (Lobell (1931». As required by theorem 4, the
space (.-KIG, Yj) would be timelike geodesically incomplete because one
could not extend the identification under G to the whole of.-K (neither
conditions (1) nor (2) of §5.8 would hold at the origin). In this case the
incompleteness singularity arises from bad global properties and is not
accompanied by a curvature singularity. This example was suggested
by Penrose.

Conditions (2) and (3) can be replaced by:

(2') .? is a Cauchy surface for.1l;
(3') Xaa is bounded away from zero on 9';

since in this case there cannot be a Cauchy horizon, yet all the future­
directed timelike curves from.? must have lengths less than some
finite upper bound.

Geroch (1966) has shown that ifcondition (2) holds, and ifconditions
(1) and (3) are replaced by:

(1") RabKaKb ~ 0 for every non-spacelike vector, equality holding
only if Rab = 0;

(3") there is a point p E.? such that any in'extendible non-spacelike
curve which intersects.? also intersects both J+(P) and J-(p);

then either the Cauchy development of .? is fiat, or JI is timelike
geodesically incomplete.
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Condition (3") requires that an observer at p can see, and be seen by,
every particle that intersects.? The method ofproof is to consider all
spacelike surfaces without edge which contain p. One can form a
topological space S(p) out of all these surfaces, in a manner analogous
to that in which one forms a topological space out of all the non­
spacelike curves between two points. Conditions (2) and (3") then
imply that S(P) is compact. One can show that the area of the surfaces
is an upper semi-continuous function on S(p) and so there will be some
surface.9' through p which has an area greater than or equal to that
of any other surface. By a variation argument similar to that used for
non-spacelike curves, one can show that Xaa vanishes everywhere on
.9' except possibly at p, where the surface may not be differentiable.

Consider a one-parameter family of space1ike surfaces .9(u) where
.9(0) = .9'. The variation vector W == a/au Can be expressed as fn
where n is the unit normal to the surfaces andfis some function. One
can apply the Raychaudhuri equation to the congruence of integral
curves of W to show

where

and

() == Xaa, Uab == Xab-tohab, hab == gab +nanb,

0'2 = tUab uab.

If there is some point qE.9' at which Rabnanb =1= 0 or Xab =1= 0 one can
find anf such that a()jau is negative everywhere on S'. IfRa/)nanband
Xab were zero everywhere on.9', but there was some point q on .9' at
which Oabcdnbnd was not equal to zero, then au/au =1= 0 and one could
find anf such that a()jau = 0 and a2()jau2 < 0 everywhere on .9'. In
either case, one would obtain a surface .9" on which Xaa < 0 every­
where, and so ../I would be timelike geodesically incomplete by
theorem 4. IfRab, Xab and Oabcdnbnd were zero everywhere on.9', then
the Ricci identities for nashow that 0abcd = 0 on.9'. Hence space-time
is fiat in D(.?). An example in which conditions (1"), (2) and (3") hold
and in which D(.9) is "fiat is Minkowski space with {Xl ,x2,xa,X4}

identified with {Xl + 1, x2, x8, x4}, {Xl ,X2 + 1, x8, x4}, and {Xl, X 2,X3+ 1, x4}.

This is geodesically complete. However the example given previously
also satisfies these conditions and shows that D(.9) can be both
geodesically incomplete and fiat.
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8.3 The description of sin~ularities

The preceding theorems prove the occurrence ofsingularities in a large
class of solutions but give little information as to their nature. To
investigate this in more detail, one would need to define what one
meant by the size, shape, location and so on ofa singularity. This would
be fairly easy if the singular points were included in the space-time
manifold. However it would be impossible to determine the manifold
structure at such points by physical measurements. In fact there
would be many manifold structures which agreed for the non-singular
regions but which differed for the singular points. For example, the
manifold at the t = 0 singularity in the Robertson-Walker solutions
could be that described by the coordinates

{t, r cos (), r sin () cos ¢, r sin () sin ¢}
or that described by

{t, Sr cos (), Sr sin () cos ¢, Sr sin () sin ¢}.

In the first case the singularity would be a three-surface, in the second
case a single point.

What is needed is a prescription for attaching some sort ofboundary
o to .A' which is uniquely determined by measurements at non­
singular points, i.e. by the structure of (.A', ~). One would then like to
define at least a topology, and possibly a differentiable structure and
metric, on the space.A'+ == .A' u o. One possibility would be to use the
method of indecomposable infinity sets described in §6.8. However
since this depends only on the conformal metric, it does not distinguish
between infinity and singular points at a finite distance. To make this
distinction it would seem one should base one's construction for .A'+
on the criterionthat has been adopted for the existenceofa singularity:
namely b-incompleteness. An elegant way of doing this has been
developed by Schmidt. This supersedes earlier constructions by
Hawking (1966b) and Geroch (1968a) which defined the singular
points as equivalence classes of incomplete geodesics. These construc­
tions did not necessarily provide endpoints for all b-incomplete curves,
such as incomplete timeIike curves ofbounded acceleration. There was
also a certain ambiguity in their definition of equivalence classes.
Schmidt's construction does not suffer from these weaknesses.

Schmidt's procedure is to define a positive definite metric e on the
bundle of orthonormal frames 71: O(.-K)~.A'. Here O(.-K) is the set of
all orthonormal four-tuples of vectors {Ea}, EaETp for each pE.A'
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(a ranges from 1 to 4), and 71 is the projection which maps a basis at
a point p to the point p. It turns out that O(.A') is m-incomplete in
the metric e ifand only if.A' is b-incomplete. Ifo(.A') is m-incomplete,

one can form the metric space completion O(.A') of O(.A') by Cauchy

sequences. The projection 71 can be extended to O(.A'), and the

quotient ofO(.A') by 71 is defined to be.A'+ which is the union of.A' with
a set of additional points o. The set 0 consists of the singular points
ofJI in the sense that it is the set of endpoints for every b-incomplete
curve in .A'.

To perform this construction, we recall (§ 2.9) that the connection on
.A'given by the metric g defines a four-dimensional horizontal subspace
Hu of the ten-dimensional tangent space Tu at the point UEO(.A').
Then Tu is the direct sum ofHu and the vertical subspace v.. consisting
ofall the vectors in Tu which are tangent to the fibre 71-1(71(U». We now
construct a basis {G..t} = {Ea, Fi} for Tu where A runs from 1 to 10,
a runs from 1 to 4 and i runs from 1 to 6; {Ea} is a basis for Hu' and
{Fi } is a basis for Y,..

Given any vector X E T"cu)(.A') there is a unique vector X E Hu(O(.A'»
such that 71* X = X. Thus on O(.A') there are four uniquely defined
horizontal vector fields Ea which are the horizontal lifts of the ortho­
normal basis vectors Ea for each point UEO(JI). The integral curves of
the field Ea in O(.A') represent parallel propagation of the basis {Ea}

along the geodesic in .A' in the direction of the vector Ea -

The group 0(3, 1), the multiplicative group of all non-singular 4 x 4
real Lorentz matrices A ab, acts in the fibres of O(.A') sending a point
U = {p,Ea}EO(.A') to the point A(u) = {p,Aa"E,,}EO(.A'). One can
regard 0(3, 1) as a six-dimensional manifold and represent the tangent
space TI (0(3, 1» to 0(3, 1) at the unit matrix I by the vector space of
all 4 x 4 matrices a such that aabGIJc = -acbG"a. Then if aETI (0(3, 1»,
one can define a curve in 0(3,1) by At = exp (ta) where

00 bll
exp(b) = L ,.

lI~on.

Thus if UEO(.A') one can define a curve through U in 71-1(71(U» by
Aau(t) = At(u). As the curve Aau(t) lies in the fibre, its tangent vector
(%th-au is vertical. For each aETI , one can therefore define a vertical
vector field F(a) by F(a)lu = (%th.,.,,I,, for each UEO(JI). If {ail
(i = 1,2, ... ,6) are a basis for TI , then F i == F(ai ) will be six vertical
vector fields on O(.A') which will provide a basis for v.. at each point
UEO(.A').
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A matrix BEO(3, 1) defines a mapping O(..A'}-~O(...A') by u~B(u}.

Under the induced map B.: Tu~TB(u" the vertical and horizontal
vector fields transform as follows:

B*(Ea} = B;;~ Eb,

B*(Fi} = Gi Fj,

where Gi = BabaibcB-1edajda and {a1} are the basis for T*1 dual to the
basis {ail for ~(thus aiabajab = 81j, a i abajed = !8ae 8bd )· The property
of these induced maps which will be important for what follows is not
their actual form but the fact that they are constant over O(...A').

One now has a basis {G..t} = {Ea' F i } (A = 1, ... , 10) for Tu at each
point u E O(...A'). One can thus define a positive definite metric e on
O(...A') by e(X, Y) = LX..ty..t where X, YET(u) and XA, y..t are the

..t
components of X, Y respectively in the basis {G..t}.

Using the metric e, one can define a distance function p(u, v),
u, V E O(...A'} , as the greatest lower bound of lengths (measured bye)
of curves from u to v. One can then ask whether O(...A'} is m-complete
with the distance function p.

Proposition 8.3.1

(O(...A'), e} is m-complete if and only if (...A', g) is b-complete.

Suppose yet} is a curve in...A'. Then given a point UE1T-1(P) where pEy
one can construct a horizontal curve yet) through u such that
1T(y(t» = yet). From the definition of the positive definite metric e, it
follows that the arc-length of yet) as measured in this metric is equal
to the generalized affine parameter of yet), defined by the basis at p
represented by the point u. If therefore yet) has no endpoint but has
finite length as measured by the generalized affine parameter, then
yet) will also have no endpoint but will have finite length in the
metric e. Thus m-completeness in O(...A') implies b-completeness in...A'.

To prove the converse, one needs to show that ifA(t) is a G1 curve in
O(...A') of finite length without endpoint, then 1T(A(t» is a G1 curve in...A'
with

(1) finite affine length,
(2) no endpoint in ...A'.

To prove (1), one proceeds as follows. Let uEA(t}. Then one can
construct a horizontal curve X(t) through u such that 1T(X(t» = 1T(A(t».
For each value oft, A(t) and X(t) will lie in the same fibre, so there will
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be a unique curve B(t) in 0(3,1) such that A(t) = B(t)A(t). This
implies

where B' == dB/dt. Therefore

e((:et, (:e)J = t(Ea, (~)x)B-labr+t(B'ab B-\c aica)2,

where {Ea} is the basis ofH*.. dual to the basis {Ea} (i.e. (Ea, E,,) = 8a,,)
and aiab is the basis ofT1* dual to the basis aiab (i.e. aiaba1ab = 8i).

The matrix Bab satisfies Bab GIle Bdc = Gat!. Therefore

Bab GacBcd = Gild

as Gab = G-labo Differentiating with respect to t, one has

B'abB-1IleGct! = -Gac B·d"B-llle •

Thus B'ab B-llle ET](0(3, 1». Since the aiab are a basis for T*b there is
some constant G such that

Any matrix BEO(3, 1) can be expressed in the form B = OL\Q,
where (i) 0 and Q are orthogonal matrices of the form

(~I-l) and (~I-l)
where 0 and 0 are 3 x 3 orthogonal matrices, and the basis {Ea} has
been numbered so that E4 is the timelike vector; these matrices
represent rotations; and (ii) L\ is the matrix

(

COSh g 0 0 sinh g)
o 1 0 0
001 0

sinh goo coshg

which represents a change of velocity in the I-direction. With this
decomposition,

For any vector X E T..,

L(Ea,X)Qab)2 = L(Ea,X»2.
" a



280

Thus

SPACE-TIME SINGULARITIES [8.3

and so

Therefore

e((:et· (~)J ~ e((~)x' (~)x)e-~~1+2G(f)2.

[e((~t, (~)JY ~ 4[e ((:e)x' (:e)x)Ye-I~I+Gllfl.
Let go ~ 00 be the least upper bound for Igl on A(t). Then

L(A) ~ iL(A) e~'+Gigo,

where L(A) is the length of the curve A in the metric e. Since this is
finite, go and L(A) must be finite. Thus the affine length of the curve
1T(A(t» in J(, which is equal to L(A), will be finite.

To complete the proofofproposition 8.3.1, we have to show that the
curve 1T(A(t» in J( has no endpoint, that is, we have to show that there
is no point pEJ( such that 1T(A(t» enters and remains within every
neighbourhood IJlt ofp. Because of the existence of normal neighbour­
hoods IJlt of p, this is a consequence of the following result:

Proposition 8.3.2 (Schmidt (1972»

L~t.JV be a compact subset ofJ(. Suppose there is a curve A(t) in O(...A')
without endpoint and of finite length, which enters and remains
within 1T-1(.tV). Then there is an inextendible null geodesic y contained
in.JV.

Let A(t) be the horizontal curve through some point uEA(t) such
that 1T(A(t» = 1T(A(t». The curve A(t) has no endpoint. Suppose
there were a point VEO(...A') which was an endpoint of the hori­
zontal curve A(t). Then there would be an open neighbourhood "/r of v
with compact closure such that A(t) entered and remained within "/r.
Let "/r' be the set {XEO(...A'): BXE if" for all matrices B with Igi ~ go}.
Since jp was compact and go is finite, "/r' would be compact. The

curve A(t) would enter and remain within if"'. 'But any compact set
is m-complete with respect to the positive definite metric e. Thus

A(t), having finite length, would have an endpoint in "/r'. This shows
that A(t) has no endpoint.
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Let {x,,} be a sequence of points on A(t) without any limit point.
Since % is Oompact, there will be a point XE% which is a limit point
of1T(X,,). Let IJlt be a normal neighbourhood ofx with compact closure,
and let u: IJlt~O(.A') be a cross-section ofo(.A') over 1Jlt. i.e. U(p),PEIJlt,
is an orthonormal basis at p. Let A(t) == u(1T(A(t)) for A(t)E1T-1(1Jlt).
Then as in the previous proposition, there will be a unique family of
matrices A(t)EO(3, 1) such that A(t) = A(t)A(t), and one can express
the matrix A in the form A = OL\O. Suppose that Ig(t,,·)1 had a finite
upper bound gl' where x"' = A(t",) is a subsequence of the x" which
converges to x. Then the points x"' would be contained in the set
1Jlt' = {VEO(.A'): A-IV c u(lJlt) for some AEO(3,1) with Igi < gl}'
However 1Jlt' would be compact and so would contain a limit point of
the {x"'}, which is contrary to our choice ofthe {x,,}. Thus Ig(t".)I has
no finite upper bound. Since the orthogonal group is compact, one can
choose a subsequence {x".} such that n". converges to some n'. 0".
converges to some 0', g".-+oo. and

(8.1 )

for some constant a (here On' = O(t".). etc.).
Let A'(t) = (O')-IA(t), and let A".(t) == L\n.-I(O')-1 A(t). Then An.(t".)

tends to x == 0'u(x). Since the length of the curve A(t) is finite, the
curve A'(t) also has finite length. This means that

f,:~+l ((Xu)2 + (XV)2 + (X2)2 + (X3)2)1 dt

tends to zero, where

and

Thus

X A == (EA, (oIOth:>. A = u, v, 2, 3,

Eu = ..!... (E4 +EI) Ev = ..!... (E4 _ EI).J2 ' .J2 .
rt"'+lIXAI dt
Jt,,"

tends to zero, for each A. The components Y".A of the tangent vector
of the horizontal curve A".(t) are

Thus

tend to zero.

(8.2)
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Letp be the integral curve ofthe horizontal vector field ,£v through x.
Then 11(P) will be a null geodesic in JI. Suppose that 11(P) left..#" in
both the past and future directions. Then there would be some
neighbourhood "fI of x with compact closure and with the property

that in each direction p left and did not re-enter the set "fI' , where
"fI' == {VEO(JI): there is a I:i with l:iv contained in n. One could
choose .y sufficiently small that it had this property for any integral
curve of ,£v which intersected .y and so that any such curve would
leave 11-1(..#") in both directions. Let dJI be the tube consisting of all
points on integral curves of ,£v which intersect j7: Then dJI n 1I1(.JV)
would be compact. For sufficiently large n", An.(t.d would be con­
tained in .y. By (8.2) the components of the tangent vector to A...
transverse to the direction Ev are so small that for large n" and
t > t..., the curve A...(t) could not leave the tube dJln 11-1(.JV) except at
its ends where dJlleft 11-1(..#"). However An.(t) cannot leave 11-1(..#"), as
A(t) does not leave 11-1(..#"). Thus An.(t) would be contained in
dJI n11-1(..#") for t ~ t.... This leads to a contradiction as follows:
A"'+1(t"'+l) is contained in .y. However by (8.1), .y can be chosen
sufficiently small that

An·(t"'+1) = 1:i"·+1l:in·-1 An'+1(tn'+1)

is not contained in "fI, though it is contained in "fI'. This shows that
our assumption that the null geodesic 11(P) left..#" in both directions
is false. Thus there will be some point P E..#" which is a limit point of
11(P). By lemma 6.2.1 there will be an inextendible null geodesic
y through p which is contained in ./f'and which is a limit curve of
11(p). 0

If O(JI) is m-incomplete, one can form the metric space completion

O(JI). This is defined to be the set of equivalence classes of Cauchy
sequences of points in O(JI). If x == {x..} and y == {y",} are Cauchy
sequences in O(JI), the distance (5(x, y) between x and y is defined to
be limp(xn •Y.. ) where p is the distance function on O(JI) defined by

fl-+ClO

the positive definite metric e; x and y are said to be equivalent if

(5(x, y) = O. One can decompose O(JI) into a part homeomorphic to

O(JI) and a set of boundary points "8 (i.e. O(~) = O(JI) U 8). The

distance function (5 defines a topology on O(JI). From (8.1), it follows

that the topology on O(JI) is independent of the choice of basis
{atl of T].
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d = (t = sin~, t =1= o} U{-1 ~ t~ 1, x = OJ.

One can extend the action of 0(3, 1) to O(.L). For under the action
of A EO(3, 1), the transformation of the basis {GA } is independent of
position in O(.L), Thus there are positive constants 01 and O2

(depending only on A) such that 0lP(U, v) ~ p(A(u), A(v» ~ 02P(U, v).
This means that under the action ofA, Cauchy sequences will map to
Cauchy sequences and equivalence classes of Cauchy sequences are
mapped to equivalence classes of Cauchy sequences. Therefore the

action of 0(3, 1) extends to O(.L) in a unique way. One can then define

.L+ to be the quotient of O(.L) by the action of 0(3, 1). Since the
quotient of O(.L) by 0(3, 1) is .L, and since 0(3, 1) maps incomplete
Cauchy sequences to incomplete Cauchy sequences, one can express
.L+ as the union of.L and a set 0 ofpoints called the b-boundary of.L.
One can regard points of 0 as representing the endpoint ofequivalence
classes of b-incomplete curves in .L.

The projection 17: O(.L)~.L+, which assigns a point in O(.L) to its
equivalence class under 0(3, 1), induces a topology on .L+ from the
topology on O(.L). However 17 does not induce a distance function
on .L+ because 75 is not invariant under 0(3,1). Thus although the

topology of O(.L) is a metric topology, and so Hausdorff, that of .L+.
need not be Hausdorff, This means that there may be a point pE.L
and a point q E0 such that every neighbourhood of p in .L+ intersects
every neighbourhood of q. This happens when the point q corresponds
to an incomplete curve which is totally or partially imprisoned in.L.
We shall discuss imprisoned incompleteness further in §8.5.

If ~ is a positive definite metric on .L, then .L+ is homeomorphic
to the completion of (.L, ~) by Cauchy sequences. Schmidt's construc­
tion also has the desirable property that ifone cuts a closed set d out
ofa space, then one gets at least one point of the b-boundary for every
point of d' that is the endpoint of a curve in .L-d, An example
where one gets more than one b-boundary point for a point ofd' is
provided by two-dimensional Minkowski space in which the set d is
taken to be the t-axis between - 1 and + 1. Then there will be two
b-boundary points for each point (0, t) where -1 < t < 1. An example
where a point in d' cannot be reached by a curve in .L- d is given
by the set

There is no curve in .L - d which has an endpoint at the origin, and
hence this point will not be in (.L-d)+, although it is in d'.
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Although Schmidt's construction has an elegant formulation, it is
unfortunately very difficult to apply in practice. The only solutions
for which Jt+ has been found, apart from spaces ofconstant curvature,
are the two-dimensional Robertson-Walker solutions with normal
matter. In these 0 turns out to be a spaceIike one-surface as might be
expected from the conformal picture. In this case, one can define a
natural differential structure on 0 and make ...I{+ into a manifold with
boundary. However there does not seem to be any general way of
defining a manifold structure on o. Indeed one might expect that in
generic situations 0 would be highly irregular and could not be given
a smooth structure.

8.4 The character of the sin~ularities

In this and the following section we shall discuss the character of the
singularities predicted by theorem 4. We consider this theorem rather
than the others because more information about the singularity can
be obtained. We expect however that the singularities predicted by
the other theorems will have similar properties.

First there is the question of how bad the breakdown of differenti­
ability of the metric must be. The theorems of the previous section
showed that space-time must be geodesically incomplete if the metric
was 0 2• The 0 2 condition was necessary in order that the conjugate
points and variation of arc-length should be well-defined; in other
words, in order that solutions of the geod~sicequation should depend
diffeTentiably on their initial position and direction. However one can
talk about geodesic incompleteness provided that solutions of the
geodesic equation are defined. They will exist if the metric is 0 1 and
will be unique and depend continuously on initial position and direction
if the metric is 0 2- (i.e. if the connection is locally Lipschitz). In fact
one can discuss b-incompleteness provided merely that the positive
definite metric e on the bundle of frames O(Jt} is defined almost every
where and is locally bounded. This will be the case if the components
ra

bc of the connection are defined almost everywhere and are locally
bounded, i.e. if the metric is 0 1-.

It thus might appear that what the theore~s indicate is not that
the curvature becomes unboundedly large but merely that it has a
discontinuity (i.e. the metric is 0 2- rather than Q2). We shall show that
this is not the case: under the conditions oftheorem 4 space-time must
be timelike geodesically incomplete (and hence b-incomplete) even if
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the metric is only required to be 0 2-. The method of proof is to
approximate the 0 2- metric by a 0 2 metric and to perform variation
of arc-length in this metric.

Suppose that space-time is defined to be inextendible with a 0 2­

metric and that the conditions of theorem 4 are satisfied. The timelike
convergence condition, RabKaKb ~ 0, is now required to hold' almost
everywhere' with the Ricci tensor defined by generalized derivatives.
The only part of the proof of theorem 4 that does not hold in a 02­
metric is where variation of arc-length is used to show that there can
be no point peD+(!?) such that d(!?,p) > - 3/80, where 80 is the
maximum value of Xaa on .9. Thus if Jt were timelike geodesically
complete there would be some such point p and a geodesic orthogonal
to!? oflength d(!?, p) from!? to p. Let tFI be an open set with compact
closure which contains J-(p) n J+(!?) and let e and g be OrJ positive
definite and Lorentz metrics respectively. For any e> 0 one could
find a 0 00 Lorentz metric Yeab such that on Ojj

(1) IYeab_yabl < e,
(2) IYeab'c-gab'cl < e,
(3) IYeab'cdl < 0, where 0 is a constant depending on tFI, e, g and ~,

(4) ReabKaKb > -elKal2 for any vector K such thatYeabKaKb ~ O.

(The Yeab may be constructed by covering Ojj by a finite number of
local coordinate neighbourhoods (~, ¢"J, integrating the coordinate
components of gab with a suitable smoothing function Pe(x) and
summing with a partition of unity {Yr,,}, Le.

Yeab(q) = L Yr(%(q)f gab(x)Pe(x-¢(%(q» d4x,
(% ¢.(Y"a)

where !Pe(X) d4x = 1.)
Property (1) implies that for sufficiently small values of e, p would

be in D+(!?,~) and J-(p, ~e) nJ+(!?,~) would be contained in tFI.
There would therefore be a geodesic Ye in the metric ~ from!? to p of
length de(!?,p). Also Ide(!?,p)-d(!?,p)l would tend to zero as e.-+O.

By properties (1), (2) and (3), and the standard theorems on ordinary
differential equations, as e.-+ 0 the tangent vector to a geodesic
in the metric ~e would tend to that of the geodesic in the metric
~ with the same initial position and direction. There would he
some upper bound to Ival on Ojj np(!? x [0, 2d(!?, p}]), where va is the
unit tangent vector to the geodesic orthogonal to !? in the metric ~.

Thus for any 8 > 0 there would be an e1 > 0 such that for any e < e1,

Reab ~a ~b > - 8. We can now establish a contradiction by showing that
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a sufficiently small variation of the energy condition will not prevent
the occurrence of conjugate points in the metric ~. within a distance
less than d.(.?,p). For the expansion B. of the geodesics in the metric
~. obeys the Raychaudhuri equation:

dB./ds = -!B.z-20'.z-R.a"v,;av,;lJ.

Thus d(B.-l)/ds ;?; ! +R.ab vaVIJO.-z. Therefore if the initial value 0.
0

were negative and 38B...-2 were less than one, B.-l would become zero
within a distance 3/Bo(1- 38Bo-Z) from .9. But BOo -+ Boas e-+ O. This
shows that for sufficiently small values ofe there would be a conjugate
point on every geodesic in the metric ~. orthogonal to'? within a
distance less than d.(.?, pl. Therefore Jt must be timelike geodesically
incomplete even if the metric is required only to be 0 2-.

This result implies that if space-time is extended to try to continue
the incomplete geodesics, the metric must fail to be Lorentzian or the
curvature must be locally unbounded, i.e. there would be a curvature
singularity. However even though the curvature were locally un­
bounded, the metric might still be able to be interpreted as a distribu­
tional solution of the Einstein equations provided that the volume
integrals of the components of the curvature tensor over any compact
region were finite. This would be the case if the metric were Lorentz,
continuous and had square integrable first derivatives. In particular
this would be true if the metric were Lorentz and 0 1- (i.e. locally
Lipschitz). Examples ofsuch 0 1- solutions include gravitational shock
waves (where the curvature has a 8-function behaviour on a null three­
surface, see, for example, Choquet-Bruhat (1968) and Penrose
(1972a»; thin mass shells (where the curvature has a 8-function
behaviour on a timelike three-surface, see, for example, Israel (1966»;
and solutions containing pressure-free matter where the geodesic flow
lines have two- or three-dimensional caustics (see Papapetrou and
Hamoui (1967), Grischuk (1967». Because of the non-linear depend­
ence of the curvature on the metric one cannot necessarily approxi­
mate a 0 1- distributional solution by a 0 2 metric which obeys the
convergence condition at every point, or at least does not violate it
by more than a small amount as in the case above (prope~y (4».
However in all the examples given above one can. Indeed this is their
physical justification: they are regarded as mathematical idealizations
of 0 2 or OrJ solutions which obey the convergence condition and in
which the curvature is very large in a small region. One could apply
the theorems of §8.2 to these 0 2 solutions and prove the existence of
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incomplete geodesics in them. This shows that the singularities pre­
dicted cannot be just gravitational1mpulse waves or caustics of flow
lines but must be more serious breakdowns of the metric. (Ordinary
hydrodynamic shock waves involve only discontinuities of density
and pressure and so can exist with a 0 2- metric.) Although we are not
quite able to prove it we believe that the singularities must be such
that the metric cannot be extended to be even a distributional solution
of the Einstein equations, i.e. as well as the components of the curva­
ture being unbounded at a singular point, their volume integral over
any neighbourhood ofsuch a point must also be unbounded. This is so
in all known examples ofsingularities other than the exceptional case
ofthe Taub-NUT solution, which will be dealt with in the next section.
If this conjecture is correct for' generic' singularities (i.e. except for
those arising from a set ofinitial conditions of measure zero), then one
can regard a singularity as a point where the Einstein equations (and
presumably the other presently known laws ofphysics) break down.

Another question one would like to answer is: how many incomplete
geodesics are there1 If there were only one, one might be tempted to
feel that the singularity could be ignored. From the proofof theorem 4
one can see that if there is no Cauchy horizon, i.e. if :J is a Cauchy
surface, then no timelike curve from :J (geodesic or not) can be
extended to a length greater than - 3/80 where 80 is the maximum
value of Xaa on 9'. In fact this result is true even if9' is non-compact
provided that xaa still has a negative upper bound. However this does
not necessarily indicate that what happens is that every timelike curve
hits the singularity. Rather it suggests that a singularity will be
accompanied by a Cauchy horizon and so our ability to predict the
future will break down. An example of this is shown in figure 53. Here
the metric is singular at the point p and so this point has been removed
from the space-time manifold. Spreading out from this hole there is
a Cauchy horizon. This example shows that the most one can hope to
prove is that there is ~ three-dimensional family of geodesics which
are incomplete and which remain within the Cauchy development of
:J (in the example these are the geodesics which would pass through p).
There may be other geodesics which leave the Cauchy development
of:J and which are incomplete but one cannot predict their behaviour
from knowledge of conditions on :J.

It is clear that thet'!Llllust- bP. more than one incomplete geodesic in
D+(:J). For from theorem 4 it follows that there must be a geodesic y,
orthogonal to :J, which remains in D+(:J) but which is incomplete.



288 SPACE-TIME SINGULARITIES

p

[8.4

FIGURE 53. The point p has been removed from space-time because a singularity
occurs there. Consequently there is a Cauchy horizon H+(9'} for the surface g.

Let p be the point where y intersects /J. Then one can make a small
variation of /J in a neighbourhood of p to obtain a new surface /J' for
which Xaa is still negative, but which is not orthogonal to y. Then by
theorem 4 there must be some other timelike geodesic y' orthogonal
to /J' which is incomplete and which does not cross H+(/J'), which is
the same as H+(!?).

One can in fact prove that there is at least a three-dimensional
family of timelike geodesics (one through each point ofsome achronal
surface) which remain within D+(/J) and which are incomplete. These
geodesics all correspond to the same boundary point in the sense ofthe
indecomposable past sets of §6.8, that is, they all have the same past.
They may not, however, all correspond to the same points as defined
by the construction of the previous section. An outline of the proof is
as follows: in theorem 4 it was shown that there must be a future­
directed timelike geodesic orthogonal to.9 which cannot be extended
to length 3/80 , One can say more than this: there must be such a
geodesic y which remains within D+(!?) and is, at each point a curve
of maximum length from /J, i.e. for each qEy, the length of y from /J
to q equals d(/J, q). The idea is now to consider the function d(r, y) for
rEJ-(y). Clearly this is bounded on J+(/J) nJ-(y). From the fact that
y is a curve ofmaximum length from /J, it follows that in a neighbour-
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hood of y, d(r, y) is continuous and the surfaces of constant d(r, y) are
spacelike surfaces which intersect y orthogonally. The timelike geo­
desics orthogonal to these surfaces will then remain within J-(y) and
so will be incomplete.

8.5 Imprisoned incompleteness

In §8.1 we proposed b-incompleteness as a definition ofa singularity.
The idea was that a b-incomplete curve corresponded to a singular
point which had been left out of space-time. However suppose that
there is a b-incomplete curve Awhich has a limit point p E JI, i.e. Ais
partially or totally imprisoned in a compact neighbourhood ofp. Then
one cannot imbed JI in a larger four-dimensional Hausdorff para­
compact manifold JI' such that Acan be continued in JI'. For ifq were
the point where A intersected the boundary of JI in JI', then any
neighbourhood of q would intersect any neighbourhood of p, which
would be impossible as JI' is Hausdorff and q =1= p. In fact, one can
characterize imprisoned incompleteness of JI by non-Hausdorff
behaviour of the Schmidt completion J(+.

Proposition 8.5.1

A point P E JI is not Hausdorff separated in JI+ from a point rEo if
there is an incomplete curve Ain J( which has p as a limit point and
which has r as an endpoint in JI+.

Suppose that p E J( is a limit point ofa b-incomplete curve A. One can
construct a'horizontallift Xof Ain the bundle of orthonormal frames
O(JI). This will have an endpoint at some point

xE11-1(r) c a== O(JI)-O(JI).

If7"'" is a neighbourhood of r in JI+ then 11-1(7"'") is an open neighbour­

hood ofx in O(JI). Thus it contains all pointson Xbeyond some pointy.
Therefore all points on X beyond 11(Y) will lie in 7"'" and hence 7"'"will
intersect any neighbourhood ofp since p is a limit point of A. 0

Taub-NUT space (§5.8) is an example where there are incomplete
geodesics which are all totally imprisoned in compact neighbourhoods
of the past and future horizons U(t) = O. As the metric is perfectly
regular on these compact neighbourhoods, the incomplete geodesis.
do not correspond to s.p. (scalar polynomial) curvature singularities.
Consider a future incomplete closed null geodesic A(v) in the future
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horizon U(t) = o. Let P = A(O) and let VI be the first positive value of V

for which A(v) = p. Then as in §6.4, the parallelly propagated tangent
vector to A will satisfy

(o/OV)!~l = a(%v)!,,_o,

where a > 1. For each n, the point A(vn ) = p, where
n l_a-n

vn = VI L a1
-r = V 1 -

1
-1 •

r-l -a

and (%v>!"_lln = an(%v)I,,_o'

Thus if one takes a pseudo-orthonormal parallelly propagated basis
{Ea} on A(v), where E, = %v, then the other null basis vector Eaobeys
Ea!_lln = a-nEs!_o. Each time one goes round the closed null geo­
desic A, the vector E, gets bigger and the vector Ea gets smaller. The
vectors E1 and Ell remain the same. If therefore there were some non­
zero component of the Riemann tensor which involved E, and
possibly E1 and Ell' it would appear bigger and bigger each time one
went round A and so there would be !l' p.p. (parallelly propagated)
curvature singularity. However in Tauh-NUT space it turns out that
the vector Es can be chosen so that there is only one independent non­
zero component of the Riemann tensor, which is R(Ea•E,. Es, E,).
This involves Es and E, equally, and so has the same value each time
round. Since a similar argument will probably hold for any imprisoned
curve, it seems there is no p.p. curvature singularity in Taub-NUT
space. although this space is singular by our definition. One would like
to know whether this kind of behaviour would occur in physically
realistic solutions containing matter, or whether Taub-NUT space is
an isolated pathological example. This question is important because,
as we shall argue in the next chapter, we interpret the preceding
theorems as indicating not that geodesic incompleteness necessarily
occurs. but that General Relativity breaks down inverystrong gravita­
tionalfields. Suchfields donotoccur in theTaub-NUTkind ofsituation.
This conclusion is a result of the very special nature of the Riemann
tensor in Tauh-NUT space. In general. one would expect some other
components of the Riemann tensor to be non-zero on the imprisoned
curve. and so there would be a p.p. curvature singularity even though
there might be no s.p. curvature singularity. In fact one can prove:

Proposition 8.5.2

If p E J( is a limit point of a b-incomplete curve A and if at p,
RabKaKb of: 0 for all non-spacelike vectors K, then A corresponds to
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du/d1 = {1: (Eai Xi)2}l,
a

a p.p. curvature singularity. (This condition can be replaced by the
condition that there do not exist any null directions Ka such that
KaKcoabcldKe)= 0.)

Let tFI be a convex normal coordinate neighbourhood of p with com­
pact closure, and let {Vi}, {Vi} be a field of dual orthonormal bases
on tFI. Let {Ea}, {Ea} be a parallelly propagated dual orthonormal basis
on the curve A(t). Let 1 be a parameter on Asuch that in tFI,

d1/dt = (1:XiXi)l,
i

where Xi are the components of the tangent vector a/at in the basis
{Vi}. Then 1measures arc-length in the positive definite metric on 6iI
in which the bases {Vi}, {Vi} are orthonormal.

Since RabKaK" of: 0 at p for any non-spacelike.vector Ka, there is
a neighbourhood "Y c tFI such that Rab = OZaZ" +R'ab' where 0 oF 0
is a constant, Za is a unit timelike vector, and R'ab is such that
OR'abKaKb> 0 for any non-spacelike vector Ka. Suppose that after
some value 10 of 1the curve Aintersects "Y. Since A has no endpoint
and since p is a limit point of A, the part of A in -r will have infinite
length as measured by 1. However, the generalized affine parameter is
given by

where Xi are the components of the tangent vector (O/oth., so
1:XiXi = 1, and Eai are the components of the basis {Ea} in the basis
i

{Vi}. Since u is finite on the curve, the modulus of the column vector
EaiXi must go to zero, and so the Lorentz transformation represented
by the components Eai must become unboundedly large. Since Z is
a unit timelike vector, the components of Z in the basis {Ea} will
therefore become unboundedly large and hence some component of
the Ricci tensor in the basis {Ea} will become unboundedly large. 0

This result shows that ~n observer whose history was a b-incomplete
imprisoned non-spacelike curve in a generic space-time would be torn
apart by unboundedly large curvature forces in a finite time. However
another observer could travel through the same region without experi­
encing any such effects. An interesting example in this connection is
provided by Tauh-NUT space in which the metric has been altered
by a conformal factor n which differs from one only in a small neigh­
bourhood of a point p on the horizon. This conformal transformation
would not alter the causal structure of the space and would not affect
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the incompleteness of the closed null curve through the point p. How­
ever in general RabKaKb of: 0 where Ka is the tangent vector to the
closed null geodesic. After each cycle, RabKaKb increases by a factor a2

and so there is a p.p. curvature singularity. Yet the metric is perfectly
regular on a compact neighbourhood of the horizon and so there is
no s.p. curvature singularity associated with the incompleteness.

One would like to rule out this kind of situation in which the
incomplete curves are totally imprisoned in a compact region. This
kind of behaviour might occur in a countably infinite number of
different regions of space-time. Thus one cannot describe it by saying
that all the incomplete curves are totally imprisoned in one compact
set. Instead one wants to describe it by saying that a set of incomplete
curves which are compact in some sense are totally imprisoned in a
~ompact region of JI. To make this concept precise, we define
b-boundedness as follows.

We define the space B(JI) to be the set of all pairs (A, u), where U is
a point in the bundle of linear frames L(JI) and A is a 0 1 curve in JI
which has only one endpoint, which is at 1T(U). Let tFI be an open set
in JI and 1'" be an open set in L(JI). We define the open set O(tFI, 1'")
to be the set ofall elements ofB(JI) such that Aintersects tFI and U E 1'".
The sets of the form O(tFI,1'") for all tFI, l' form a sub-basis for the
topology of B(JI). Recall that the map exp: T(JI) -+JI is defined by
taking a vector X at a point p and proceeding along the geodesic
from p in the direction of X a unit distance as measured in the
affine parameter defined by X. Similarly we may define a map
Exp: B(JI)-+JI by proceeding from 1T(U) along the curve A a unit
distance as measured in the generalized affine parameter on Adefined
by u. The map Exp is continuous and will be defined for all of B(JI)
if JI is b-complete. We shall say that (JI,~) is b-bounded if for every
compact set W c B(JI), Exp (W) has a compact closure in JI. Since
Exp is continuous, (JI, ~) is b-bounded if it is b-complete. However,
Tauh-NUT space is an example which is b-bounded but not b-com­
plete. We shall show that this can be possible only because Taub-NUT
space is completely empty. The presence of any matter on the surface
.9 in theorem 4 will mean that the space is both b-incomplete and
b-unbounded.

Theorem 5

Space-timeis notb-bounded ifconditions (1 )-(3) of theorem 4hold, and
(4) the energy-momentum tensor is non-zero somewhere on 9:



8.5] IMPRISONED INCOMPLETENESS 293

(5) the energy-momentum tensor obeys a slightly stronger form of
the dominant energy condition (§4.3): if Ka is a non-spacelike vector,
then TabKais zero or non-spacelike and Tab KaKb ~ 0, equality holding
only if Tab K b = o.

Remark. Condition (4) could be replaced by the generic condition
(see Theorem 2).

Proof. Consider the covering space Jla (§6.5) defined as the set of all
pairs (p, i[i\]), where i\ is a curve from q to p, p, qEM, and i[i\] is the
number of times i\ cuts.9 in the future direction minus the number of
times it cuts it in the past direction. For each integer a,

~ == {(p,i[i\]): pE.9, i[i\] = a}

is diffeomorphic to .9 and is a partial Cauchy surface in Jla. In
general JIG need not be b-bounded if JI is, but in the situation under
consideration we have the following result:

Lemma 8.5.3

Let conditions (1)-(3) hold and let D+(~) not have compact closure
in Jla ; then if Yr is the covering projection Yr: Jla~JI, Yr(D+(~»

will not have compact closure in JI.

JI is either diffeomorphic to Jla or to...K,., the portion ofJla between
.st:. and ~+1with~ and ~+1 identified. If for any a ~ 0, Jla n D+(~)

does not have compact closure in Jla, then Yr(D+(~» will not have
compact closure in JI. If however Jla n D+(~) had compact closure
for all a ~ 0 it would also have to be non-empty for all a ~ 0 since
.D+(~) is non-compact. But for PE~, the proper volume of
]-(p) nJla _ 1 has some lower bound c. Thus for every a ~ 0 the proper
volume of~ n D+(~) could not be less than c. But this is impossible
since by conditions (1 )-(3) and proposition 6.7.1, the proper volume of
D+(~) is less than 3/C- eo) x (area of .9), where eo is the negative
upper bound of Xaa. on .9. 0

Using this result, one can prove:

Lemma 8.5.4

IfD+(~) does not have compact closure, JI is not b-bounded.

Let 11' be the subset of B(Jla ) consisting of all pairs (i\, u) where i\ is
any future-inextendible timelike geodesic curve in Jla orthogonal to
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~ with endpoint rE~, and uE17-1(r) is any basis at r, one of whose
vectors is tangent to A and of length - 3/°0, the remaining vectors
being an orthonormal basis in ~.

Let {9"a} be a collection of open sets which cover ir. Each 9"a will
be the union of finite intersections of sets of the form o(~, 1"'). It is
sufficient to consider the case when the 9" can be represented as

9"a = n O(~afJ' ~),
fJ

where for each IX the ~afJ are a finite number of open sets in Jla, and
~ is an open set in L(Jla). Let (p, v) E ir. Then there is some IX such
that (p, v) E 9"a. This means that the geodesic p intersects the open set
~afJ for each value of p and that VE~. Since geodesics depend con­
tinuously on their initial conditions there will be some neighbourhood
OJIa of 17(V) such that every future-inextendible geodesic through OJIa
orthogonal to~ will intersect ~afJ for each value of p. Let 1"" a be an
open set contained in~ such that 17(1"" a) C OJIa. Then

(p, v) E0(17(1"" a); 1"" a)

is contained in9"a. Thus the sets {0(17(1""a), 1"" a)} form a refinement of
the covering 9"a.

Consider the subset f2 of L(Jla) consisting of all bases over ~
where one of the basis vectors is orthogonal to ~ and of length
- 3/°0 , and the remaining vectors are an orthonormal basis of ~.
Since f2 is compact, it can be covered by a finite number of the sets
1"" a' Thus ir is compact since it can be covered by a finite number of
the sets 0(17(1"" a), 1"" a)'

By proposition 6.7.1 each point of D+(~) lies within a proper
distance - 3/00 along the future-directed geodesic orthogonal to ~.

This means that Exp(ir) contains D+(~). Let Yr.: B(Jla)~B(JI)
be the map which takes (A, u) EB(Jla) to (Yr(A), Yr",u) EB(JI). Then
Yr",ir will be a compact subset of B(JI) such that

Exp (Yr", W) ::::l Yr(D+(~)).

Thus if D+(S:;) is not compact, yr(D+(S:;)) is not compact, so (JI, g)
is not b-bounded. 0

This shows that it is sufficient to prove D+(S:;) non-compact. Suppose
it were compact. Then H+(~)would also be compact. We show below
that this would imply that the divergence of the null geodesic
generators would have to be zero everywhere on H+(S:;). This would
be impossible ifthe matterdensitywere non zero somewhereonH+(S:;).
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Lemma 8.5.5

If H+(f2) is compact for a partial Cauchy surface .02, then the null
geodesic generating segments of H+(f2) are geodesically complete in
the past direction.

From proposition 6.5.2 it follows that the generating segments have
no past endpoints. They must therefore form' almost closed' curves
in the compact set H+(f2). If they formed actual closed curves, one
could use proposition 6.4.4 to show that if they were incomplete in the
past direction, they could be varied towards the past to give closed
timelike curves. This however would be impossible since such curves
would lie in D+(~). The proof in the case when the null geodesic
generators of H+(f2) are only' almost closed' is similar though a little
more delicate.

Introduce a future-directed timelike unit vector field V which is
geodesic in a neighbourhood Ol/ ofH+(~)with compact closure. Define
the positive definite metric g' as in proposition 6.4.4 by

g'(X, Y) = g(X, Y)+2g(X, V)g(Y, V)

and let t be a parameter which measures proper distance in the metric
g' along a null geodesic generating segment y of H+(f2), and which is
zero at some point qEy. Then g(V, B/Bt) = - 2-1. As y has no past
endpOint, t will have no lower bound. Let! and h be given by

where v is an affine parameter. Suppose y were geodesically incomplete
in the past, then the affine parameter

v =I>-ldt'
would have a lower bound Vo as t-+-oo. Now consider a variation
ex of y whose variation vector B/Bu is equal to -xV. Then

!.-g (~, ~)I = 2-1 (dx+xh-1 dh) .
Bu at at u-o dt dt

(8.3)

Since h~oo as t~-oo, one could find a bounded function x(t) such
that (8.3) was negative for all t ~ O. However this would not be suffi­
cient to ensure that the variation gave an everywhere timelike curve
since it could be that the range of u for which (8.3) remained negative
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02 (0 0) 02x2 '(0 0)ou2g Ft' Ft ~ g Ft' Ft .

tended to zero as t -+ - 00. To deal with this we shall consider the
second derivative under the variation:

:~2g(:e,:e) = :u(g(:e,~~))

(
D 0 DO) (0 D DO) (0 (0 0) 0)=g otBu'otBu +g Ft'otouou +g Ft,R ou'Ft ou·

Choosing ox/Bu to be zero and using the fact that V is a geodesic in
a neighbourhood ~ of H+(~) this reduces to

-(:r+x2[g(~~, ~~)+g(:e, R(V, :e) V)]
for 0 ~ u ~ E. In any basis orthonormal with respect to the metric g',
the components of the Riemann tensor and ofthe covariant derivative
of V (with respect to g) will be bounded on ~. Thus there is some
o > 0 such that

Now

so

!...(g(V ~)) = _ dxBu 'at dt'

( 0) dx
g V, at = - 2-1- u dt .

Therefore

g,(:e, ~) = g(:e, :e) +1- (2J2) u:+2u2(:r
~g(:e,:e)+d

for 0 ~ u ~ E, where d = (2J2)eGl +2e2G1
2 + 1, and 01 is an upper

bound to Idx/dtl. Thus we have

02you2~ 02x2(y +d)

and 0::1 = 2-1h-1 dt
d

(hx), yl..-o = 0,
vU ..-0

where y = g(O/ot, %t). Therefore

y:s:; d(coshOxu-1)+asinhOxu

~ sinhOxu(dtanhIOxu+al,

where a = 2-10-1 d (loghx)/dt.
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Now take x = h-1 [ _ f: h- 1dt' +K]-l,

where K = 2f~(1) h-1dt';

thena = - 2-10-1hx. Since! = -h-1(dh/dt) is bounded on the compact
set H+(!2) and since

(8.4)Thus

was assumed to converge as t~ - 00, there would be upper bounds for
x and Idx/dtl and a positive lower bound 0ll for h when -00 < t ~ O.
Then for 0 < u < min (e, 20-2 d-102), y would be negative when
-00 < t ~ O.

In other words, the variation ex would give a past-inextendible time­
like curve which lay in intD+(!2) and which was totally imprisoned in
the compact set iJfi. But this is impossible, since by lemma 6.6.5 the
strong causality condition holds on intD+(!2). Thus y must be geo­
desically complete in the past direction. 0

Consider the expansion 8 of the tangent vectors 8/8t to the null
geodesic generators of H+(9',,). Suppose that 8 > 0 at some point q on
a generator y and let !!7 be a spacelike two-surface through q in a
neighbourhood of q in H+(~). The generators of H+(~) will be
orthogonal to !!7 and would be converging into the past. Then by
condition (1) and the above lemma there would be a point T E Y conju­
gate to !!7 along y (proposition 4.4.6). Points on y beyond T could be
joined to !!7 by timelike curves (propOsition 4.5.14). But this would
be impossible since H+(~) is an achronal set. Therefore 8~ 0 on
H+(~).

Now consider the family of differentiable maps p,.: H+(9',,)~H+(9',,)
defined by taking a point qEH+(.9'o) a distance z (measured in the
metric g') to the past along the null geodesic generator through q.
Let dA be the area measured in the metric g' of a small element of
H+(9',,). Under the map p,..

d
dzdA = -8dA.

df f- dA=- 8dA
dz /1.(11+([/.» /1.(H+([/.»·

But p,. maps H+(9',,) into H+(9',,) (and onto if the generating segments
have no future endpoints). Thus (8.4) must be less than or equal to
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zero. Together with the previous result this would imply e= 0 on
H+(~). By the propagation equation (4.35) this is possible only if
RabKaKb = 0 everywhere on H+(~), where K is the tangent vector to

the null geodesic generator. However by the conservation theorem
of §4.3 condition (5) implies that TabKaKb is non-zero somewhere
on H+(.9') and by the Einstein equations (with or without A), TabKaKb
equals RabKaKb. (Strictly, the form of the conservation theorem
required is slightly different from that in §4.3. Since there are no
suitable spacelike surfaces which intersect H+(~), one uses instead
a family ofsurfaces one of which is H+(~), the others being spacelike.
These surfaces can be defined by taking the value of the function t at

the point p ED+(~) to be minus the proper volume ofJ +(p) n D+(~).

Since t;a becomes null on H+(~), it is no longer necessarily true that
there is a constant G > 0 such that on D+(~),

Tabt;ab ~ GTabt;at;b'

However if Va is a timelike vector field/on D+(~), there is a constantG

such that Tabt GTab t V.;ab ~ ( ;at;b+t;a b)

and Tabv,,:b ~ GTab(t;at;b+t;a ~).

One can then proceed as in §4.3 using Tab(t: ab + v,,;b) in place of
Tabt;ab' and proving that Tab(t;at;b+t;a~)cannot be zero on H+(~)

if it is non-zero on ~. The result then follows from (5).) 0
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Gravitational collapse and black holes

In this chapter, we shall show that stars of more than about tl times
the solar mass should collapse when they have exhausted their
nuclear fuel. If the initial conditions are not too asymmetric, the
conditions of theorem 2 should be satisfied and so there should be
a singularity. This singularity is however probably hidden from the
view of an external observer who sees only a 'black hole' where the
star once was. We derive a number of properties of such black holes,
and show that they probably settle down finally to a Kerr solution.

In §9.1 we discuss stellar collapse, showing how one would expect
a closed trapped surface to form around any sufficiently large spherical
star at a late stage in its evolution. In §9.2 we discuss the event
horizon which seems likely to form around such a collapsing body.
In §9.3 we consider the final stationary state to which the solution
outside the horizon settles down. This seems to be likely to be one of
the Kerr family of solutions. Assuming that this is the case, one can
place certain limits on the amount of energy which can be extracted
from such solutions.

For further reading on black holes, see the 1972 Les Houches
summer school proceedings, edited by B. S. de Witt, to be published
by Gordon and Breach.

9.1 Stellar collapse

Outside a static spherically symmetric body such as a star, the solution
of Einstein's equations.is necessarily that part of one of the asymp­
totically flat regions of the Schwarzschild solution for which T is
greater than some value To corresponding to the surface of the star.
This will be joined, for T < TO' onto a solution which depends in detail
on the radial distribution of density and pressure in the star. In fact
even ifthe star is not static, providing it remains spherically symmetric
the solution outside wi1lstill be part of the Schwarzschild solution cut
off by the surface of the star. (This is Birkhoff's theorem, proof of
which is given in appendix B.) If the star is static then To must be

[299 ]
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r> 2m

Schwarzschild empty
solution (exterior solution)

r = 2mr < 2m
Singularity~

Origin of
polar Surface of fluid
coordinates

(i)

r = 0 (singularity)

Empty
space

(ii) (iii)

FIGURE 54. Collapse of a spherical star.
(i) Finkelstein diagram «(r,t) plane) of a collapsing spherically symmetric

fluid ball. Each point represents a two-sphere.
(ii) Penrose diagram of the collapsing fluid ball.
(iii) Diagram of the collapse with only one spatial dimension suppressed.

greater than 2m (the 'Schwarzschild radius'). This follows because
the surface of a static star must correspond to the orbit of a timelike
Killing vector, and in the Schwarzschild solution there is a timelike
Killing vector only where T > 2m. If TO were less than 2m, the surface
of the star would be expanding or contracting. To get an idea of the
magnitude of the Schwarzschild radius, we note that the Schwarz­
schild radius of the earth is 1.0 cm and that of the sun is 3.0 Km;
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the ratios of the Schwarzschild radius to the radius of the earth and
the sun are 7 x 10-10 and 2 x 10-6 respectively. Thus normal stars

. are a long way from their Schwarzschild radii.
The life of a typical star will consist of a long (,.., 109 years) quasi­

static phase in which it is burning nuclear fuel and supporting itself
against gravity by thermal and radiation pressure. However when the
nuclear fuel is exhausted, the star will cool, the pressure will be
reduced, and so it will contract. Now suppose that this contraction
cannot be halted by the pressure before the radius becomes less than
the Schwarzschild radius (we shall see below that this seems likely for
stars of greater than a certain mass). Then since the solution outside
the star is the Schwarzschild solution, there will be a closed trapped
surface $" around the star (see figure 54), and so, by theorem 2, a
singularity will occur provided that causality is not violated and the
appropriate energy condition holds. Of course in this case, because the
exterior solution is the Schwarzschild solution, it is obvious (see
figure 54) that there must be a singularity. However the point is that
even if the star is not exactly spherically symmetric, a closed trapped
surface will still occur providing the departures from sphericalsym­
metry are not too great. This follows from the stability of the Cauchy
development proved in §7.5; for one can regard the solution as
developing from a partial Cauchy surface JI' (figure 55). Now if one
changes the initial data by a sufficiently small amount on the compact
region J-($") n JI', the new development of JI' will still be sufficiently
near the old in the compact region J+(JI') n J-($") that there will still
be a closed trapped surface around the star in the perturbed solution.
Thus we have shown that there is a non-zero measure set of initial
conditions which lead to a closed trapped surface and hence to a singu­
larity by theorem 2.

The two principal reasons why a star may depart from spherical
symmetry are that it may be rotating or may have a magnetic field.
One may get Borne idea of how large the rotation may be without
preventing the occurrence ofa trapped surface by considering the Kerr
solution. This solution can be thought of as representing the exterior
solution for a body with mass m and angular momentum L = am.
Ifa is less than m there are closed trapped surfaces, but if a is greater
than m they do not occur. Thus one might expect that if the angular
momentum of the star were greater than the square of its mass, it
would be able to halt the contraction ofthe star before a closed trapped
surface developed. Another way of seeing this is that if L = m2 and
angular momentum is conserved during the coHapse, then the velocity
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J-(9") n Jr

FIGURE 55. Collapse of a spherical star as in figure 54 (iii) showing a partial
Cauchy surface;/l'. It is the initial data on the comPact region J-(!T) ()£
of £ which leads to the occurrence of the closed trapped surface !T in the
compact region J-(!T) () J+(;f").

of the surface of the star would be about the velocity of light when the
star was at its Schwarzschild radius. Now many stars have an angular
momentum greater than the square oftheir mass (for the sun, L ,..,. m 2).

However it seems reasonable to expect some loss ofangular momentum
during the collapse because of braking by magnetic fields and because
ofgravitational radiation. The situation is therefore that in some stars,
and probably most, angular momentum would not prevent occurrence
of closed trapped surfaces, and hence a singularity.

In a nearly spherical collapse a magnetic field B which is frozen into
a star will increase as the matter density p to the i power. Thus the
magnetic pressure is proportional to pt. This rate ofincrease is so slow
that if the magnetic pressure is not important initially in supporting
the star, then it will never be strong enough to have a significant effect
on the collapse.

To see why a burnt-out star of more than a certain mass cannot
support itself against gravity, we shall give a qualitative discussion
(based on unpublished work by Carter) of the zero temperature
equation of state for matter.
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In hot matter there is pressure produced by the thermal motions
of the atoms and by the radiation present. However in cold matter at
densities lower than that of nuclear matter (,.., 1014gm cm-3), the only
significant pressure will arise from the quantum mechanical exclusion
principle. To estimate this, consider a number density n of fermions
of mass m. By the exclusion principle, each fermion will effectively
occupy a volume ofn-1• Thus by the uncertainty principle, it will have
a spatial component of momentum of order lin!. If the fermions are
non-relativistic, i.e. if lin! is less than m, the velocity of the fermions
will be of order lint/m , while if the fermions are relativistic (i.e. lin! is
greater than m) then the velocity will be practically one (the speed of
light). The pressure will be of order (momentum) x (velocity) x (num­
ber density), and so will be ,.., li2n!m-1 if lin! < m, and will be ,.., lint if
lin! > m. When the matter is non-relativistic, the principal contribu­
tion to the degeneracy pressure comes from the electrons, since m-1

for them is bigger than it is for baryons. However at high densities,
when the particles become relativistic, the pressure is independent of
the mass of the particles producing it and depends simply on their
number density.

For small cold bodies, self-gravity can be neglected and the
degeneracy pressure will be balanced by attractive electrostatic forces
between nearest neighbour particles arranged in some sort of lattice.
(We assume that there are equal numbers of positive and negative
charges and approximately equal numbers of electrons and baryons.)
These forces will produce a negative pressure of order e2nt. Thus the
mass density of a small cold body will be of order

(9.1)

where me is the electron rest-mass and mn is the nucleon rest-mass.
For larger bodies self-gravity will be important, and will compress

the matter against the degeneracy pressure. To obtain an exact solu­
tion would involve a detailed integration of Einstein's equations.
However the important qualitative features can be seen more easily
from a simple Newtonian order of magnitude argument. In a star of
mass M and radius TO' the gravitational force on a typical unit volume
is of the order (M/To2)nmn, where nmn ~ M/T0

3 is the mass density.
The gravitational force will be balanced by a pressure gradient of
order P/TO' where P is the average pressure in the star. Thus

P = M2/T04 ~ Mtntmnt.
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If the density is sufficiently low that the main contribution to the
pressure is from the degeneracy of non-relativistic electrons,

P = /i2n1me- 1 = Mtntmnt,

so

This will be the correct formula for bodies for which it yields a value of
ngreaterthan(9.1) and less than me3/i-3, Le. fore3mn- 2 < M < /itmn- 2•

Such stars are known as white dwarfs.
If the density is 80 high that the electrons are relativistic, i.e.

n > me
3/i-3, then the pressure will be given by the relativistic formula;

so P = lint = M1ntmnt . Now n cancels out of this equation. Thus
apparently one obtains a star of mass

ML = /itmn-2 ~ 1.6M@,

which can have any density greater than me3mn/i-3, i.e. any radius
less than 1il?nn-I me-I. Stars of mass greater than ML simply cannot
be supported by the degeneracy pressure'ofelectrons.

In fact, when the electrons become relativistic they tend to induce
inverse beta decay with the protons, producing neutrons:

e-+p~ve+n.

This denudes the electrons and hence reduces their degeneracy
pressure, thereby causing the star to contract and making the
electrons more relativistic. This is an unstable situation, and the
process will continue until nearly all the electrons and protons have
been converted into neutrons. At this stage, equilibrium is again
possible with the star supported by the degeneracy pressure of the
neutrons. Such a body is called a neutron star. If the neutrons are
non-relativistic, one finds

n = M2mn
7 /i-s.

If the neutrons are relativistic, the star must again have a mass ML

and a radius less than or equal to /itmn-2. However Md/itmn-2 = 1
and so such a star is near the General Relativity limit MdR ~ 2.

The conclusion is that a cold star of mass greater than ML cannot
be supported by either electron or neutron degeneracy pressure. To
show this rigorously, consider the Newtonian equation of support:

where

dp/dr = -pM(r)r-2,

M(r) = 41T f:prdr

(9.2)
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(9.3)

is the mass within radius r. Multiply both sides of (9.2) by r4 and
integrate by parts from 0 to rD. This gives

4I:· pr3dr = (M(ro»2/81T,

since p = 0 at r = rD. On the other hand,

:r(I:pr'3dr'Y = ~(I:pr'3dr'flpr3

= .~ (lpr4 - ~I: :~ r'4 dr'flpr3 < 3i2
pir2,

since dp/dr is never positive. As p is never greater than lint, this shows

that I" (I")to·pr3dr < Ii o· nr2dr = Ii(M(ro»t (41Tmn)-t.

Therefore M(ro) must be less than (81i)! (41T)-i mn- 2, i.e.

M(ro) < 81i!mn-2.

We summarize these results in figure 56. In this diagram we plot the
average nucleon density n against the total mass M of the body. The
solid line shows the approximate equilibrium configuration of a cold
body. In a hot body there will be thermal and radiation pressure in
addition to degeneracy pressure and so such bodies may be in equi­
librium above the solid line. The heavy dashed line on the right indi­
cates where M Iro (which is Mtntmpt) is equal to two. The region to the
right of this line contains no equilibrium states, and corresponds to
a star being within its Schwarzschild radius. Far away from this line
to the left, the difference between Newtonian theory and General
Relativity may be neglected. Near this line, one has to take into
account General Relativistic effects. For a static spherically symmetric
body composed of a perfect fluid, the Einstein field equations can be
reduced to (see appendix.B)

dp (,u+p)(AI(r) +41Tr3p)
dr = - r(r-2AI(r»

where the radial coordinate is such that the area of the two-surface
{r = constant, t = constant} is 41Tr2. AI(r) is now defined as

I: 41Tr2,u dr,
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FIGURE 56. Nucleon number density n plotted against total mass of a static
body M. The heavy line shows the equilibrium of cold bodies; hot bodies at
suitable temperatures can be in equilibrium above this line. General Relativity
forbids any bodies in the shaded region from being static.

where p = p(l +6) is the total energy density, p is nmn, and 6 is the
relativistic increase of mass associated with the momentum of the
fermions. lff(r0) is equal to the Schwarzschild masslff of the exterior
Schwarzschild solution for r > ro. For a bound star this will be less
than the conserved mass

JI - J". 41Tpr
2
dr -

- 0 (1-2M/r)i - Nmn,

where N is the total number of nucleons in the star, because the differ­
ence (B -lff) represents the amount of energy radiated to infinity
since the formation of the star from dispersed matter initially at rest.
In practice this difference is never more than a few percent and in no
case can it exceed 2lff, since Bondi (1964) has shown that (1- 2lfffr)i
cannot be less than! providedI' and p are positive and thatI' decreases
outwardS, and cannot be less than 1 if p is less than or equal to p.
Therefore lff < JI < 3lff.

Comparing (9.3) with (9.2), withp in place ofp and lff in place of M,
one sees that the extra terms on the right-hand side of (9.3) are all
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negative provided E ~ 0 and p ~ O. Thus since in Newtonian theory
a cold star of mass M > ML cannot support itself, neither can a cold
star ofSchwarzschild mass if > ML in General Relativity. This means
that a cold star which contains more than 3Mdmn nucleons cannot
support itself. In practice, the extra terms in (9.3) mean that the
limiting nucleon number is less than Mdmn.

In our discussion of neutron stars, we ignored the effects of nuclear
forces. These will somewhat modify the position ofthe equilibrium line
in figure 56 for such stars. For details, see Harrison, Thorne, Wakano
and Wheeler (1965), Thorne (1966), Cameron (1970), and Tsuruta
(1971). However they will not affect the important point that a star
containing slightly more than Mdmn nucleons will not have any zero
temperature equilibrium. This is because the point at which neutrons
become relativistic in a star of mass ML almost coincides with the
General Relativity limit MIR ~ 2. Thus a star containing somewhat
more than Mdmn nucleons will not reach nuclear densities until it is
already inside its Schwarzschild radius.

The life history of a star will lie in a vertical line on figure 56, unless
it manages to lose a significant amount of material by some process.
The star will condense out of a cloud of gas. As it contracts, the
temperature will rise due to the compression of the gas. If the mass is
less than about 10-2M L , the temperature will never rise sufficiently
high to start nuclear reactions and the star will eventually radiate
away its heat and settle down to a state in which gravity is balanced
by degeneracy pressure of non-relativistic electrons. If the mass is
greater than about 10-2M L , the temperature will rise high enough to

start the nuclear reaction which converts hydrogen to helium. The
energy produced by this reaction will balance the energy lost by
radiation and the star will spend a long period (,.., 1010(MdM)2 years)
in quasi-static equilibrium. When the hydrogen in the core is
exhausted, the core will contract and the temperature will rise.
Further nuclear reactions may now take place, converting helium in
the core into heavier elements. However the energy available from this
conversion is not very great, and so the core cannot remain in this
phase very long. If the mass is less than ML , the star can settle down
eventually to a white dwarf state in which it is supported by
degeneracy pressure of non-relativistic electrons, or possibly to a
neutron star state in which it is supported by neutron degeneracy
pressure. However if the mass is more than slightly greater than M L ,

there is no low temperature equilibrium state. Therefore the star must
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either pass within its Schwarzschild radius, or manage to eject suffi­
cient matter that its mass is reduced to less than ML •

Ejection of matter has been observed in supernovae and planetary
nebulae, but the theory is not yet very well understood. What calcula­
tions there have been suggest that stars up to 20ML may possibly be
able to throw offmost of their mass and leave a white dwarf or neutron
star of mass less than ML (see Weymann (1963), Colgate and White
(1966), Arnett (1966), Le Blanc and Wilson (1970), andZel'dovich and
Novikov (1971)). However it is not really credible that a star of more
than 20ML could manage to lose more than 96 %of its matter, and so
one would expect that the inner part of the star at any rate would
collapse within its Schwarzschild radius. (Present calculations in fact
indicate that stars of mass M > 5ML would not be able to eject
sufficient mass to avoid a relativistic collapse.)

Going to larger masses, consider a body of about lOS ML . If this
collapsed to its Schwarzschild radius, the density would only be of the
order of 10-4 gm cm-3 (less than the density of air). If the matter were
fairly cold initially, the temperature would not have risen sufficiently
either to support the body or to ignite the nuclear fuel; thus there
would be no possibility ofmass loss, or uncertainty about the equation
of state. This example also shows that the conditions when a body
passes through its Schwarzschild radius need not be in any way
extreme.

To summarize, it seems that certainly some, and probably most,
bodies of mass > ML will eventually collapse within their Schwarz­
schild radius, and so give rise to a closed trapped surface. There are at
least 1()9 stars more massive than ML in our galaxy. Thus there are
a large number ofsituations in which theorem 2 predicts the existence
of singularities. We discuss the observable consequences of stellar
collapse in the next sections.

9.2 Black holes

What would a collapsing body look like to an observer 0 who remained
at a large distance from it ~ One can answer this if the collapse is'
exactly spherically symmetric, since then the solution outside the
body will be the Schwarzschild solution. In this case, an observer 0'
on the surface of the star would pass within T = 2m at some time, say
1 o'clock, as measured by his watch. He would not notice anything
special at that time. However after he passes T = 2m he will not be
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FIGURE 57. An observer 0 who never falls inside the collapsing fluid sphere never
sees beyond a certa.in time (say, 1 o'clock) in the history of an observer 0' on
the surface of the collapsing fluid sphere.

(i) Finkelstein diagram; (ii) Penrose diagram.

visible to the observer 0 who remains outside T = 2m (figure 57).
However long the observer 0 waits, he will never see 0' at a time later
than 1 o'clock as measured by O"s watch. Instead he will see O"s
watch apparently.slow down and asymptotically approach 1 o'clock.
This means that the light he receives from 0' will have a greater and
greater shift of frequency to the red and as a consequence a greater
and greater decrease of intensity. Thus although the surface of the star
never actually disappears from O's sight, it soon becomes so faint as
to be invisible in practice. In fact 0 would first see the centre of the
disc of the star become faint, and then this faint region would spread
outwards to the limbJAmes and Thorne (1968». The time scale for
this diminution of intensity is of the order for light to travel a
distance 2m.

One would be left with an object which, for all practical purposes, is
invisible. However it would still have the same Schwarzschild mass,
and would still produce the same gravitational field, as it did before
it collapsed. One might be able to detect its presence by its gravita­
tional effects, for instance its effects on the orbits of nearby objects, or
by the deflection of light passing near it. It is also possible that gas
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falling into such an object would set up a shock wave which might be
a source of X-rays or radio waves.

The most striking feature of spherically symmetric collapse is that
the singularity occurs within the region r < 2m, from which no light
can escape to infinity. Thus ifone remained outside r = 2m one would
never see the singularity predicted by theorem 2. Further the break­
down of physical theory which occurs at the singularity cannot affect
one's ability to predict the future in the asymptotically flat region of
space-time.

One can ask whether this is the case if the collapse is not exactly
spherically symmetric. In the previous section we used the Cauchy
stability theorem to show that small departures from spherical sym­
metry would not prevent the occurrence of closed trapped surfaces.
However the Cauchy stability theorem in its present form says only
that a sufficiently small perturbation in the initial data will produce
a perturbation in the solution which is small on a compact region. One
cannot argue from this that a perturbation of the solution will remain
small at arbitrarily large times.

We expect that in general the occurrence of singularities will lead
to Cauchy horizons (as in the Reissner-Nordstrom and Kerr solutions)
and hence to a breakdown of one's ability to predict the future.
However if the singularities are not visible from outside, one would
still be able to predict in the exterior asymptotically flat region.

To make this precise, we shall suppose that (.A,~) has a region
which is asymptotically flat in the sense of being weakly asympto­
tically simple and empty (§ 6.9). There is then a space (.it, g) into
which (.A,~) is conformally imbedded as a manifold with boundary
.ii= .A uo.A, where the boundary o.A of .A in.it consists of two
null surfaces J+ and J- which represent future and past null infinity
respectively. Let9' be a partialCauchy surface in.A. We shall say that
the space (.A, ~) is (future) asymptotically predictable from 9' if J + is
contained in the closure of ])+(9') in the conformal manifold "".
Examples of spaces which are future asymptotically predictable from
some surface 9' include Minkowski space, the Schwarzschild solution
for m ~ 0, the Kerr solution for m ~ 0, lal ~ m, and the Reissner­
Nordstrom solution for m ~ 0, lei ~ m. T,he Kerr solution with
lal >m and the Reissner-Nordstrom solution with lei> m are not
future asymptotically predictable, since for any partial Cauchy surface
9', there are past-inextendible non-spacelike .curves from J + which do
not intersect 9' but approach a singularity. One can regard future
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asymptotic predictability as the condition that there should be no
singularities to the future of [/ which are 'naked', Le. which are
visible from J+.

In a spherical collapse, one gets a space which is future asymp­
totically predictable. The question is whether this would still be the
case for non-spherical collapse. We cannot answer this completely.
Perturbation calculations by Doroshkevich, Zel'dovich and Novikov
(1966) and Price (1971) seem to indicate that small perturbations from
spherical symmetry do not give rise to naked singularities. In addition,
Gibbons and Penrose (1972) have tried, and failed, to obtain contra­
dictions which would show that in some situations the development
of a future asymptotically predictable space was inconsistent. Their
failure does not of course prove that asymptotic predictability will
hold, but it does make it more plausible. Hit does not hold, one cannot
say anything definite about the evolution of any region of a space
containing a collapsing star, as new information could come out of the
singularity. We shall therefore proceed on the assumption that future
asymptotic predictability holds at least for sufficiently small depar­
tures from spherical symmetry.

One would expect a particle on a closed trapped surface to be
unable to escape to J+. However ifone allowed arbitrary singularities
one could always make suitable cuts and identifications to form an
escape route for the particle. The following result shows that this is
not possible in a future asymptotically predictable space.

Proposition 9.2.1

If
(a) (.A,~) -is future asymptotically predictable from a partial

Cauchy !!urface 9:
(b) RabKaKb ~ 0 for all null vectors Ka,

then a closed trapped surface!T in D+([/) cannot intersect J-(J+, Ji),
i.e. cannot be seen from J+.

For suppose !Tn J-(J+, Ji) is non-empty. Then there would be a
point peJ+ in J+(!T, Ji). Let t1Ibe the-neighbourhood of.A which is
isometric to the neighbourhood t1I' of o.A' in the conformal manifold
Jj' of an asymptotically simple and empty space (.A', ~'). Let [/' be
a Cauchy surface in .A', which coincides with [/ on t1I' n .A'. Then
[/' -t1I' is compact and so by lemma 6.9.3, every generator of J+
leavesJ+([/' -t1I',JI'). This shows that if1r is any compact set of..9',
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every generator of J+ leaves J+(''IP'", Ji). From this it follows that
every generator of J+ would leave J+(fT,Ji), since this is contained
in J+(J-(fT) n [/,Ji). Therefore a null geodesic generator I' of
J+(fT, Ji) would intersect J+. The generator jt must have past end­
point atfT, since otherwise it would intersect ]-([/). Since jt meets J+
it would have infinite affine length. However by the condition (b) every
null geodesic orthogonal to fT would contain a point conjugate to fT
within a finite affine length. Thus it could not remain in J+(fT, Ji) all
the way outtoJ+. This shows thatfT cannot intersect J-(J+,Ji). 0

From the above it follows that a closed trapped surface in D+([/) in
a future asymptotically predictable space must be contained in
vII-J-(J+,Ji). Therefore there must be a non-trivial (future) event
horizon J-(J+, Ji). This is the boundary of the region from which
particles or photons can escape to infinity in the future direction. By
§6.3 the event horizon is an achronal boundary which is generated by
null geodesic segments which may have past endpoints but which can
have no future endpoints.

Lemma 9.2.2

If conditions (a), (b) of proposition 9.2.1 are satisfied and if there is
a non-empty event horizon J-(J+, Ji), then the expansion (J of the
null geodesic generators of J-(J+, .il) is non-negative in

J-(J+,.il) n D+([/).

Suppose there was an open set %' such that (J < 0 in %'n J-(J+,Ji).
LetfTbeaspacelike two-surface in %' n J-(J+, .il). Then (J = X2a" < O.
Let'Y be an open subset of %' which intersects fT and has compact
closure contained in %'. One can vary fT by a small amount in 'Y so
that x-to is still negative but such that in %', fT intersects J-(J+,Ji).
As before, this leads to a contradiction since any generator of
J+(fT,Ji) in J-(J+,.il) would have past endpoint at fT in 'Y, where
it would be orthogonal to fT. However as X2"o < 0 in 'Y, everyout­
going null geodesic orthogonal to fT in 'Y would contain a point
conjugate to fT within a finite affine distance, and 80 could not remain
in J+(fT,Ji) all the way out to J+. 0

In a future asymptotically predictable spac~, J+([/) n J-(J+, .il) is
contained in D+([/). If there were a point p on the event horizon in
J+([/) which was not in D+([/), the smallest perturbation could lead
to p being in J-(J+, Ji), Le. being visible from infinity, which would
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mean that the space was no longer asymptotically predictable. It
therefore seems reasonable to slightly extend the definition of future
asymptotically predictable, to say that space-time is strongly future
asymptotically predictable from a partial Cauchy surface t/ if J+ is
contained in the closure of D+(t/) in ..ii, and J+(t/) nJ-(J+,..ii) is
contained in D+(t/). In other words, one can also predict a neighbour­
hood of the event horizon from t/.

Proposition 9.2.3

If (Jt, g) is strongly future asymptotically predictable from a partial
Cauchy surface t/, there is a homeomorphism

a: (0, 00) xt/~D+(t/)-t/

such that for each 7' E (0, 00), t/(7') == ({7'} Xt/) is a partial Cauchy
surface such that:

(a) for 7'2 > 7'1' t/(7'2) c 1+(t/(7'1»;
(b) for each 7', the edge of t/(7') in the conformal manifold Ji is a

spacelike two-sphere ~(7') in J+ such that for 7'2 > 7'1' ~(7'2) is strictly
to the future of ~(7'1)'

(c) for each 7', t/(7') u{J+ n J-(~(7'),..ii)} is a Cauchy surface in ..ii
for D(t/).

In other words, t/(7') is a family of spacelike surfaces homeomorphic
to t/ which cover D+(t/) -t/ and intersect J+ (see figure 58). One
could regard them as surfaces of constant time in the asymptotically
predictable region. We choose them to intersect J+ so that the mass
measured on them at infinity will decrease when the emission of
gravitational or other forms of radiation takes place.

The construction for t/(7') is rather similar to that of proposition
6.4.9. Choose a continuous family ~(7') (00 > 7' > 0) of spacelike two­
spheres which cover J+, such that for 7'2 > 7'1' ~(7'2) is strictly to the
future of ~(7'1). Put a volume measure on vii such that the total
volume of J( in this measure is finite. We first prove:

Lemma 9.2.4

k(7'), the volume of the set 1-(~(7'),..ii)nD+(t/) is a continuous func­
tion of 7'.

Let r be any open set with compact closure contained in

1-(~(7'),Ji) nD+(t/).

Then there are timelike curves from every point of r to ~(7'), which
can be deformed to give timelike curves to ~(7' - 8) for some 8 > o.
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FIGURE 58. A space (.L, g) which is strongly future asymptotically predictable
from a partial Cauchy surface f/, showing a family f/(7) of spacelike surfaces
which cover D+(f/) -f/ and intersect J+ in a family of two·spheres ~(7).

Given any e > 0, one can find a r whose volume is > k(T) - e. Thus
thereisa8> Osuchthatk(T-8) > k(T)-e.Ontheotherhand,suppose
there were an open set if'which did not intersect I-(~(T), .ii) n D+(9')
but which was contained in I-(~(T'),Ji)nD+(9') for any T' > T.
Then if p e if', there would be past-directed timelike curves ~, from
each ~(T') to p. As the region ofJ+ between ~(T) and ~(Tl) is compact
for any T 1 > T, there would be a past-directed non-spacelike curve A
from ~(T)which was the limit curve of the {~,}. Since the {~,} did not
intersect I-(~(T),.ihA would not either, and so it would be a null
geodesic and would lie in l-(~(T),Ji). It would enter J( and so it
would either have a past endpoint at p, or would intersect 9'. The
former is impossible as it would imply that if'intersected I-(~(T),Ji),
and the latter is impossible as peI+(9'). This shows that there is no
open set which is in I-(~(T'),.ii)for every T' > T, but which is not in
I-(~(T),Ji) nD+(9'). Thus given e, there is a 8 such that

k(T+8) < k(T)+e.

Therefore k(T) is continuous. 0
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Proofofproposition 9.2.3. Define functionsf(p) and k(p, r), peD+(.9),

which are volumes of1+(p) andI-(p)-l-(~(r),.it).As in proposition
6.4.9, the functionf(p) is continuous on the globally hyperbolic region
D+(.9) -.9, and goes to zero on every future-inextendible non­

spacelike curve. Since I-(~(r),.it)nJI is a past set,

D+(.9) -I-(~(r),A)-.9

is globally hyperbolic. Thus for each r, k(p, r) is continuous on
D+(.9)-.9. This means that given anye > O,one can find a neighbour­
hood %' ofp such that \k(q,r)-k(p,r)\ < ie for any qe%'. By lemma
9.2.4, one can find a 8> 0 such that Ik(r')-k(r)\ < ie for Ir' -r\ < 8.
Then Ik(q, r') - k(p, r) I < e, which shows that k(p, r) is continuous on
(D+(.9) -.9) x (0,00). The surfaces.9( r) can then be defined as the set
of points peD+(.9)-.9 such that k(p,r) = rf(p). Clearly these are
spacelike surfaces which cover D+(.9) -.9 and satisfy properties
(a)-(c).

To define the homeomorphism a, one needs a timelike vector field
on D+(.9) -.9 which intersects each surface .9(r). We construct such
a vector field as follows. Let r be a neighbourhood of J+ in the
conformal manifold.ii, let Xl be a non-spacelike vector field on r
which is tangent to the generators ofJ+ on J+, and let Xl ~ 0 be a C2

function which vanishes outside r and is non-zero on J+. Let X2 be
a timelike vector field on JI, and let x2 ~ 0 be a Q2 function on.it
which is non-zero on JI and is zero on J+. Then the vector field
X = Xl Xl +X 2~ has the required property.' The homeomorphism
a: D+(.9)-.9~ (0,00) x.9 then maps a point peD+(.9)-.9 to (r,q)
where r is such that p e.9(r), and the integral curve of X through p
intersects.9 at q. 0

Ifthere is an event horizon J-(J+, A) in the region D+(.9) of a future
asymptotically predictable space, then it follows from property (b) of
proposition 9.2.3 that ~or sufficiently large r, the surfaces .9(r) will
intersect it. We define a black hole on the surface.9(r) to be a connected
component of the set f!I(r) == .9(r)-J-(J+,.it). In other words, it is
a region of.9(r) from which particles or photons cannot escape to J +.

As r increases, black holes can merge together, and new black holes
can form as the result of further bodies collapsing. However, the
following result shows that black holes can never bifurcate.
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Proposition 9.2.5

Let tlif1(71) be a black hole on 9'(71). Let tlif2(72) and tlif3(72) be black
holes on a later surface 9'(72), If tlif2(72) and tlif3(72) both intersect
J+(tlif1(7 1)), then tlif2(T2) = tlif3(72).

By property (c) of proposition 9.2.3, every future-directed inexten­
dible timelike curve from tlif1(71) will intersect 9'(72). Thus

J+(tlif1(71»n9'(72)

is connected, and will be contained in a connected component of
tlif(72). 0

For physical applications, one is interested primarily in black holes
which form as the result of gravitational collapse from an initially
non-singular state. To make this notion precise, we shall say that the
partial Cauchy surface 9' has an asymptotically simple past if J-(9')
is isometric to the region J-(9") of some asymptotically simple and
empty space-time (vIt', g'), where 9" is a Cauchy surface for (vIt', g').
By proposition 6.9.4, the surface 9" has the topology R3 and so9' also
has this topology. Proposition 9.2.3 therefore shows that if (vIt, g) is
strongly future asymptotically predictable from a surface 9' with an
asymptotically simple past, then each surface 9'(7) has the topology
R3, and the union of9'(7) with the boundary two-sphere j!(7) on oF+ is
homeomorphic to the unit cube 13•

Although one is primarily interested in spaces which have asymp­
totically simple pasts it will in the next section be convenient to con­
sider future asymptotically predictable spaces which do not have this
property, but which at large times may closely approximate to spaces
which do. An example of this is the spherically symmetric collapse we
considered at the beginning ofthis section. Once the surface of the star
has passed inside the event horizon, the metric of the exterior region
is that of the Schwarzschild solution, and is unaffected by the fate of
the star. When studying the asymptotic behaviour it is therefore
convenient simply to forget about the star, and consider the empty
Schwarzschild solution as a space which is strongly future asymp­
totically predictable from a surface 9' such a~ that shown in figure 24
on p. 154. This surface does not have an asymptotically simple past,
and its topology is 8 2 x Rl instead of R3. However the portion of 9'
outside the event horizon inregion I has the same topology as the region
outside the event horizon of the surface 9'(7) in figure 57. We want to
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consider spaces which are strongly future asymptotically predictable
from a surface t/, and are such that the portion oft/outside the event
horizon has the same topology as some surface t/(7') in a space with an
asymptotically simple past. Of course in more complicated cases there
may be several components of tlif(7') , corresponding to the collapse of
several bodies. We shall therefore consider spaces which are strongly
future asymptotically predictable from a surface t/, and with the
property:

(a) t/n J-(J+,Ji) is homeomorphic to R3_(an open set with
compact closure).

(Note that this open set may not be connected.) It will also be con­
venient to demand the property:

(p) t/ is simply connected.

Proposition 9.2.6

Let (Jt, g) be a space which is strongly future asymptotically predict­
able from a partial Cauchy surface t/ which satisfies (a), (P). Then:

(1) the surfacest/(7') also satisfy (a), (P);
(2) for each 7', otlif1(7'), the boundary int/(7') of a black hole tlif1(7'), is

compact and connected.

Since the surfacest/(7') are homeomorphic tot/, they satisfy property
(P). One can define an injective map

y:t/(7')n J-(J+,Ji)~t/nJ-(J+,Ji)

by mapping each point oft/(7') down the integral curves ofthe vector
field of X proposition 9.2.3. Since (Jt, g) is weakly asymptotically

simple, one can find a two-sphere ~ near J+ in t/(7') n J-(J+,Ji).
The portion of t/(7') outside ~ will map into the region oft/ outside

the two-sphere y(~). This shows that the region of t/n J-(J+,Ji)

which is not in y(t/(7')nJ-(J+,Ji)) must have compact closure.

Therefore y(t/(7') n J-.(J+, Ji)) will be homeomorphic to R3- (an open
set with compact closure). Since t/(7') is homeomorphic to W-1'
where l' is an open subset of R3 with compact closure, otlif(7') will be
homeomorphic to 01' and so will be compact. otlif1(7') being a closed
subset of otlif(7') will be compact.

Suppose that otlif1(7') consisted of two disconnected components
otlif1

1(7') and otlifI 2(7'). One could find curves Al and "-2 in t/(7') -tlif(7')
from ~(7') to otlifl(7') and otlifI

2(r) respectively. One could also find a
curve.u in inttlif1(7') from otlif11(7') to Ot?if12(7'). Joining these together one
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would obtain a closed curve in 9"(r) which crossed o!Bl(r) only once.
This cannot be deformed to zero in 9"(r), contradicting the fact that
9"(r) is simply connected. 0

We are only interested in black holes that one can actually fall into,
i.e. ones in which the boundary o!B(r) is contained in J+(J-,..ii). We
shall therefore add to properties (a), ({J) the requirement:

(y) for sufficiently large r, 9"(r) nJ-(J+,..ii) is contained in
J+(J-,Ji).

We shall say that (..A', g) is a regular predictable space ifitis strongly
future asymptotically predictable from a partial Cauchy surface 9"
and if properties (a), ({J), (y) are satisfied. All the spaces mentioned at
the beginning of this section as being future asymptotically predict­
able are in fact also regular predictable spaces. Proposition 9.2.6
shows that when one is dealing with regular predictable spaces de­
veloping from a partial Cauchy surface 9", there is a one-one corres­
pondence between black holes !Bi(r) and their boundaries Of!Ii(r) in
9"(r). One could therefore in such a situation give an equivalent defini­
tion of a black hole as a connected component of 9"(r) nJ-(J+, ..ii).

The next result gives a property of the boundaries of black holes
which will be important in the next section.

Proposition 9.2.7

Let (..A', g) be a regular predictable space developing from a partial
Cauchy surface 9", in which RabKaKb ~ 0 for every null vector Ka.
Let !BI(r) be a black hole on the surface 9"(r), and let {!Bi(r')}
(i = 1 to N) be the black holes on an earlier surface 9"(r') which are
such that J+(!Bi(r'» n !BI(r) =F 10. Then the area AI(r) of o!BI(r) is
greater than or equal to the sum of the areas Ai(r') of o!Bi(r'); the
equality can hold only if N = 1.

In other words, the area of the boundary of a black hole cannot
decrease with time, and if two or more black holes merge to form a
single black hole, the areaofits boundary will be greater than the areas
of the boundaries of the original black holes.

Since the event horizon is the boundary ofthe past of J+,)ts null
geodesic generators would have future endpojnts only if th~y inter­
sected J+. However this is impossible, as the null geodesic generators
ofJ+ have no future endpoints. Thus the null generators of the event
horizon have no future endpoints. By lemma 9.2.2, their expansion (J
is non-negative. Thus the area of a two-dimensional cross-section of
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the generators cannot decrease with 7. By property (c) of proposition
9.2.3, and by proposition 9.2.5, all the null geodesic generators of
J-(J+, Ji) which intersect 9'(7') in any of the o~i(7') must intersect
9'(7) in 0&11(7). Thus the area of 0&11(7) is greater than or equal to the
sum of the areas of the {~i(7')}. When N > 1, O~I(7) will contain
N disjoint closed subsets which correspond to the generators of
J-(J+, Ji) which intersect each o&1i (7'). Since 0&11(7) is connected, it
must contain an open set of generators which do not intersect any
O~i(7'),but have past endpoints between9'(7) and9'(7'). 0

It has been convenient to define black holes in terms of the event
horizon J-(J+, Ji), because this is a null hypersurface with a number
ofnice properties. However this definition depends on the whole future
behaviour of the solution; given the partial Cauchy surface 9'(7), one
cannot find where the event horizon is without solving the Cauchy
problem for the whole future development of the surface. It is there­
fore useful to define a different sort of horizon which depends only on
the properties of space-time on the surface 9'(7).

One knows from proposition 9.2.1 that any closed trapped surface
on 9'(7) in a regular predictable space developing from a partial
Cauchy surface9'must be in~(7).This result depends only on the fact
that the outgoing null geodesics orthogonal to the two-surface are
converging. It does not matter whether the ingoing null geodesics are
converging or not. We shall therefore say that an orientable compact
spacelike two-surface In D+(9') is an outer trapped surface if the
expansion (J of the outgoing null geodesics orthogonal to it is non­
positive. (We include the case (J = 0 for convenience.) In order to
define which is the outgoing family of null geodesics we make use of
property (fJ) ofthe partial Cauchy surfaces 9'(7). Let X be the timelike
vector field of proposition 9.2.3. Then any compact orientable space­
like two-surface ~ in D+(9') can be mapped by the integral curves ofX
into a compact orienta1?le two-surface ~' in 9'(7), for any given value
of7. LetA be a curve in 9'(7) U~(7)from~(7) to~' which intersects ~'
only at its endpoint. Then one can define the outgoing direction on
~' in 9'(7) as the direction for which A approaches ~'. As 9'(7) is
simply connected, this definition is unique. The outgoing family of
null geodesics orthogonal to ~ is then that family which is mapped
by X onto curves in 9'(7) which are outgoing for ~'.

Knowing the solution on the surface 9'(7), one can find all the outer
trapped surfaces ~ which lie in 9'(7). We shall define the trapped
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region .r(7) in the surface 9'(7) as the set of all points qe9'(7) such
that there is an outer trapped surface ~ lying in 9'(7), through q. As
is shown by the following result, the existence of the trapped region
.r(7) implies the existence of a black hole f!I(7), and in fact .r(7) lies
in f!I(7) for each value of7.

Proposition 9.2.8

Let (..A', g) be a regular predictable space developing from a partial
Cauchy surface 9', in which RabKaKb ~ 0 for any null vector Ka.
Then an outer trapped surface ~ in D+(9') does not intersect
J-(J+,..il).

The proof is similar to that of proposition 9.2.1. Suppose ~ intersects
J-(J+,..il). Then J+(f?lJ,..il) would intersect J+. To each point of
J+ nJ+(~,..il) there would be a past-directed null geodesic generator
ofJ+(~,.il) which had past endpoint on ~, and which contained no
point conjugate to~. By (4.35) the expansion (J of these generators
would be non-positive, as it is non-positive at ~ and as RabKaKb ~ o.
Thus the area of a two-dimensional cross-section of the generators
would always be less than or equal to the area of ~. This establishes
a contradiction, as the area of J+n J+(~,..il) is infinite, as it is at
infinity. 0

We shall call the outer boundary 09;.(7) of a connected component
9;.(7) of the trapped region .r(7),an apparent horizon. By the previous
result, the existence ofan apparent horizon 09;.(7) implies the existence
of a component of!ll(7) of the event horizon outside it, or coinciding
with it. However the converse is not necessarily true: there may not
be outer trapped surfaces within an event horizon.

On the other hand, there may be more than one connected com­
ponent of .r(7) within one component of!ll(7) of the event horizon.
These possibilities are illustrated in figure 59. A similar situation arises
when one considers the collision and merger of two black holes. On an
initial surface 9'(71), one would have two separate trapped regions
9;.(71 ) and 9'2(71) contained in black holes f!ll(7h and f!lll(71 ) respec­
tively. As they approached each other, the two,components 0flif1(7) and
of!lll(7) of the event horizon would amalgamate to form a single black
hole f!la(7I) on a later surface 9'(71). The apparent horizons 09;.(7) and
89'2(7) would however not join up immediately. Instead what would
happen is that a third trapped region9';(7) would develop surrounding
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FIGURE 59. The spherical collapse of a star of mass m, followed by the
spherical collapse of a shell of matter of mass 8m; the exterior solution will be
a Schwarzschild solution of mass m after the collapse of the star, and a
Schwarzschild solution of mass m +8m after the collapse of the shell. At time
71 there is an event horizon but no apparent event horizon; at time 7 2 there are
two apparent horizons within the event horizon.

them both (figure 60). At some later time, 9';., 92 and 5;i might merge
together.

We shall only outline the proofs of the principal properties of the
apparent horizon. First of all one has:

Proposition 9.2.9

Each component of afT(r) is a two-surface such that the outgoing
orthogonal null geodesics have zero convergence (j on afT(r). (We shall
call such a surface, a marginally outer trapped surface.)

If (j were positive in a neighbourhood in afTer) of a point pEafT(r),
then there would be a neighbourhood %' of p such that any outer
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I~--I--Apparent horizon

__-I--'Black hole'

Apparent horizon

FIGURE 60. The collision and merging of two black holes. At time 7 1 , there are
apparent horizons ay;', a9';. inside the event horizons 8!!l1' a!!ll respectively.
By time 7 1, the event horizons have merged to form a single event horizon;
a third apparent horizon has now formed surrounding both the previous
apparent horizons.

trapped surface in 9'(7) which intersected %' would also intersect
05"(7). Thus fl ~ 0 on 05"(7).

Ifflwerenegative in a neighbourhood in 05"(7) ofa point pEo5"(7),
one could deform 05"(7) outwards in 9'(7) to obtain an outer trapped
surface outside 05"(7). 0

The null geodesics orthogonal to the apparent horizon 05"(7) on a
surface 9'(7) will therefore start out with zero convergence. However
if they encounter any matter or any Weyl tensor satisfying the
generality condition (§ 4.4), they will start converging, and so their
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intersection with a later surface 9'(7") will lie inside the apparent
horizon 89"(7"). In other words, the apparent horizon moves outwards
at least as fast as light; and moves out faster than light if any matter
or radiation falls through it. As the example above shows, the apparent
horizon can also jump outwards discontinuously. This makes it
harder to work with than the event horizon, which always moves in
a continuous manner. We shall show in the next section that the event
and apparent horizons coincide when the solution is stationary. One
would therefore expect them to be very close together if the solution
is nearly stationary for a long time. In particular, one would expect
their areas to be almost the same under such circumstances. If one has
a solution which passes from an initial nearly stationary state through
some non-stationary period to a final nearly stationary state, one can
employ proposition 9.2.7 to relate the areas of the initial and final
horizons.

9.3 The final state of black holes

In the last section, we assumed that one could 'predict the future far
away from a collapsing star. We showed that this implied that the star
passed inside an event horizon which hid the singularities from an
outside observer. Matter and energy which crossed the event horizon
would be lost for ever from the outside world. One would therefore
expect that there would be a limited amount of energy available to
be radiated to infinity in the form of gravitational waVes. Once most
of this energy had been emitted, one would expect the solution outside
the horizon to approach a stationary state. In this section we shall
therefore study black hole solutions which are exactly stationary, in
the expectation that the exterior regions will closely represent the
final states of solutions outside collapsed objects.

More precisely, we shall consider spaces (.A', g) which satisfy the
following conditions: _

(1) (.A', g) is a regular predictable space developing from a partial
Cauchy surface 9'.

(2) There exists an isometry group 0t: .A'~.A' whose Killing vector
K is timelike near J+ and J-.

(3) (.A', g) is empty or contains fields like the electromagnetic field
or scalar field which obey well-behaved hyperbolic equations, and
satisfy the dominant energy condition: TabNaLb ~ 0 for future­
directed timelike vectors N, L.
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We shall call a space satisfying these conditions, a 8tationary regular
predictable space. We expect that for large values of T, the region
J-(J+, JI)n J+(9'(T)) of a regular predictable space containing
collapsing stars will be almost isometric to a similar region of a
stationary regular predictable space.

The justification for condition (3) is that one would expect any
non-zero rest-mass matter eventually to fall through the horizon. Only
long range fields like the electromagnetic field would be left. Conditions
(2) and (3) imply that (vIt, g) is analytic in the region near infinity
where the Killing vector field K is timelike (MUller zurn Hagen (1970)).
We shall take the solution elsewhere to be the analytic continuation
of this outer region. The stationary solutions we are considering here
will not have asymptotically simple pasts, as they represent only the
final state of the system and not the earlier dynamical stage. However
we shall be concerned only with the future properties ofthese solutions,
and not their past properties. These might not be the same, as there
is no a priori reason why they should be time reversible, though in fact
it will be a consequence ofthe results we shall prove that they are time
reversible.

In a stationary regular predictable space, the area of a two-section
of the horizon will be time independent. This gives the following
fundamental result:

Propo8ition 9.3.1

Let (vIt, g) be a stationary, regular predictable space-time. Then the
generators of the future event horizon J-(f+,JI) have no past end­
points in J+(J-, JI). Let Y1a be the future-directed tangent vectors
to these generators; then in J+(f-,JI), Y1a has zero shear 8- and
expansion e, and satisfies

Raby1aY1b = 0 = YlrPalbcldYJ/IYlbY{.

In order not to break up the discussion we shall defer the proof of this
and other results to the end ofthis section. This proposition shows that
in a stationary space-time, the apparent horizon coincides with the
event horizon.

We shall now present some results whiph indicate that the Kerr
family of solutions (§ 5.6) are probably the only empty stationary
regular predictable space-times. We shall not give the proofs of the
theorems of Israel and Carter here, but shall refer to the literature.
The other results will be proved at the end of this section. Because of
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these results, we expect that the solution outside an uncharged
collapsed object will settle down 40,0 a Kerr solution. If the collapsed
body had a net electric charge, we would expect the solution to
approach one of the charged Kerr solutions.

Propo8ition 9.3.2

Each connected component in J+(f-,..it) of the horizon of!4(T) in a
stationary regular predictable space is homeomorphic to a two-sphere.

It is possible that there could be several connected components of
of!4(T) representing several black holes at constant distances from each
other. This situation can occur in the limiting case where the black
holes have charge e equal to their mass m, and are non-rotating (Hartle
and Hawking (1972a)). It seems probable that this is the only case in
which one can get a sufficiently strong repulsive force to balance the
gravitational attraction between the black holes. We shall therefore
consider solutions where of!4(T) has only one connected component.

Propo8ition 9.3.3

Let (..A', g) be a stationary regular predictable space. Then the Killing

vector Ka is non-zero in J+(f-,..it) n J-(f+, .it), which is simply con­

nected. Let To be such that 9'(To)n J-(f+,.)j) is contained in
J+(J-, ..it). If Ml'(To) has only one connected component, then

J+(f-,..it) n J-(f+,.)j) n ..A' is homeomorphic to [0, 1) X 8 2 X RI.

The discussion now takes one of two possible courses, depending on
whether or not the Killing vector Ka has zero curl, Ka;bKc1}abcd, every­
where. If the curl is zero, the solution is said to be a static regular
predictable 8pace-time. Roughly speaking, one would expect the
solution to be static if the black hole is not rotating in some sense.

Propo8ition 9.3.4

In a static regular predictable space-time, the Killing vector K is
timelike in the exterior region J+(f-,.)j) nJ-(f+,..it) and is non-zero
and directed along the null generators of J-(f+,.)j) on

J-(f+,.)j)n J+(f-,.)j).

Since the curl of K vanishes, it is hypersurface orthogonal, i.e. there is
a function ~ such that K a is proportional to S;n' One can then decom­
pose the metric in the exterior region in the form gab =1-1K aKb+hab

where 1 == KaKa and hab is the induced metric in the surfaces
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{~ = constant} and represents the separation of the integral curves
of Ka. The exterior region therefore admits an isometry which sends
a point on a surface ~ to the point on the surface - ~ on the same
integral curve of K. This isometry reverses the direction of time, and
a space admitting such an isometry will be said to be time 8ymmetric.
Thus if the analytic extension of the exterior region contains a future
event horizon J-(f+, .ii), it will also contain a past event horizon
J+(f-, •.ii). These event horizons mayor may not intersect; the
Schwarzschild solution and the Reissner-Nordstrom solution with
e2 < m 2 are examples where they do intersect, and the Reissner­
Nordstrom solution with e2 = m 2 is an example where they do not.
The gradient ofjis zero on the horizon in the 1(l.tter case, but not in the
former cases. The significance of this comes from the fact that on the
future horizon J-(f+,.11) n J+(J-,.11), Ka;bKb = If:a = flKa' where
fl ~ 0 is constant along the null geodesic generators of J-(f+,.11).
Let v be a future-directed affine parameter along such a generator.
Then K = IX olav where IX is a function along the generator which obeys
dIX/dv = fl. If fl =1= 0 and the generator is geodesically complete in the
past direction, IX and the Killing vector K will be zero at some point.
This point cannot lie in J+(f-, .11), and so will be a point of inter­
section of the future event horizon J-(f+,.11) and the past event
horizon J+(f-,.11) (Boyer (1969». If fl = O,K will always be non-zero
and there will be no such point where the horizon bifurcates.

Israel (1967) has shown that a static regular predictable space-time
must be a Schwarzschild solution if:

(a) Tab = 0;
(b) the magnitude j == KaKa of the Killing vector has non-zero

gradient everywhere in J+(J-,.11) n J-(f+,.11);
(c) the past event horizon J+(J-,.11) intersects the future event

horizon J-(f+,.11) in a compact two-surface!F.

(It follows from (c) and proposition 9.3.2 that!F is connected and has
the topology ofa two-sphere. Israel did not give the conditions in this
precise form, but these are equivalent.) Israel (1968) has further shown
that the solution must be a Reissner-Nordstrom solution if the empty
space condition (a) is replaced by the requirement that the energy­
momentum tensor is that of an electromagnetic field. Muller zum
Hagen, Robinson and Seifert (1973) have removed condition (b) in
the vacuum case.

From these results we expect that if the final state of the solution
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outside the event horizon is static, then the metric in the exterior
region will be that of a Schwarzschild solution.

We shall now consider the case where the final state of the exterior
solution is stationary but not static. We would expect this to be the
case when the object that collapsed was rotating initially.

Proposition 9.3.5

In an empty stationary regular predictable space which is not static,
the Killing vector Ka is spacelike in part of the exterior region
J+(f-,Ji)n J-(f+,Ji).

The region of J+(f-, Ji) nJ-(f+, Ji) on which Ka is spacelike, is
called the ergo8phere. From proposition 9.3.4 it follows that there is no
ergosphere if the solution is static. The significance of the ergosphere
is that in it, it is impossible for a particle to move on an integral curve
of the Killing vector Ka, i.e. to remain at rest as viewed from infinity.
Since the ergosphere is outside the horizon it is still possible for such
a particle to escape to infinity. An example of a stationary non-static
regular predictable space with an ergosphere is the Kerr solution for
a2 ~ m2 (§ 5.6).

Penrose (1969), Penrose and Floyd (1971) have pointed out that one
can extract a certain amount of energy from a black hole with an
ergosphere, by throwing a particle from infinity into the ergosphere.
Since the particle moves on a geodesic, Eo == - poa K a > 0 is constant
along'its trajectory

((POaKa);bPob = (pOa;bPob)Ka+poaKo;bPob = 0,

as poa is a geodesic vector and Ka is a Killing vector), where Poa = mvoa

is the momentum vector of the particle, m is its rest-mass and Vois the
unit tangent to the particle world-line. The particle is then supposed
to split into two particles with momentum vectors Pia and P2a, where
Poa = Pla+P2a. Since Ka is spaceIike, it is possible to choose Pia to be
a future pointing timelike vector such that E I == - PIa Ka < O. Then
E 2 == - P2aK a will be greater than Eo. This means that the second
particle can escape to infinity where it will have more energy than the
original particle that was thrown in. One has thus extracted a certain
amount of energy from the black hole.

The particle with negative energy cannot escape to infinity, but
must remain in the region where Ka is spacelike. Suppose that the
ergosphere did not intersect the event horizon J-(f+,Ji). Then the
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particle would have to remain in the exterior region. By repeating the
process, one could continue to extract energy from the solution. As
one did this, one would expect the solution to change gradually. How­
ever the ergosphere cannot shrink to zero, as there has to be somewhere
for these negative energy particles to exist. It therefore appears that
either one could extract an infinite amount of energy (which seems
improbable), or that the ergosphere would eventually have to intersect
the horizon. We shall show that in the latter case the solution would
spontaneously become either axisymmetric or static without any
further extraction of energy by the Penrose process. Either the possi­
bility of the extraction of an infinite amount of energy or the occur­
rence ofa spontaneous change would seem to indicate that the original
state of the black hole was unstable. It therefore seems reasonable to
assume that in any realistic black hole situation the ergosphere
intersects the horizon.

Hajicek (1973) has shown that the stationary limit surface, which is
the outer boundary of the ergosphere, will contain at least two
integral null geodesic curves of Ka. If the gradient ofjis non-zero on
these curves, and if they are geodesically complete in the past, they
will contain points where Ka is zero. However there can be no such
points in the exterior region (see proposition 9.3.3), so the ergosphere
must intersect the horizon in this case. However although it might be
reasonable to assume that the integral curves of Ka were complete in
the future, it does not seem reasonable to assume that they are com­
plete in the past, since that would be to assume something about the
past region of the solution which, as we said before, is not physically
significant. In the static case one could show that the solution was
time symmetric, but there is no a priori reason why a stationary non­
static solution should be time symmetric. For this reason we shall rely
on the energy extraction argument above rather than on Hajicek's
results, to justify our assumption that the ergosphere intersects the
horizon.

One can explain the significance of the ergosphere touching the
horizon as follows. Let!21 be one connected component of

J';'(J+,.ii)n J+(.f-,.ii)

and let t§1 be the quotient of !21 by its generators. By propositions
9.3.1 and 9.3.2, this will be homeomorphic to a two-sphere. By proposi­
tion 9.3.1, the spatial separation of two neighbouring generators is
constant along the generators, and so can be represented by an induced
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metric h on t§1. The isometry Of moves generators into generators, and
so acts as an isometry group of (t§I' h). If the ergosphere intersects the
horizon, Ka will be spacelike somewhere on the horizon and the action
of Of on (t§I' h) is non-trivial. Therefore it must correspond to a rota­
tion of the sphere t§1 around an axis, and the orbits of the group in t§1

will be two points, corresponding to the poles, and a family of circles.
A particle moving along one of the generators of the horizon would
therefore appear to be moving relative to the frame defined by Ka
which is stationary at infinity. One could therefore say that the
horizon was rotating with respect to infinity.

The next result shows that a rotating black hole must be
axisymmetric.

Propo8ition 9.3.6

Let (..A', g) be a stationary non-static regular predictable space, in
which the ergosphere intersects J-(f+,..ii) nJ+(f-, ..ii). Then there
is a one-parameter cyclic isometry group 09 (0 ~ ¢ ~ 217) of (..A', g)
which commutes with Of' and whose orbits are spacelike near f +
and f-.

The method of proof of proposition 9.3.6 is to use the analyticity of
the metric g to show that there is an isometry 09 in a neighbourhood
of the horizon. One then extends the isometry by analytic continua­
tion. The method would therefore work even if the metric were not
analytic in isolated regions away from the horizon, forexample if there
were a ring of matter or a frame of rods around the black hole. This
leads to an apparent paradox. Consider a rotating star surrounded by
a stationary square frame of rods. Suppose that the star collapsed to
form a rotating black hole. If the black hole approached a stationary
state, it would follow from proposition 9.3.6 that the metric g was
axisymmetric except where it was non-analytic at the rods. However
the gravitational effect of the rods would prevent the metric being
axisymmetric. The res9lution of the paradox seems to be that the
black hole would not be in a stationary state while it was rotating.
What would happen is that the gravitational effect of the rods would
distort the black hole slightly. The back reaction on the frame would
cause it to start rotating and so to radiate angular momentum.
Eventually the rotation of both the black hole and the frame would be
damped out and the solution would approach a static state. A static
black hole need not be axisymmetric if the space outside it is not
empty, i.e. if condition (a) of Israel's theorem is not satisfied.
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The above discussion indicates that a realistic black hole will never
be exactly stationary while it is rotating, as the universe will not be
exactly axisymmetric about it. However in most circumstances, the
rate ofslowing down ofthe rotation of the black hole is extremely slow
(Press (1972), Hartle and Hawking (1972b». Thus itis a good approxi­
mation to neglect the small asymmetries produced by matter at a
distance from the black hole, and to regard the rotating black hole as
being in a stationary state. We shall therefore now consider the
properties of a rotating axisymmetric black hole.

The following result of Papapetrou (1966), generalized by Carter
(1969), shows that the Killing vectors Ka corresponding to the time
translation Of and /{a corresponding to the angular rotation 0lf; are
both orthogonal to families of two-surfaces.

Proposition 9.3.7

Let (..A', g) be a space-time which admits a two-parameter abelian
isometry group with Killing vectors ~1 and ~2' Let "Y be a connected
open set of Jt, and let wab == Gl[aG2bJ' If

(a) wabRbc1}cdefwe/ = 0 on "Y,
(b) wab = 0 at some point of "Y,

then w[ab:cwdle = Oon."Y.

Condition (b) is satisfied in a stationary axisymmetric space-time on
the axis ofaxisymmetry, i.e. the set ofpoints where /{a = O. Condition
(a) is satisfied in empty space, and when the energy-momentum tensor
is that of a source-free electromagnetic field (Carter (1969». By
Frobenius'theorem (Schouten (1954», the vanishing of U1:ab;cwd)c is,
when Wab =1= 0, the condition that there should exist locally a family of
two-surfaces which are orthogonal to wab' Le. to any linear combina­
tion of;1 and ;2' In the case ofa stationary axisymmetri<: space-time,
this means that one can locally introduce coordinates (t, ¢, Xl, x2) such
that K = a/at, K. = a/a¢, and Kaxm;a = 0 = /{axm;a for m = 1,2. The
metric then locally admits the isometry (t, ¢,Xl,X2)~ (-t, -¢,X1,X2),

which reverses the direction of time, i.e. it is time-symmetric. Thus if
the analytic extension of metric near infinity of an empty stationary
regular predictable space-time contains a future event horizon, it will
also contain a past event horizon.

In analogy with proposition 9.3.4, one has
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Proposition 9.3.8 (cf. Garter (1971 b»

Let (..A', g) be a stationary axisymmetric regular predictable space­
time in which wCab;cwdle = 0, where web == KCaf{b)' Then at any point
in the exterior region J+(J-,Ji) nJ-(J+,Ji) off the axis :R = 0,
h == webwabisnegative. On the horizonsJ-(J+, Ji)n J+(J-, Ji) and
J+(J-, Ji) nJ-(J+, Ji), h is zero but Wab =1= 0 except on the axis.

This shows that at each point off the axis in the exterior region, there
is some linear combination of the Killing vectors Ka and Ea which is
timelike. Outside the ergosphere, Ka itselfis timelike, but between the
stationary limit surface and the horizon one has to add a multiple of
Ea to obtain a timelike Killing vector. On the horizon there is no linear
combination which is timelike, but there is a linear combination which
is null, and is directed along the null generators of the horizon. Off the
axis K. = 0, one can locally characterize the horizon as the set ofpoints
on which h == Wab web = O.

We now come to the theorem of Carter (1971 b) which indicates that
the Kerr solutions are probably the only empty stationary black holes.
He considered stationary regular predictable spaces which satisfy;

(a) Tab = 0,
(b) they are axisymmetric,
(c) the past event horizon J+(J-,Ji) intersects the future event

horizon J-(J+,Ji) in a compact connected two-surface~.

(By proposition 9.3.2, this will be a two-sphere.) He showed that such
solutions fall into disjoint families, each of which depends only on two
parameters. The two parameters can be taken to be the mass m and
angular momentum L as measured from infinity. One such family is
known, namely the Kerr solutions for m ~ 0, a2 ~ m2, where a = LIm.
(The Kerr solutions with a2 > m2 contain naked singularities and so
are not regular predictable spaces.) It seems unlikely that there are
any other disjoint famiI!es. It has been conjectured, therefore, that the
solution outside an uncharged collapsed object will settle down to a
Kerr solution with a2 ~ m2• This conjecture is supported by analyses
oflinear perturbations from a spherical collapse by Regge and Wheeler
(1957), Doroshkevich, Zel'dovich and Novikov (1966), Vishveshwara
(1970), and Price (1972).

Assuming the validity of this Carter-Israel conjecture, one would
expect the area of the two-surface of!4(r) in the event horizon to
approach the area of a two-surface in the event horizon r = r+ of a
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Kerr solution with the same mass and angular momentum, as
measured at ~(7) on f+. This area is 81Tm(m + (m2- a2)i) , where m is
the mass of the Kerr solution and ma is the angular momentum. (If
the collapsing body has a net electrical charge e one would expect the
solution to settle down to a charged Kerr solution. The area of a two­
surface in the event horizon of such a solution is

41T(2m2- c2+2m(m2- a2- e2)i).

Using this expression one can generalize our results to charged black
holes.) Consider a collapse situation which by a surface 9'(71) has
settled down to a Kerr solution with mass m1 and angular momentum
m1a1 • Suppose one noW lets the black hole interact with particles or
radiation for a finite time. The solution will eventually settle down, by
a surface 9'(72), to a different Kerr solution with parameters m2, a2•

From the discussion of §9.2, the area of o!H(72) must be greater than
or equal to the area of o!H(71). In fact it must be strictly greater than,
since (j can be zero only if no matter or radiation crosses the horizon.
This then implies that '

m2(m2+(m22-~2)1) > ml(~ +(mI2_~2)i). (9.4)

Ifa1 =1= 0, then the inequality (9.4) allows m 2 to be less than mI. Since
there is a conservation law for total energy and momentum in an
asymptotically flat space-time (Penrose (1963)), this would mean that
one had extracted a certain amount of energy from the black hole.
One way of doing this would be to construct a square frame of rods
about the black hole and employ the torque exerted by the rotating
black hole on the frame to do work. Alternatively, one could use
Penrose's process of throwing a particle into the ergosphere, where it
divides into two particles, one of which escapes to infinity with greater
energy than the original particle. The other particle will fall through
the event horizon and reduce the angular momentum of the solution.
One can thus regard the process as extracting rotational energy from
the black hole. Christodoulou (1970) has shown that one can achieve
a result arbitrarily near the limit set by the inequality (9.4). In fact the
maximum energy extraction occurs when a2 = 0; then the availabl~

energy (m1 - m 2) is less than

m1{1- J2(1+(1- :~:yy}.
Consider now a situation in which two stars a long way apart collapse

to produce black holes. There is thus some 7' such that o!H(7') consists
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of two separate two-spheres CJal'I(T') and CJal'2(T'). Since these are a long
way apart, one can neglect their interaction and assume that the solu­
tions near each are close to Kerr solutions with parameters ml , ~ and
m2, a2 respectively. Thus the areas of CJal'I(T') and CJal'2(T') will be
approximately 81Tml (ml + (mI

2 -aI
2)i) and 81Tm2(m2+ (m22-a22)i)

respectively. Now suppose that these black holes fall towards each
other, collide and coalesce. In such a collision a certain amount of
gravitational radiation will be emitted. The system will eventually
settle down by a surface 9'(T") to resemble a single Kerr solution with
parameters ma, aa. By the same argument as previously, the area of
CJal'(T") must be greater than the total area of CJal'(T'), which is the sum
of the areas CJal'I(T') and CJal'2(T'). Thus

ma(ma+ (ma2-aa2)i) > ml(ml + (mI2_~2)i) + m2(m2+ (m22-a22)i).

By the conservation law for asymptotically fiat spaces, the amount of
energy carried away to infinity by gravitational radiation is

ml +m2-ma·

This is limited by the above inequality. The efficiency

e ... (ml +m2-ma)(ml +m2)-1

of conversion of mass to gravitational radiation is always less than l
If a l = a2 = 0, then e < 1- 1/../2. It should be stressed that these are
upper limits; the actual efficiency might be much less, although the
mere existence of a limit might suggest that one could attain an
appreciable fraction of it.

We have shown that the fraction of mass which can be converted
to gravitational radiation in the coalescence of one pair of black holes
is limited. However if there were initially a large number of black
holes, these could combine in pairs and then the resulting holes could
combine, and so on. On dimensional grounds one would expect the
efficiency to be the same at each stage. Thus one would eventually
convert a very large fraction of the original mass to gravitational
radiation. (This argument was suggested by C. W. Misner and M.J.
Rees.) At each stage, the energy emitted in gravitational radiation
would be larger. This might be able to explain Weber's recent observa­
tions of short bursts of gravitational radiation.

We now give the proofs of the propositions we have stated in this
section. For convenience, we repeat the statements of the propositions.
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Proposition 9.3.1

Let (.A, g) be a stationary, regular predictable space-time. Then the
generators of the future event horizon J-(J+,..li) have no past end­
points in J+(J-,Ji). Let y;'a be the future-directed tangent vector to
these generators; then in J+(J-, Ji), y;'a has zero shear uand expan­
sion e, and satisfies

RabY1aY1b = 0 = Y1fe0albcfaYlfIY;.bY1c.

Let ~ be a spacelike two-sphere on J-. Then one can cover J- by a
family of two-spheres ~(t) obtained by moving ~ up and down the
generators of J- under the action of 0t, Le. ~(t) = Ot(~). We now
define the function x at the point peJ+(J-,Ji) to be the greatest
value oft such that peJ+(~(t),Ji).Let 0Ii be a neighbourhood of J+
and J- which is isometric to a corresponding neighbourhood of an
asymptotically simple space-time. Then x will be continuous and have
some lower bound x' on [I' () 0Ii. From this it follows that x will be con­

tinuous in the region of J-(J+,Ji) where it is greater than x'. Let
peJ+(J-,.ii)() J-(J+,.ii). Then under the isometry 0t, P will be

moved into the region of J-(J+,.ii), where x> x'. However

xI 8/(p) = xlp + t.

Therefore x will be continuous at p.
Let 70 > 0 be such that [1'(70 ) () J-(J+, Ji) is contained in

J+(J-,Ji). Let i\ be a generator ofJ-(J+,Ji) which intersects [1'(70 ),

Suppose there were some finite upper bound X o to x on i\. Since the
space is weakly asymptotically simple, x-oo as one approaches ~(70)

on [1'(70), Thus there will be some lower bound Xl of x on

[1'(70) () J-(J+, .ii).

Under the action of the group 0t, i\ is moved into another generator
Ot(i\). As the generators of J-(J+,.ii) have no future endpoints, the

past extension ofOt(i\) will still intersect [1'(70 ) () J-(J+,Ji). This leads
to a contradiction, since the upper bound of x on Ot(i\) would be less
than Xl ift < x1-XO'

Let X 2 be the upper bound ofx on[l'(70)() J-(J+,.ii). Then every ,
generator i\ of J-(J+,.ii) which interseqts [1'(70 ) will intersect
ff(t) == J+(~(t),.ii)() J-(J+,Ji) for t ~ x 2• Every generator of
J-(J+,.ii) which intersectsff(t') will intersect 0t([I'(70 )) for t ~ t' -Xl'

But Ot([I'(70 )) () J-(J+, Ji) = Ot([I'(70 ) () J-(J+, Ji)) is compact. Thus
ff(t) is compact.
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Now consider how the area of§(t) varies as t increases. Since 0 ~ 0
the area cannot decrease. If0were > 0 on an open set, the area would
increase. Also if the generators of the horizon had past endpoints on
§(t) the area would increase. However as §(t) is moving under the
isometry 0t, the area must remain the same. Therefore 0 = 0, and
there are no past endpoints on the region of J-(J+,Ji) for which
x ~ x2• However since each point of J-(J+,Ji)n J+(J-,Ji) can be
moved by the isometry 0t to where x > x2' this result applies to the
whole of J-(J+,A)n J+(J-,A). From the propagation equations
(4.35) and (4.36) one then finds C7mfl = 0, Raby;'ay;'b = 0 and
Y;.reOalbcld y;'/IYlbY{ = 0, where y;'a is the future-directed tangent
vector to the null geodesic generators of the horizon. 0

Proposition 9.3.2

Each connected component in J+(J-,A) of the horizon CJ86'(T) in a
stationary, regular predictable space is homeomorphic to a two-sphere.

Consider how the expansion of the outgoing null geodesics orthogonal
to CJ86'(T) behaves if one deforms CJ86'(T) slightly outwards into
J-(J+, Ji). Let ~a be the other future-directed null vector orthogonal
to CJ86'(T), normalized so that Y;.aY2a = -1. This leaves the freedom
Yc~Yl ' = ellYl , Y2~Y2' = e-JIY2. The induced metric on the space­
like two-surface CJ86'(T) is hab = Yab + y;'aY2b +Y2a y;'b' Define a family of
surfaces§(T, w) by moving each point of CJ86'(T) a parameter distance w
along the null geodesic curve with tangent vector Y2a. The vectors y;'a
will be orthogonal to § (T, w) if they propagate according to

habYlb;cY2c = -habY2c;bY{ and Y;.aY2a = -1.

Then

(yla; bhaC hbd);uY2uhc8hdt = h8r1pa;bhbt +p8Pt

-h8aY;.a;uhoeY2e;bhbt +RaCeb~ey;'cha8hbt> (9.5)

where p a == -hlJaY2c;by;'c. Contracting with hilt, one obtains

:~ = (Yla;bhba);cY2c

= Pb;dhbd -Racy;'a~c +Radcby;'d~c~ay;'b+Papa

- Yla;chcdY2d;bhba'

On the horizon, Y;.a; C hcdhba is zero, as the shear and divergence of the
horizon are zero. Under a rescaling transformation Yl ' = ell Yl ,
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Y2' = e-II Y2, the vector pa changes to p'a = pa+haby ;b' and so
dO/dwlw_o changes to

dO'I r-bd r-bd R vay;c
d----; = Pb;df'l, +Y;bdf'l, - ac..(l 2

W w=O

+ Radcb:y;'d~c~a:y;'b +p'ap'a' (9.6)

The term Y:bdhbd is the Laplacian of Y in the two-surface CJ86'(T). By
a theorem of Hodge (1952), one can choose Y so that the sum of the
first four terms on the right of (9.6) is a constant on CJ86'(T). The sign of
this constant will be determined by that of the integral of

( - Rac :Y;.aY2c+Radcbl';.dY2cY2aYlb)

over CJ86'(T) (Pb;dhbd, being a divergence, has zero integral). This
integral can be evaluated using the Gauss-Codacci equations for the
scalar curvature b, of the two-surface with metric h:

b, = Riiklhikhil = R-2Riikly;'i~il';.kYl+4R#y;'iYl,

since 0 = U= 0 on CJ86'(T). By the GausS-Bonnet theorem (Kobayashi
and Nomizu (1969» f

b,dB = 2rrx,
illlJ(T)

where dB is the surface area element of CJ86'(T) and X is the Euler
number of CJ86'(T). Thus

f (-Raby;'a~b+Radcbl';.d~cY2al';.b) dB
illlJ(T)

= -rrx+f (IR +R ab l';.aY2b) dB. (9.7)
illlJ(T)

By the Einstein equations,

IR+RabYla~b= 8rrTabYla~b,

which is ~ 0 by the dominant energy condition. The Euler number X
is + 2 for the sphere, zero for the torus, and negative for any other
compact orientable two-surface (CJ86'(T) has to be orientable as it is
a boundary). Hence the right-hand side of (9.7) can be negative only
if CJ86'(T) is a sphere.

Suppose that the right-hand side of (9.7), was positive. Then one
could choose Y so that dO'/dw'lw_o was positive everywhere on CJ86'(T).
For small negative values of w' one would obtain a two-surface in
J-(J+,Ji) such that the outgoing null geodesics orthogonal to the
surface were converging. This would contradict proposition 9.2.8.
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Suppose now that X was zero and that Tablia~b was zero on CJ86'(T).
Then one could choose y so that the sum of the first four terms on the
right of (9.6) was zero on CJ86'(T). Then

p'a;bhba+Rabcdlia~bY{Y2d= 0

on CJ86'(T).1f Rabcdlia~blic~d was non-zero somewhere on CJ86'(T), then
the term p'eJp'a in (9.6) would be non-zero somewhere and one could
change y slightly so as to make dO'ldw'lw=o positive everywhere. This
would again lead to a contradiction.

Now suppose that Rabcdlia~bYlcY2dand p'a were zero everYWhere
on CJ86'(T). One could move the two-surface CJ86'(T) back along ~a,

choosing the rescaling parameter y at each stage so that

p'a;b hba+RabcdliaY2blic~d

-IR-2RabYlaY2b = p'a;bhba-l~ = o.
If Tab YlaY2bor p'a were non-zero for w' < 0 then one could adjust y to
obtain a two-surface in J-(J+,Ji) with e< o. This would contradict
proposition 9.2.8. On the other hand if Tablia~b and p'a were zero
everYWhere for w' < 0, one would obtain a two-surface in J-(J+,Ji)
with 0 = 0 which again contradicts proposition 9.2.8.

One avoids a contradiction only if X = 2, i.e. if CJ86'(T) is a two-
sphere. 0

Proposition 9.3.3

Let (.A, g) be a stationary regular predictable space-time. Then the

Killing vector Ka is non-zero in J+(J-,Ji)n J-(J+,Ji), which is

simply connected. Let To be such that9'(To)n J-(J+,Ji.) is contained
in J+(J-,Ji). If CJ86'(To) has only one connected component, then

J+(J-,Ji) n J-(J+,Ji) n .A is homeomorphic to [0, 1) X 8 2 X Rl.

The function x defined in proposition 9.3.1 is continuous on

J+(J-,.H) n J-(J+, Ji). and has the property that xle,(p) = xl p+ t.

This shows that K cannot be zero in J+(J-,Ji)n J-(J+,Ji). The
integral curves of K establish a homeomorphism between two of the
surfaces

J+(t'(t),.H)n J-(J+,Ji)n.A (-00 < t < (0).

The region J+(J-,Ji)n J-(J+,Ji)n.A is covered by these sur­

faces, and so is homeomorphic to Rl x J+(rt'(t'),Ji) n J-(J+.Ji) nJ(

for any t'. Choose t to be large enough that J+(rt'(t),Ji) intersects
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9'(TO) in the neighbourhood OU of J+ which is isometric to a similar
neighbourhood in an asymptotically simple space. The integral curves
of K establish a homeomorphism between

J+(I/f(t),.ii)n J-(J+,.ii)n.>lt and 9'(To)n J-(J+,Ji).

By property (IX) and proposition 9.3.2, this is simply connected. If
further CJ86'(T) has only one connected component, then

9'(To)n J-(J+,.ii)

has the topology [0,1) x 8 2• Thus J+(J-,.ii) n J-(J+,.ii) n.Afhasthe
topology [0, 1) X 82 X Ri. . 0

Proposition 9.3.4

In a static regular predictable space-time, the Killing vector K is
timelike in the exterior region J+(J-,Ji) nJ-(J+,.ii) and is non-zero
and directed along the null generators ofJ-(J+,Ji) on

J-(J+,.ii)n J+(J-,Ji).

The event horizon J-(J+,.ii)is mapped into itself by the isometry (Jt.

Thus on J-(J+,.ii) nJ+(J-, .ii), K must be null or spacelike. Let To

be such that 9'(To)n J-(J+,.ii) is contained in J+(J-,.ii). Then
f == KaKa must be zero on some closed set % in

J+(9'(TO}} nJ-(J+, Ji).

From the fact that Ka is a Killing vector and curl K =·0, it follows that

(9.8)

By proposition 9.3.3, Ka is non-zero on the simply connected set

J+(J-,Ji)n J-(J+,Ji). By Frobenius' theorem, it follows from the
condition curl K = 0, that there is a function Son this region such that
K a = -IXS;a, where IX is some positive function.

Let p be a point of% and let i\(v) be a curve through p lying in the
surface of constant Sthrough p. Then by (9.8),

d D
lKadvlogf = CJvKa:

If i\(v) left%, the left-hand side of this equation would be unbounded.
However the right-hand side is continuous; therefore i\(v) must lie
in%, so% must contain the surface 6 = 611'. Howeverf cannot be zero
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on an open neighbourhood of p, since it would then be zero every­
where. Thus the connected component of.Al' through p is the three­
surface S= sip. Suppose peJ+(J-,Ji)n J-(J+,Ji). Then there
would be a future-directed timelike curve y(u) from J- through p
to J+. On S= sip, Ka would be future-directed. Thus (fJ!fJu)ys> 0
when S= sip. This leads to a contradiction as S= sip cannot intersect
J+ or J- since Ka is timelike near infinity. Thus near J+ and J-,
either Sis greater than sip or less than glp' 0

Proposition 9.3.5

In an empty regular predictable space-time which is not static, the
Killing vector Ka is spacelike in part of the exterior region

J+(J-,Ji)n J-(J+,Ji).

The function x introduced in proposition 9.3.1 is continuous on

J+(J-,Ji) 0 J-(J+,Ji), and is such that along each integral curve
of Ka, fJx!fJt = 1. One can approximate the surface x = 0 in

J+(J-, Ji)n J-(J+,Ji) by a smooth surface :Jf' which is nowhere
tangent to Ka. One can then define a smooth function x on

J+(J-,Ji) nJ-(J+, Ji) byspecifying that x = oon:Jf'and x: aKa = 1.
One can express the gradient of the Killing vector as

fKa:b= 7Jabcd Kcwd + K laf:bb

where f == KaKa is the magnitude of the Killing vector, and

CJP == 17JabcelKbKc.el'

The second derivatives of K satisfy

2Ka;lbc! = RelabcKd.

However Ka;be = K1a;b)c' Therefore

Ka;be = Rdcba Kel

which implies Ka;bb = -RadKd. (9.9)

The vector qa == f-lK~ -x;a is orthogonal to Ka. Multiplying (9.9) by
qa and integrating over the region!l' of J-(J+,Ji) bounded by the
surfaces Ai and~ defined by x = X 2+ 1 and x = x2 +2, where X 2 is
as in proposition 9.3.1, one finds

f
RabKaqbdv = -f (Ka;bqa)'bdV+f Ka·bqa;bdv

!l' !l"!l' •

=-f Ka; bqa dUb - 2f f-2wawa dv. (9.10)
a!l' !l'
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The boundary CJ.<if of.<if consists ofthe surfaces CJ.<if1 == .Ain J -(J +, A),
CJ.<if2 ==~n J-(J+, A), the portion CJ.<ifa ofJ-(J+, A) between.Ai and
~, and the portion CJ~ ofJ - between.Ai and~.The surface integral
over CJ.<ifl is minus that over CJ.<if2, since these surfaces are carried into
each other by the isometry 01'

Near J-, 1= -1 + (2mlr) +O(r-2 ) and lJPwa = OCr-e), where r is
some suitable radial coordinate. Thus the surface integral over CJ.<if.. at
J- vanishes. Suppose now that Ka were timelike everywhere in .<if,
becoming null on the horizon. Then lJP, being orthogonal to K, would
be spacelike everywhere in .<if. Therefore if w is non-zero, Le. the
solution is non-static, the last term on the right of (9.10) will be
negative. This leads to a contradiction if the space is empty and if the
integral over CJ.<ifa is zero.

To evaluate this integral, one has to apply a limiting procedure.
Let Z be a function on the surface .Ai which is zero on the horizon but
such that the gradient ofzin..tt;. is not zero on the horizon. The function
z can be defined on.P by the condition z:aKa = O. One can express the

gradient of z as _ - :b(K I'R)
z:a - X;b Z a+ a'

where Ra is a vector field tangent to the surfaces {x = constant} and
normalized so that RaKa = -1. One now takes fKa;bqadub over the
surface {z = constant} between.Ai and~. Then dUb = duz: b, where
du is some continuous measure. Thus

f Ka; bqa dUb = f(IX:a(/):a_X:aKa:bRbl+l/:bRb)X:bz: bdu.

Since the horizon was the surface 1= 0 and since Ka was directed
along the null generators of the horizon, I.a is proportional to Ka on
the horizon. Therefore

This gives a contradiction which shows that Ka must be spacelike
somewhere in.P if the space is empty. 0

Proposition 9.3.6

Let (.A, g) be a stationary non-static regular, predictable space-time
in which the ergosphere intersects J-(J+,A) n J+(J-, A). Then
there is a one-parameter cyclic isometry group 0", (0 ::0::; if> ::0::; 21T) of
(1, g) which commutes with 0t, and whose orbits are spacelike near
J+andJ-.
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Let !it be one connected component of J-(J+,Ji)n J+(J-,A). and
let ~t be the quotient of !i1 by its generators. Then the orbits of the
isometry 0t in the horizon !i 1 will be spirals which repeatedly intersect
the same generators. Let t1 > 0 be such that 0t

l
is one rotation of ~1'

Then ifpe!it , 0t
1
(p) wiIllie on the same generator of !i1' It will lie to

the future of p, since I I +t
X 81.(P) = X P l'

One can now choose the future-directed null vector Y1 to be directed
along the generators, and scaled so that

(i) Y1a;bY1iJ = 2t:l;.a' where e;al;.a = 0,
(li) ifv is a parameter along the generators such that Y1 = fJ/fJv, then

vl o11(p) = vip + tt·

The vector field Yt defined in this way is invariant under the isometry
0t, i.e. Lx YI = O. One can now define a spacelike vector field Ya in!i1

by Ya == K- Yt ; then Lx Ya = 0 and LY1 Ya = 0 (note that Ya is not
a unit vector, and in fact it will vanish on the generators 'Y1 ap.d 'Y:a
corresponding to the poles of !?It). The integral curves of Ya in !iI will
be circles which degenerate to points on 'Yt and 'Y:a.

Let p be a curve in !i1 from 'Y1 to 'Y:a orthogonal to Yt and Ya, and
such that the orbits of Ya which intersect p form a smooth spacelike
two-surface f!JJ in !i1' Let f!JJ(v) be the family of spacelike two-surfaces
in !i1 obtained by moving each point of f!JJ a parameter distance v up
the generators of !i1' f!JJ(v) is also equal to 0.,(&/1). Let Y:a be the other
null vector orthogonal to &/I(v), normalized so that Y1aY:aa = -1 (see
figure 61); then Lx Y:a = O.

Let Y.. be a spacelike vector on p, tangent to p. Then one can define
Y.. on !iI by dragging it along by K and Yt , i.e. Lx Y.. = 0 = Ly, Y4.

(These are compatible because Lx Yt = 0.) Y4 will be orthogonal to Y1

on !i1 because Lx(~agabl'?) = 0, and

(y..aY1a);bYib = y;'a;b~bY;.a+Yta;bY4aY/I.

The first term is zero because Y1 is null and the second term equals
2eY;.ay"a. Thus y;'aY4a, being zero initially, remains zero. Y4 will be
orthogonal to Y:a on !i1 because it lies in the surface &/I(v), and Y:a is
normal to the surface. It will also be orthogonal to Ya on!i1 because
Lx(Yaagab~b) = 0, and

(yaaY4a );b y;'b = Y;.a;b YabY4a + Y1a;b~bYaa = 0

since Yla;bhachbd = O.
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FIGURE 61. The isometry 01, moves the point p and the surface 9i'(v) into the
point OI,(P) and the surface 9i'(v+tl ) in the horizon !Ill' YI is tangent to a null
geodesic generator of fill' Y. is a null vector orthogonal to 9i'(v). and Ya lies in
9i'(v). K is the Killing vector field on !Ill which generates the isometry group 01,

In a neighbourhood of !Ill' there will be a unique null geodesic i\
orthogonal to a surface 9'(v) through a given point r. One can then
define coordinates (v,w,e,¢) for the point r, where w is the affine
distance (as measured by Y2) along J1" and (v,e,¢) have their values
at J1, n !Ill' where e and ¢ are spherical polar coordinates for the
generators of !Ill such that yaae. a = 0, ~a¢.a = 0. (In other words,
we choose Ya = (21T/t l ) fJ/fJ¢ and Y.. = fJifJe on !Ild We shall take the
basis {YI' Y2• Ya, YJ to be parallelly propagated along the null geo­
desics with tangent vector Y2• Then Y2 = fJ/fJw. We define the vector
:t( to be fJ/fJv. This means that the Lie derivative of :t( by Y2 is zero.
We define the vector Za to be

1 {yaa y'a' }
Za = ../2 (YabYab)i +i (~bY4b)i .

Then znZa = 0, zaZa = 1, ZaZa = 0,

where - denotes the complex conjugate.
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One can define on !i1 a family {gn} of tensor fields, where

go = g and gn = Ly (Ly ( ... (Lr.g) ...».
..... t t __ .;

n terms

gn+lab = gnab;c:YzC+gncb Y2C;a+gll ac:Yzc;b'

The Lie derivative with respect to f{ of the second and third terms
on the right are zero. The first term involves covariant derivatives of
YIi of order (n + 1) and lower orders. The Lie derivative with respect to
:f{ of all the lower order terms are zero. The terms involving (n+ 1)
covariant derivatives are

In the coordinates given above, gnab = on(gab)jown. Since the solution
is analytic, it is completely determined by the family gn on ~l' We
shall show that on !iI' the Lie derivatives with respect to f{ of all the
gn vanish. Then the Lie derivative of the gn with respect to:K = f{ - K
will also vanish. This shows that the solution will admit a one­
parameter group 0", generated by it For simplicity we shall consider
only the empty space case, but similar arguments hold in the presence
of matter fields, like the electromagnetic or scalar fields, which obey
well-behaved hyperbolic equations.

By our choice of coordinates, the components ofLx g are the partial
derivatives with respect to v of the coordinate components gab' These
arealIconstanton~I'soLigl.1

1
= O. We shall show below LXg11:l

1
= 0,

and then proceed by a method of induction. Suppose that

Lxgnl.f
1

= 0, n ~ 1.

It then follows from the construction of the basis that Lx of the nth
covariant derivatives of all the basis vectors YI' Y2- Z, Z are zero.
Now

(¥2a;be/...llhc + :Yzb;ae/...llhc)Y2":Yz/ · . .:Yzh:Yzc

= (:Yza;bt:Yze+:Yzb;a,,:Yz");/...llhC:Yz/ , . .:Yzc+lower order terms

= «:Yza; "Y2");b + Rpabe:YzP:Yz" + (:Yzb; ,,:Yz");a + Rpba,,:YzP:Yz");/...Oh

x :Yz/.. .:YzC + lower order terms.

The Lie derivatives with respect to f{ of this expression will be zero,
if the Lie derivative with respect to f{ of the Riemann tensor and its
covariant derivatives to order (n-1) vanish. Then Lxgn+lI.f

1
will be

zero.
To show that the Lie derivatives with respect to f{ of gl and of the

covariant derivatives of the Riemann tensor are zero, it is convenient
to use some notation introduced by Newman and Penrose (1962).
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This involves using a pseudo-orthonormal basis with the two spacelike
vectors Ya and Y.. combined to give a single complex null vector Z,
giving each component of the connection and the curvature tensor
a separate symbol, and writing out all the Bianchi identities and the
defining equations for the curvature tensor explicitly without summa­
tion. These relations are combined in pairs to form half the number
ofcomplex equations. The symbols for the connection components are:

K = Yla; bZaYlb,

p = Y;.a: bzaZb,

U = Yla; bzaZb,

T = Y;.a: bZa~b,

rr = -~a; bzaYlb,

A:= -Y2a; bzaZb,

p = -~a: bzaZb,

V = -Y2a; bzaY2b,

e = l(Yla; bY2aY;.b_Za; bZay;'b), a = l(y;'a; bY2aZb-Zn: bZaZb),

(i = ·HY;.a; b:Yt.aZb-Za; bzaZb), 'Y = l(Y~.a; b~aY2b-Za; bZaYl).

The symbols for the Weyl tensor are:

'Yo = -Gabcdy;'aZb~cZd,

'YI = -Gabcdy;'a:Yt.by;'cZd,

'Y2 = -!Gabcd(y;'a~by;'cY2d_J;aY2bzeZd),

o/a = GabcdJ;a~b~cZd

'Y.. = -Gabcd~aZb~cZd.

We are considering empty space, so the Ricci tensor is zero (Le.
cI>.A.B = 0 = A in the Newman-Penrose formalism). Since the basis is
parallelly propagated along Y2, v = 'Y:= T = O. As Y2 is the gradient
of the coordinate v, rr = 1J+a and p = p. Furthermore on !!lI'
K = P = u = 0, e = e, Y1(e) = 0 and 'Yo = O.

The equations we shall need are:

y;'(a) -Z(e) = (p+e-2e)a+fJU-lle-KA+ (e+p)rr,

y;'({i) - Z(e) = (a +rr)u+ (p- e){i - pK- (a-1i)e+ 'YI ,

y;'(A) -Z(rr) = PA +O'p+rr2+ (a-ll)rr- (3e-e)A,

YI(,u)- Z(rr) = pp +UA+ rr1i- (e+e)p -rr(a- (i) + 'Y2,

Z(p)-Z(u) =p(a+{i)-u(3a-ll)-'Y1

(9.11 a)

(9.11 b)

(9.11 c)

(9.11 d)

(9.11 e)
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(these are obtained from the Newman-Penrose equations (4.2)), and:

y;'('Yl)-Z('Yo) = - 3K'Y2+ (2£+4p)'Yl - (-1T+ 4a)'Yo, (9.12a)

Y~J'Y2) -Z('YI ) = - 2K'Ya+ 3p'Y2- (-21T+ 2/%)'1'1- .\'1'0' (9.12b)

Yl('Ya) - Z('Y2) = - K'Y.. - (2£- 2p) 'Ya + 31T'Y2- 2.\'1'1' (9.12c)

y;'('Y..) - Z('Ya) = - (4€-p)'Y.. + (41T+ 2a) 'Ya- 3~'Y2' (9.12d)

¥2('YO)-Z('Yl ) = -,u'Y0-2,B'Yl +3u'Y2 (9.12e)

(these are obtained from the Newman-Penrose equations (4.5)).
From (9.11e), '1'1 = Oon.,qr Then from (9.12b), 1';,('1'2) = 1?('Y2) = 0

on .,ql. Adding (9.11a) to the complex conjugate of (9.11b), one
obtains

y;'(1T) = y;'(a+,B) = Z(€) + Z(e) + 21TP+ 21Tu-1T(€-e)-K.\-Kll +'Yr

On .,ql' this becomes y;'(1T) = Z(€) +Z(e).

Therefore YI (Yl(1T)) = J;.(Z(€) +Z(e)) on .,ql. But on .,qI' Lt, Z = 0 and
y;.(€) = o. Thus Y;.(J;.(1T)) = 0 on .,ql. This shows that 1T = A +Bv on .,qI'
where A and B are constant along a generator of .,qI' However
1Tlp = 1Tle

t
,(p); therefore 1T is a constant along the generators of .,ql.

Subtracting the complex conjugate of (9.11 b) from (9.11 a), one finds
that (a -11) is constant along the generators.

One now applies similar arguments to (9.11c) and (9.11d) to show
that,u and .\ are constant along the generators of .,qI' Since 1T, ,u and .\
determine the covariant derivative of Y2, it follows that .£xY2a;b = 0
on .,qI and hence that Ligi = 0 on .,qI'

One can also apply the above kind of argument to (9.12c) and
(9.12d) to show that y;'('Ya) = y;'('Y..) = 0 on .,ql. Thus .£xRa1Jcd = 0 on
.,qI and so the Lie derivative with respect to f{ of the second derivatives
of the basis vectors are zero. In particular Y1 Y2 acting on any of the
components of the connection gives zero.

From (9.12e), 1?(¥2('Yo)) = y;'¥2('Yo) = 0 on .,qI. One now operates
with Yl Y2 on (9.12a). ~he commutator YI Y2 - Y2 YI involves only
the first covariant derivatives of the basis vectors. Thus

LiJYl Y2 - Y2 YI) = 0 on .,qI'

From this it follows by an argument like that given above that

1?(¥2('Y1)) = y;'(¥2('Y1)) = 0 on ~l'

One now repeats theargumentfor (9.10b), (9.10c) and (9.10d) to show
that 1?(Y2('Y2)) = 1?(¥2('Ya)) = 1?(¥2('Y..)) = 0 on ~l. This shows that
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the Lie derivatives with respect to 1( of the first covariant derivatives
of the Riemann tensor vanish. One then repeats the process, showing
that 1?(¥2(¥2('Yo))) = 0 on !Ill' and so on. 0

Proposition 9.3.7

Let (oA, g) be a space-time which admits a two-parameter abelian
isometry group with Killing vectors ~1 and ;2' Let "f'" be a connected
open set of oA, and let W ab = gIIag2b)' If

(a) wabRbc7Jcdelwef = 0 on "f'",
(b) wab = 0 at some point of "f'",

then 1/" W Ie = 0 on nJ/"-lab;cd' .

Let lllX = gla; bWCd7JabCd, and (21X = €2a: bWcd7J
abcd

• Then
7Jabcd(])X = - 4! gia ; b€lcg2dJ

= 3! gld€2laglb:cl_ 3! €2dgllaglb;C)- 2 x 3! gllag2b glC); d.
Therefore

(3 ')-L..abcd X - I: 11. I: lal: b:cl+ I: 11. I:",la I: b:cl
. 'I (v; 11. - !>l ;d!>2 ~l !>l !>.. ;d!>l

+ gIll. g2laglb ;cl;d - €2d;dgllaglb ;cl_ g2dglla;dgl; c)

- g2dgllaglb ;cl:d- 2gl
la ;dg2b g{l;d

- 2€iag2b;dglC):d- 2gl1ag2bglcl: 11.;11.' (9.13)

The first and fourth terms vanish because;l and ;2 are Killing vectors;
the second and fifth terms cancel each other because ;1 and ~2 com­
mute. Because;l is a Killing vector, ~lgla;b = O. This implies that
the third term vanishes. Similarly ~Igla: b = 0 because;2 is a Killing
vector which commutes with ;1' This implies that the sixth and eighth
terms cancel. The seventh term vanishes because gla: d g1c:d is sym­
metric; and because of the relation ga;bc = Rilcbagd satisfied by any
Killing vector, ga; 11.11. = -Rab~' Equation (9.13) is therefore

7Jabcd(])X;d = 2. 3! glla€2bRCld€ld.

By condition (a), the right-hand side of this equation vanishes on "f'".
Thus (vX is a constant on "f'"; in fact it will be zero on "f'" since it must
vanish when Wab does. Similarly (21X will be zero on "f'". However the
vanishing of (vX and (21X is the necessary and sufficient condition that

Wrab;cwdle = O. 0

Proposition 9.3.8

Let (oA, g) be a stationary axisymmetric regular predictable space­
time in which Wrab;cWdle = 0, where Wab == KlaKb1. Then at any point
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in the exterior region J+(J-, Ji) n J-(J+, Ji) off the axis 1{ = 0,

h == Wab wab is negative. On the horizons J-(J+, Ji) n J+(J-, Ji) and
J+(J-, Ji) n J-(J+, Ji), h is zero but wab =1= 0 except on the axis.

By proposition 9.3.3, Ka is non-zero in J+(J-, Ji) n J-(J+, A). Let
Abe an 8 1 which is a non-zero integral curve of the vector field 1{ in
J+(J-, Ji) n J-(J+, Ji). Under the isometry 0t' A can be moved into
D+(.9'). As there are no closed non-spacelike curves in D+(.9'), Amust
be a spacelike curve, and hence f{a must be spacelike in

J+(J-,Ji)n J-(J+,Ji)

except on the axis where it is zero. Suppose there were some pointpat
which f{a and Ka were both non-zero and in the same direction. As
f{a and Ka commute, the integral curves of f{a through p would
coincide with those of Ka. However the former is closed while the
latter is not. Thus f{ a and Ka are linearly independent where they are
non-zero. Thus wab is non-zero in J+(J-, A) n J-(J+, Ji) except on
the axis.

The axis will be a two-dimensional surface. Let OJ! be the set
J+(J-,Ji)n J-(J+,Ji)-(the axis), and let ~ be the quotient of OJ!
by 0",. As the integral curves of Ka are closed and spacelike in OJ!, the
quotient ~ will be a Hausdorff manifold. On ~, there will be a
Lorentz metric liab = gab - (f{cf{c) -1Raf{b' One can project the Killing
vector Ka by liab to obtain a non-zero vector field liabKb in ~ which is
a Killing vector field for the metricliab• The condition wlab;cWdle = 0 in
.-It implies that in ~, (Kbliblc)ldliellKI = 0, where I denotes the co­
variant derivative with respect to Ii. This is just the condition that
there should exist a function €on ~ such that Kbliba = - a;,a' The
argument is then similar to that in proposition 9.3.4. One shows that
if KaKbliab = 0 at a point PE~, then the surface g= gil' is a null
surface in ~ with respect to the metric Ii. The function gon~ induces
a function gon OJ!, with the property: g;aKa = o. Thus g= glp will be
a null surface in .-It with respect to the metric g.

Suppose p corresponded to an integral curve Aof f{a which did not
lie on j-(J+, Ji). Let qE.-It be a point of A. Then there would be
a future-directed timelike curve y(v) from J- through q to J+. If this
curve inters~cted the axis, it could be deformed slightly to avoid it.
One would then obtain a contradiction similar to that in proposition
9.3.4. []
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The initial singularity in the
.

unIverse

The expansion of the universe is in many ways similar to the collapse
of a star, except that the sense of time is reversed. We shall show in
this chapter that the conditions of theorems 2 and 3 seem to be satis­
fied, indicating that there was a singularity at the beginning of the
present expansion phase of the universe, and we discuss the implica­
tions of space-time singularities.

In §10.1 we show that past-directed closed trapped surfaces exist
if the microwave background radiation in the universe has been
partially thermalized by scattering, or alternatively if the Copernican
assumption holds, i.e. we do not occupy a special position in the
universe. In §10.2 we discuss the possible nature of the singularity
and the breakdown of physical theory which occurs there.

10.1 The expansion of the universe
In §9.1 we showed that many stars would eventually collapse and
produce closed trapped surfaces. If one goes to a larger scale, one can
view the expansion of the universe as the time reverse of a collapse.
Thus one might expect that the conditions of theorem 2 would be
satisfied in the reverse direction of time on a cosmological scale, pro­
viding that the universe is in some sense sufficiently symmetrical, and
contains a sufficient amount of matter to give rise to closed trapped
surfaces. We shall give two arguments to show that this indeed seems
to be the case. Both arguments are based on the observations of the
microwave background, but the assumptions made are rather
different.

Observations ofradio frequencies between 20 cm and 1 mm indicate
that there is a background whose spectrum (shown in figure 62 (i»
seems to be very close to that of a black body at 2.7 OK (see, for
example, Field (1969». This background appears to be isotropic to
within 0.2 % (figure 62 (ii); see, for example, Sciama (1971) and
references given there for further discussion). The high degree of
isotropy indicates that it cannot come from within our own galaxy (we

[ 348 I
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FIGURE 62
(i) The spectrwn of the microwave background radiation. The plotted

. points show the observed values of the • excess' background radiation. The
solid line is a Planck spectrwn corresponding to a temperature of 2.7 oK.

(ii) The isotropy of the microwave background radiation. The temperature
distribution along the celestial equator is shown; more than two years of data
have been averaged to obtain these points.

From D. W. Sciama, Modern Oosmology, Cambridge University Press, 1971.
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are not symmetrically placed in the plane ofthe galaxy) but must be of
extragalactic origin. At these frequencies we can see discrete sources
some of whose distances are known from other evidence to be of the
order of 1027 cm, so we know that the universe is transparent to this
distance at these wavelengths. Thus radiation which is produced by
sources at distances greater than 1027 cm must have propagated freely
towards us for at least that distance.

Possible explanations of the origin of .the radiation are:

(1) the radiation is black body radiation left over from a hot early
stage of the universe;

(2) the radiation is the result ofsuperposition ofa very large number
of very distant unresolved discrete sources;

(3) the radiation comes from intergalactic grains which thermalize
other forms of radiation (perhaps infra-red).

Of these explanations, (1) seems the most plausible. (2) seems im­
probable, as there do not appear to be sufficient sources with the right
sort of spectrum to produce an appreciable fraction of the observed
radiation in this frequency range. Further, the small scale isotropy of
the radiation implies that the number of discrete sources would have
to be very large (of the order of the number of galaxies) and most
galaxies do not seem to radiate appreciably in this region of the
spectrum. (3) also seems unlikely, since the density of interstellar
grains which would be needed is very large indeed. Although (1) seems
the most probable, we will not base our arguments on it, since to do so
would be to presuppose that the universe had a hot early stage.

The first argument involves the assumption of the Copernican
principle, that we do not occupy a privileged position in space-time.
We interpret this as implying that the microwave background radia­
tion would appear equally isotropic to any observer whose velocity
relative to nearby galaxies is small. In other words, we suppose there
is an expanding timelike geodesic congruence (expanding because the
galaxies are receding from each other, geodesic because they move
under gravity alone with unit tangent vector Va, say), representing
the average motion of the galaxies, relative to which the microwave
radiation appears almost isotropic. From the Copernican principle it
also follows that most of the microwave background has propagated
freely towards us from a very long distance ('" 3 X 1027 cm). This is
because the contribution to the background arising from a spherical
shell of thickness dr and radius r about us will be approximately
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independent of r, since the amount produced in the shell will be pro­
portional to r2 and the reduction of intensity due to distance will be
inversely proportional to r ll• This will be the case until the redshift of
the sources becomes appreciable, source evolution takes place, or
curvature effects become significant. These effects will however only
come in at a distance of the order of the Hubble radius, ,.., 1028 cm.
Thus the bulk of the radiation will have travelled freely towards us
from a distance >' 1027 cm. From the fact that it remains isotropic
travelling over such a long distance, we can conclude that on a large
scale the metric of the universe is close to one of the Robertson­
Walker metrics (§5.3). This follows from a result ofEhlers, Geren and
Sachs (1968), which we will now describe.

The microwave radiation can be described by a distribution func­
tionf(u, P) (UE.A, pETu ) defined on the null vectors in T(.A), which
can be regarded as the phase space of the photons. If the distribution
functionf(u, P) is exactly isotropic for an observer moving with four­
velocity ya, it will have the formf(u, E) where E == - yapa. Since the
radiation is freely propagating, f must obey the Liouville equation in
T(.A). This states that f is constant along integral curves of the
horizontal vector field X, Le. along any curve (u(v), P(v» where u(v) is
a null geodesic in .A and p = fJ{fJv.

Because feu, E) is non-negative and must tend to zero as E -+ 00

(since otherwise the energy density of radiation would be infinite),
there must be an open interval of E for which fJf{fJE is non-zero. In
this interval, one can express E as a function off: E = g(u,f). Then
Liouville's equation implies that

dE{dv = g;a.Pa (10.1)

on each null geodesic, where one regards g as a function on .A with

ffixed. Also, dE{dv = -d(yapa){dv = - Va ;bpapb. (10.2)

One can decompose pa into a part along Va and a part orthogonal
to ya: pa = E(ya+ Wa), where WaJfa = 1, wav., = O. Then from
(10.1) and (10.2),

dg{dt+10g+(g~+g;a) Wa+guab WaWb = 0

holds for all unit vectors We orthogonal to ya, where dg{dt is the rate
of change of g along the integral curves ofV. Separating out spherical

harmonics, u ab = 0, (10.3a)

~+ (logg):a = aVa, (10.3h)

lO=-d(logg){dt. (10.3c)
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Since we assumed that v.. was zero, (10.3b) shows that v.. is orthogonal
to the surfaces {g = constant}, and this implies that the vorticity Wab

is zero. As t a = 0, Jra.b) = O. Thus one can write v.. as the gradient of
a function t: v.. = -t,a'

The energy-momentum tensor of the radiation will have the form

Tab = tPr v..~+ lPrgab'

where Pr = f fE3 d.E. Since the motion of the galaxies relative to the
integral curves of Va is small, their contribution to the energy­
momentum tensor can be approximated by a smooth fluid with
density Po, four-velocity v.. and negligible pressure. It now follows
that the geometryofthe space-time is the same as that ofa Robertson­
Walker model. To see this, note that

(va;b);a = 1(0(8ab+ Va ~));a

= (va;a);b+Rcoba Vc = O;b+Rba Va.

Multiplying this equation by hbc = gbc+ VbVc, one finds

hbcRca va = - ihbcO; c'

The left-hand side vanishes by the field equations. Thus 0 is constant
on the surfaces of constant t (which are also the surfaces ofconstant g).
One can define a function Set) from 0 by S'/S = 10; then the
Raychaudhuri equation (4.26) takes the form

3s
oo

/S+41Tp-A = 0,

which implies that P = Po + 2PR is also constant on the surfaces
{t = constant}. From the definition ofPR we see that the terms Po and
PR are separately constant on these surfaces.

The trace-free part of (4.27) shows that Gabcd VbVd = o. The Gauss­
Codacci equations (§ 2.7) now give for the Ricci tensor of the three­
spaces {t = constant} the formula

R3ab = hac~dRcd+Racbd VCVd+OOab+OacOCb
= 2hab(-102+81Tp+A).

However for a three-dimensional manifold, the Riemann tensor is
completely determined by the Ricci tensor, as

R3abcd = 7Jabe( -R3eJ+ lR3heJ)7J'cd.

This shows that each three-space {t = const:ant} is a three-space of
constant curvature K(t) = 1(81Tp +A -102). Integrating the Ray­
chaudhuri equation shows that

K(t) = 1(81Tp+A-3S'2/S2) = k/S2, (10.4)
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where k is a constant. By normalizing S, one can set k = + 1, 0 or -1.
The four-dimensional.space-time manifold is the orthogonal product
of these three-spaces and the t-line. Thus the metric can be written in
comoving coordinates as

ds2 = _ dt2 + S2(t) dy 2,

where dy 2 is the metric of a three-space of constant curvature k. But
this is just the metric of a Robertson-Walker space (see §5.3).

We shall now show that in any Robertson-Watker space containing
matter with positive energy density and A = 0there is a closed trapped
surface lying in any surface {' = constant}. To see this, we express dy2

in the form dy2= dX2 +f2(x) (d02 +sin2 ed¢2)

where f(x) = sin X, X or sinh X if k = + 1, 0 or -1 respectively. Con­
sider a two-sphere !T of radius Xo lying in the surface t = to' The two
families of past-directed null geodesics orthogonal to!T will intersect
the surfaces {t = constant} in two two-spheres of radius

X = Xo± f'dt/S(t). (10.5)J,.
The surface area ofa two-sphere ofradius X is 471S2(t)f2(x}. Thus both
families of null geodesics will be converging into the past if, at t = to,

1t (S2(t)j2(X» > 0

holds for both values of Xgiven by (to.5). This will be the case if

S'(to) > + !'(Xo)
S(to) - S(to)f(Xo) .

But by (10.4), this holds if

(t71,u(to)S2(tO} - k)l > ±!'(Xo)/f(Xo)'

This will be the case ifS(to) Xo is taken to be greater than "j(3/871,uo) for
k = 0 or -1, and to be greater than min ("j(3/871,uo),!71) if k =+ 1.

An intuitive way ofviewing this result is that at time to a sphere of
coordinate radius Xo will contain a mass of the order of !71ltoS8(to)Xo8,
and so will be within its SchwarzschiId radius if S(to)Xo is less than
!71,uoS(to)8 Xo3, Le. if S(to)Xo is greater than the order of "j(3/871,uo).
We shall call "j(3/871,uo} the Schwarzschild length of matter density ,uo.

So far, we have assumed the microwave radiation is exactly iso­
tropic. This is of course not the case; and this corresponds to the fact
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that the universe is not exactly a Robertson-Walker space. However,
the large scale structure of the universe should be close to that of
a Robertson-Walker model, at least back to the time when the radia­
tion was emitted or last scattered. (One can in fact use the deviations
ofthe microwave radiation from exact isotropy to estimate how large
the departures from a Robertson-Walker universe are.) For a suffi­
ciently large sphere, the existence of local irregularities should not
significantly affect the amount of matter in the sphere, and hence
should not affect the existence of a closed trapped surface round us at
the present time.

The above argument did not depend on the spectrum of the micro­
wave radiation, but it did involve the assumption of the Copernican
principle. The argument we shall now give does not involve the
Copernican principle, but does to a certain extent depend on the shape
of the spectrum. We shall assume that the approximately black body
nature of the spectrum and the high degree of small scale isotropy of
the radiation indicate that it has been at least partially thermalized
by repeated scattering. In other words, there must be enough matter
on each past-directed null geodesic from us to cause the opacity to be
high in that direction. We shall now show that this matter will be
sufficient to make our past light cone reconverge.

Consider a point p representing us at the present time, and let WII
be a past-directed unit vector parallel to our four-velocity.

The affine parameter von the past-directed null geodesics through p
may be normalized by Kill¥,. = -1, where K = 8/ov is the tangent
vector to the null geodesics. The expansion tJ of these null geodesics
will obey (4.35) with CJ = O. Thus, providing RllbKIIKb ~ 0, tJ will be
less than 2/v. It follows that at v = v1 > vo,

f
'" Rab KIIKb dv - 2/vo > tJ,
v,

80 tJ will become negative if there is some Vo such that

f
"'RabKIIKbdV> 2/vo•
v,

Using the field equations with A = 0, this becomes

Ivof"'S7TTllbKIIKbdV> 1. (10.6)
v,

At centimetre wavelengths, the largest ratio of opacity to density for
matter at reasonable densities is that given by Thomson scattering off
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free electrons in ionized hydrogen. Thus the optical depth to a distance
v will be less than

where K is the Thomson scattering opacity per unit mass, p is the
density of the matter, and Y,. is the local velocity of the gas. The
redshift z of the matter is given by z = KaY,. - 1. Since no matter has
been seen with significant blue-shifts, we shall assume KaY,. is always
greater than one on our past light cone, out to an optical depth unity.
As galaxies are observed at these wavelengths with redshifts of 0.3,
most of the scattering must occur at redshifts greater than this. (In
fact if quasars really are cosmological, the scattering must occur at
redshifts greater than two.) With a Hubble constant of 100Km/secl
Mpc (,.., 1010 years-I ), a redshift of 0.3 corresponds to a distance of
about 3 x 1027 cm. Taking this value for VOl the contribution to the
integral (9.9) of the matter causing the scattering is

3.7 x 1028ftJ, p(Ka Va)2dv,
1l.

while the optical depth ofthe matter between Vo and VI is less than

f
1l1

6.6 x 1027 p(Kay")dv.
1l.

Since KaY,. ~ 1, it can be seen that the inequality (10.6) will be satisfied
at an optical depth ofless than 0.2. Ifthe optical depth ofthe universe
was less than 1, one would not expect either an almost black body
spectrum orsuch a high degree ofsmall scale isotropy, unless there was
a very large number of discrete sources which covered only a small
fraction ofthe sky and each ofwhich had a spectrum roughly the same
as a 3 oK black body but with much higher intensity. This seems rather
unlikely. Thus we believe that the condition (4)(iii) of theorem 2 is
satisfied, and so there should be a singularity somewhere in the
universe provided the other conditions hold.

Because of its generality, theorem 2 does not tell us whether the
singularity will be in our past or in the future ofour past. Although it
might seem obvious that the singularity should be in Our past, one can
construct an example in which it is in the future: consider a Robertson­
Walker universe with k = + 1 which collapses to a singularity at some
time t = to, and which asymptotically approaches an Einstein static
universe for t-.+-oo. This satisfies the energy assumption, and con­
tains points whose past light cones start reconverging (because they
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(10.7)

meet up around the back). However the singularity is in the future.
Of course this is a rather unreasonable example but it shows that one
has to be careful. We shall therefore give an argument based on
theorem 3 which indicates that the universe contains a singularity in
our past, providing that the Copernican principle holds. Theorem 3
is similar to theorem 2, but requires that all the past-directed timelike
geodesics from a point shall start to reconverge, instead of all the null
geodesics. This condition is not satisfied in the example given above,
though it is there satisfied by the future-directed geodesics from any
point.

By an argument similar to that given above for the null geodesics,
the convergence O(s) of the past-directed timelike geodesics from a
point p will be less than

!_fB Roo Vo Vb ds,
So 80

where s is proper distance along the geodesics, V = alas and s > so'
LetW be a past-directed timelike unit vector atp, and let e == - V°Jv,.lp
(so e ~ 1). Then 0 will become less than - e within a distance Rile
along any geodesic if there is some Ro' R 1 > Ro > 0, such that

fR"C
Rob VoVbds > e(3/Ro+6)

R.lc

along that geodesic. Condition (3) of theorem 3 will then be satisfied
with b = max (Rl , (36)-1).

To make (10.7) appear more similar to (10.6), we shall introduce an
affine parameter v = sfe along the timelike geodesics; then (10.7)

becomes fR.
lRo RooKoKbdv> 1 + lR06, (10.8)

R.

where K = a/av and KOWol p = - 1. We cannot verify this condition
directly by observation as in the case of (10.6) because it refers to
timelike geodesics. We therefore have to appeal to the arguments
given in the first part of this section to show that the universe is close
to a Robertson-Walker universe model at least back to the time the
microwave background radiation was last scattered.

In a Robertson-Walker model, let W be the vector -a/at. Along·
a past-directed timelike geodesic through p,

~(W KO) = W. KoKbdv ° o,b

1 dS
= -8 dt {(WOKo)2_ 1/e2}.
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(10.9)

(10.10)

Therefore, providing that dS/dt > 0, Jv,.Ka ~ -1. However

WaKa = dt/dv;

thus for some 6 > 0, (10.8) will be satisfied for every geodesic provided
that there are times t2, ta with t2 < ta < tp such that

tp ; taf- R ab KaKb( - J¥cKC)-l dt > 1.

By the field equations with A = 0,

RabKaKb = 87T{(Jl+p) (Jv..Ka)2_i(P-p)c-2}.

Therefore, providing P ~ 0,

RabKaKb ~ 47TJl(Jv,.Ka)2.

Thus (10.9) will be satisfied if

t -t f'-p 3 a 47TJldt> 1.,-
Assuming that the microwave radiation has a black body spectrum

at 2.7 oK, its energy density is about 1O-a4 gm em-a at the present time.
If this radiation is primaeval, its energy density will be proportional
toS--4. SinceS-1 = O(t-l) D.S ttends to zero, one can see that (10.10) can
be satisfied by taking t8 to be ltp and t2 to be sufficiently small. How
small t2 has to be depends on the detailed behaviour ofS, which in turn
depends on the density of matter in the universe. This is somewhat
uncertain, but seems to lie between to-81 gm cm-8 and 5 x 10-29 gm
em-a. In the former case, t2will have to be such that S(tp )/S(t2) ~ 30,
and in the latter case, S(tp )/S(t2) ~ 300. Since the microwave radiation
seems to be all pervasive, any past-directed timelike geodesic must
pass through it. Thus an e~timate based on· the Robertson-Walker
models should be a good approximation for its contribution to (10.10),
provided that the radiation was not emitted more recently than t2,

and provided that a Robertson-Walker model is a good approximation
back that far. From the arguments at the beginning ofthis section, the
latter should be the case-provided that the radiation has propagated
freely towards us since t2• However there may be ionized intergalactic
gas present with a density as high as 5 x 10-29 gm cm-8, in which case
the radiation could be last scattered at a time t such that S(tp)/S(t) '" 5.
The optical depth back to a time t is

I:P KJlgssdt, (10.11)

where K is at most 0.5 if Jl is measured in gm cm-8 and t in em.



358 THE INITIAL SINGULARITY [10.1

As before, there can be no significant opacity back to t = tp - 1017 sec,
since we see objects at distances of at least 3 x 10117 cm. Taking ta to
have this value, we see that the gas density will cause (10.11) to be
satisfied for a value of til corresponding to an optical depth of at most
0.5.

Thus the position is as follows. We assume the Copernican principle,
and that the microwave radiation has been emitted either before a
time til such that S(tp)/S(tll ) ~ 300, or before the time corresponding to
the optical depth ofthe universe being unity, ifthis is less than til. In
the former case, condition (2) of theorem 3 will be satisfied by the
radiation density, and in the latter case by the gas density. Thus ifthe
usual energy conditions and causality conditions hold, we can con­
clude that there should be a singularity in our past (i.e. there should be
a past-directed non-spacelike geodesic from us which is incomplete).

Suppose one takes a spacelike surface which intersects our past
light cone and takes a number of points on that surface; can one say
that there is a singularity in each of their pasts1 This will be the case
if the universe is sufficiently homogeneous and isotropic in the past to
converge all the past-directed timelike geodesics from these points.
In view of the close connection between the convergence of timelike
geodesics and cloaedtrapped surfaces, we would expect this to be the
case if the universe is homogeneous and isotropic at that time on the
scale ofthe Schwarzschild length (3/871fl)1.

We have direct evidence of the homogeneity of the universe in our
past from the measurements ofPenzias, Schraml and Wilson (1969),
who found that the intensity ofthe microwave background is isotropic
to within 4 %for a beam width of 1.4 x 10-8 square degrees. Assuming
that the microwave radiation has not been emitted since a surface in
our past corresponding to optical depth unity, the observed intensity
will be proportional to T4/(1 + Z)4 where T is the effective temperature
of the observed point on the surface and z is its redshift. Variations in
the observed intensity can arise in four ways:

(1) by a Doppler shift caused by our own motion relative to the
black body radiation (Sciama (1967), Stewart and Sciama (1967»;

(2) by variations in the gravitational redshift caused by inhomo-,
geneities in the distribution of matter between us and the surface
(Sachs and Wolfe (1967), Rees and Sciama (1968»;

(3) by Doppler shifts caused by local velocity disturbances of the
matter at the surface; and

(4) by variations ofthe effective temperature of the surface.
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(In fact the division between (1), (2) and (3) depends on the standard
ofreference and has heuristic value only.) Thus the observations indi­
cate that irregularities in the temperature with an angular size of 3' of
arc have relative amplitudes of less than 1 %, and that there are no
local fluctuations of the velocity of the matter, on the same scale, of
greater than 1 %ofthe velocity oflight. A region on the surface which
had an angular diameter 3' of arc would correspond to a region which
had a diameter now of about 107 light years. If the surface of optical
depth unity is at a redshift ofabout 1000 (this is the most it could be),
the Schwarzschild length at that time would correspond to a region
whose present diameter was about 3 x lOS light years. Thus it would
seem that every point on the surface of optical depth unity should
have a singularity in its past.

More indirect evidence on the degree ofhomogeneity ofthe universe
in the early stages comes from the fact that observations ofthe helium
content of a number of objects agree with calculations of helium pro­
duction by Peebles (1966), and Wagoner, Fowler and Hoyle (1968),
who assumed the universe was homogeneous and isotropic at least
back to a temperature of about 109 oK. On the other hand calculations
of anisotropic models have shown that in these models very different
amounts of helium are produced. Thus if one accepts that there is a
fairly uniform density ofhelium in the universe (there are some doubts
about this), and that this helium was produced in the early stages of
the universe, one can conclude that the universe was effectively
isotropic and hence homogeneous when the temperature was 109 oK.
One would therefore expect a singularity to occur in the past of each
point at this time.

Misner (1968) has shown that if the temperature reaches 2 x 1010 oK
a large viscosity arises from collisions between electrons and neutrinos.
This viscosity would damp out inhomogeneities whose lengths corre­
spond to present values of 100 light years, and reduce anisotropy
to a comparatively sm~lvalue. Thus ifone accepts this as the explana­
tion for the present isotropy of the universe (and it is a very attractive
one), one would conclude that there should be a singularity in the past
of every point when the temperature was about 101ooK.

10.2 The nature and implications of singularities

One might hope to learn something about the nature of the singu­
larities that are likely to occur by studying exact solutions with
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singularities. However although we have shown that the occurrence
of a singularity is not prevented by small perturbations of the initial
conditions, it is not clear that the nature of the singularity which
occurs will be similarly stable. Although we have shown in §7.5 that
the Cauchy problem is stable under small perturbations of the initial
conditions, this stability applies only to compact regions of the
Cauchy development, and a region containing a singularity is non­
compact unless the singularity corresponds to imprisoned incom­
pleteness. In fact we can give an example where the nature of the
singularity is not stable. Consider a uniform spherically symmetric
cloud ofdust collapsing to a singularity. The metric inside the dust will
be similar to that ofpart of a Robertson-Walker universe, while that
outside will be the Schwarzschild metric. Both inside and outside the
dust, the singularity will be spacelike (figure 63 (i)). Suppose now
one adds a small electric charge density to the dust. The metric outside
the dust now becomes part of the Reissner-Nordstrom solution for
c2 < m2 (figure 63 (ii)). There will be a singularity inside the dust, as
a sufficiently small charge density will not prevent the occurrence of
infinite density. The nature of the singularity inside the dust will
presumably depend on the charge distribution. However the im­
portant point is that once the surface of the dust has passed a point
p inside r = r+, whatever happens inside the dust cannot affect the
portion sq of the timelike singularity.

If one now increases the charge density so that it becomes greater
than the matter density, it is possible for the cloud to pass through the
two horizons at r = r+ and r = r_ and to re-expand into another
universe without any singularity occurring inside the dust, although
there is a timelike singularity outside the dust (J. M. Bardeen, un­
published), as indeed there ought to be by theorem 2 (see figure
63 (iii)).

This example is very important as it shows that there can be time­
like singularities, that the matter can avoid hitting the singularities,
and that it can pass through a 'wormhole' into another region of
space-time or into another part of the same space-time region. Of
course one would not expect to have such a charge density on a col­
lapsing star, but since the Kerr solution is so similar to the Reissner­
Nordstrom solution one might expect that angular momentum could
produce a similar wormhole. One might speculate therefore that prior
to the present expansion phase ofthe universe there was a contraction
phase in which local inhomogeneities grew large and isolated singu-
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FIGURE 63
(i) Collapse of a spherical duet cloud.
(ii) Collapse of a charged dust cloud, where the charge is too email to prevent

the occurrence of a singularity in the dust.
(iii) Collapse of a charged dust cloud, where the charge is large enough to

prevent the occurrence of a singularity in the dust cloud; the singularity occurs
outside the dust, which bounces and re-expands into a second asymptotically
flat space.
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larities occurred, most of the matter avoiding the singularities and
re-expanding to give the present observed universe.

The fact that singularities must occur within the past of every point
at an early time when the density was high, places limits on the
separation of the singularities. It might be that the set of geodesics
which hit these singularities (i.e. which are incomplete) was a set of
measure zero. Then one might argue that the singularities would be
physically insignificant. However this would not be the case because
the existence of such singularities would produce a Cauchy horizon
and hence a breakdown of one'"s ability to predict the future. In fact
this could provide a way of overcoming the entropy problem in an
oscillating world model since at each cycle the singularity could inject
negative entropy.

So far, we have been exploring the mathematical consequences of
taking a Lorentz manifold as the model for space-time, and requiring
that the Einstein field equations (with A = 0) hold. We have shown
that according to this theory, there should be singularities in our past
associated with the collapse of the universe, and singularities in the
future associated with the collapse ofstars. IfA is negative, the above
conclusions would be unaffected. IfA is positive, observations of the
rate of change of expansion of the universe (Sandage, (1961, 1968»
indicate that A cannot be greater than 3 x 10-65 em-II. This is equiva­
lent to a negative energy density of3 x 10-117 gm cm-8•Such a value ofA
could have an effect on the expansion of the whole universe, but it
would be completely swamped by the positive matter density in a
collapsing star. Thus it does not seem that a A term can enable us to
avoid facing the problem of singularities.

It may be that General Relativity does not provide a correct
description ofthe universe. So far it has only been tested in situations
in which departures from flat space are very small (radii of curvature
ofthe order of 10111 em). Thus it is a tremendous extrapolation to apply
it to situations like collapsing stars where the radius of curvature
becomes less than l()6cm. On the other hand the theorems on singu­
larities did not depend on the full Einstein equations but only on the
property that RabKaKb was non-negative for any non-spacelike"
vector Ka; thus they would apply also to any modification of General
Relativity (such as the Brans-Dicke theory) in which gravity is always
attractive.

It seems to be a good principle that the prediction of a singularity
by a physical theory indicates that the theory has broken down, Le. it
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no longer provides a correct description ofobservations. The question
is: when does General Relativity break down 1 One would expect it to
break down anyway when quantum gravitational effects become im­
portant; from dimensional arguments it seems that this should not
happen until the radius of curvature becomes of the order of 10-33 em.
This would correspond to a density of 1()94 gmcm-3. However one
might question whether a Lorentz manifold is an appropriate model for
space-time on length scales of this order. So far experiments have
shown that assuming a manifold structure for lengths greater than
to-15 cm gives predictions in agreement with observations (Foley et al.
(1967)), but it may be that a breakdown occurs for lengths between
to-15 and to-33 cm. A radius of to-15 cm corresponds to a density of
1068 gm cm-3 which for all practical purposes could be regarded as
a singularity. Thus maybe one should construct a surface by Schmidt's
procedure (§ 8.3) around regions where the radius of curvature is less
than, say, 10-15 cm. On our side of this surface a manifold picture of
space-time would be appropriate, but on the other side an as yet
unknown quantum description would be necessary. Matter crossing
the surface could be thought ofas entering or leaving the universe, and
there would be no reason why that entering should balance that
leaving.

In any case, the singularity theorems indicate that the General
Theory of Relativity predicts that gravitational fields should become
extremely large. That this happened in the past is supported by the
existence and black body character of the microwave background
radiation, since this suggests that the universe had a very hot dense
early phase.

The theorems on the existence of singularities could possibly be
refined somewhat, but on our view they are already adequate. How­
ever they tell us very little about the nature of the singularities. One
would like to know what kind of singularities could occur in generic
situations in General Relativity. A possible way of approaching this
would be to refine the'power series expansion technique of Lifshitz
and Khalatnikov, and to clarify its validity. It may also be that there
is some connection between the singularities studied in General
Relativity and those studied in other branches of physics (cf. for
instance, Thom's theory of elementary catastrophes (1969)). Alterna­
tively one might try to proceed by brute force, integrating the
Einstein equations numerically on a computer. However this will
probably have to wait for a new generation of computers. One would
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like to know also whether the singularities produced by collapse from
a non-singular asymptotically flat situation would be naked, Le.
visible from infinity, or whether they would be hidden behind an
event horizon.

The other main problem is to formulate a quantum theory of
space-time which will be applicable to strong fields. Such a theory
might be based on a manifold, or might allow changes of topology.
Some preliminary attempts in t.his line have been made by de Witt
(1967), Misner (1969, 1971), Penrose (see Penrose and MacCallum
(1972)), Wheeler (1968), and others. However the interpretation of
a quantum theory ofspace- time, and its relation to singularities, are
still very obscure.

Speculation and discussion on the subject of this book is not new.
Laplace essentially predicted the existence of black holes: 'Other
stars have suddenly appeared and then disappeared aft;er having
shone for several months with the most brilliant splendour ... All these
stars ... do not change their place during their appearance. Therefore
there exists, in the immensity ofspace, opaque bodies as considerable
in magnitude, and perhaps equally as numerous as the stars.' (M. Le
Marquis de Laplace: 'The system ofthe world'. Translated by Rev. H.
Harte. Dublin, 1830, Vol. 2, p. 335.) As we have seen, our present
understanding of the situation is remarkably similar.

The creation of the Universe out of nothing has been argued,
indecisively, from early times; see for example Kant's first Antinomy
of Pure Reason and comments on it (Smart (1964), pp. 117-23 and
145-59; North (1965), pp. 389-406). The results we have obtained
support the idea that the universe began a finite time ago. However
the actual point of creation, the singularity, is outside the scope of
presently known laws of physics.



Appendix A

Translation of an essay by
Peter Simon Laplacet

Proof of the theorem, that the attractive force of a heavenly body could be
so large, that light could not flow out of it.:

(1) If v is the velocity, t the time and s space which is uniformly
moving during this time, then, as is well known, v = sIt.

(2) If the motion is not uniform, to obtain the value ofvat any instant
one has to divide the elapsed space ds and this time interval dt into
each other, namely v = ds/dt, since the velocity over an infinitely small
interval is constant and thus the motion can be taken as uniform.

(3) A continuously working force will strive to change the velocity.
This change of the velocity, namely dv, is therefore the most natural
measure of the force. But as any force will produce double the effect
in double the time, so we must divide the change in velocity dv by the
time dt in which it is brought about by the force P, and one thus
obtains a general expression for the force P, namely

ds
dv d'dt

P=dt=(it·

Now if dt is constant,

accordingly

d ds = d.ds = dds.
'dt dt dt'

dds
P= dt2 '

t Allgemeine geographi8che Ephemeriden hera'U8gegeben von F. von Zach. IV Bd, I St.,
I Abhandl., Weimar 1799. We should like to thank D.W. Dewhirst for providing
us with this reference. See also note at end of this Appendix.

t This theorem, that a luminous body in the universe of the same density 88 the earth,
whose diameter is 250 times larger than that of the sun, can by its attractive power
prevent its light mys from reaching us, and that consequently the largest bodies in
the universe could remain invisible to us, has been stated by Laplace in his
E:rpoaition du Syateme du Mande, Part II, p. 305, without I proof. !Hele is the
proof. Cf. A.a.E. May 1798, p. 603. v. Z.

[ 365 ]
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(4) Let the attractive force ofa body = M; a second body, for example
a particle oflight, finds itselfat distance 1'; the action ofthe force M on
this light particle will be - M /1'1'; the negative sign occurs because the
action of M is opposite to the motion of the light.

(5) Now according to (3) this force also equals ddr/dt2, hence

M ddr
--=-=-Mr2•

rr dt2

Multiplying by dr,

integrating,

drddr = -Mdrr-2 •

dt2 '

1dr2

--=O+Mrl

2dt2

where 0 is a constant quantity, or

(:;y = 20+2Mr1
•

Now by (2) dr/dt is the velocity v, accordingly

v2 = 20+2Mr1

holds, where v is the velocity of the light particle at the distance r.

(6) To now determine the constant 0, let R be the radius of the
attracting body, and a the velocity ofthe light at the distJl.nce R, hence
on the surface of the attracting body; then one obtains from (5)
a2 = 20 + 2M/R, therefore 20 = a2 _ 2M/R. Substituting this in the
previous equation gives

2M 2M
v2 =a2 _-+-.R l'

(7) Let R' be the radius of another attracting body, its attractive
power be iM, and the velocity of the light at a distance l' be v', then
according to the equation in (6)

'2 2 2iM 2iM
v = a -R'+-r-.

(8) If one makes l' infinitely large, the last term in the previous
equation vanishes and one obtains

'2 2 2iM
v =a-Ii'
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The distance of the fixed stars is so large, that this assumption is
justified.

(9) Let the attractive power of the second body be so large that light
cannot escape from it; this can be expressed analytically in the
following way: the velocity v' ofthe light is equal to zero. Putting this
value ofv' in the equation (8) for v', gives an equation from which the
mass iM for which this occurs can be derived. One has therefore

0= a2 _ 2iM or
r'

2 2iM
a =7'

(10) To determine a, let the first attracting body be the sun; then a is
the velocity of the sun's light on the surface of the sun. The attractive
power of the sun is however so small in comparison with the velocity
of light, that one can take this velocity as uniform. From the pheno­
mena of aberration it appears that the earth travels 20"1 in its path
while the light travels from the sun to the earth, accordingly: let V be
the average velocity ofthe earth in its orbit, then one has a: V = radius
(expressed in seconds) : 20"1 = 1: tang. 20"1.

(11) My assumption made in Expos. du Syst. du M onde, Part II, p. 305,
is R' = 250R Now the mass changes as the volume of the attracting
body multiplied by its density; the volume, as the cube of the radius;
accordingly the mass as the cube of the radius multiplied by the
density. Let the density of the sun = 1; that of the second body = p;
then .M:",M = lR3: pR'3 = lR3: p 2503R3

or

or

l:i = 1:p(250)3

i = (250)3p .

(12) One substitutes the values of i and R' in the equation
all = 2iMIR', and thus obtains

II = 2(250)3pM = 2(250 II M
a 250R ) 'P R

or

(13) To obtain p, one must still determine M. The force M of the sun
is equal at a distance D to MID2. Let Dbe the average distance ofthe
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earth, V the average velocity of the earth; then this force is also equal
to V21D (see Lande's Astronomy, ill, §3539). Hence MID2 = V21D or
M = V2D. Substituting this in the equation (12) for p gives

p = 2(2:O~~V2D = (10~0)2(;)2 (~),
a vel. oflight 1 .
V = I f th = t 20"1 according to (10),ve . 0 ear ang. ~

R absolute radius of 0 .
D = dist f 0 = tan average apparent radIUS of 0.average ance 0 .

Hence
tang. 16'2"

p = 8 (1000 tang. 20"1)2

from which p is approximately 4, or as large as the density of the earth.

D. W. Dewhirst adds:

The Allgemeine geographische Ephemeriden was a journal founded
by F. X. von Zach, of which 51 volumes were published between 1798
and 1816. The footnote (t) is a translation of that added by von Zach
to the original paper which is however not very helpful to the modern
reader.

There are no less than 10 different editions of Laplace's Exposition
du Systeme du Monde published between 1796 and 1835, some in one
quarto volume and some in two volumes octavo. In the earlier editions
the 'statement without proof' comes a few pages before the end of
Book 5, Chapter 6, though Laplace removed the specific statement
from later editiolls.

The reference by von Zach to A.a.E. May 1798, p. 603, seems to
be a mistake on von Zach's part; he was perhaps intending to refer
to A.a.E. Vol. I, p. 89,1798 where there is an extensive essay review
of the first edition of Laplace's Exposition du Sysfeme du 1I1onde.
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Spherically symmetric solutions and
Birkhoff's theorem

We wish to consider Einstein's equations in the case of a spherically
symmetric space-time. One might regard the essential feature of a
spherically symmetric space-time as the existence of a world-line 2
such that the space-time is spherically symmetric about 2. Then all
points on each spacelike two-sphere ~ centred on any point p of 2,
defined by going a constant distance d along all geodesics through p
orthogonal to 2, are equivalent. If one permutes directions at p by
use ofthe orthogonal group 80(3) leaving 2 invariant, the space-time
is, by definition, unchanged, and the corresponding points of~ are
mapped into themselves; so the space-time admits the group 80(3)
as a group of isometries, with the orbits of the group the spheres .$';i.
(There could be particular values of d such that the surface ~ was
just a point p'; then p' would be another centre of symmetry. There
can be at most two points (p' and p itself) related in this way.)

However, there might not exist a world-line like 2 in some of the
space-times one would wish to regard as spherically symmetric. In the
Schwarzschild and Reissner-Nordstrom solutions, for example, space­
time is singular at the points for which r = 0, which might otherwise
have been centres of symmetry. We shall therefore take the existence
of the group 80(3) of isometries acting on two-surfaces like .$';i as the
characteristic feature ofa spherically symmetric space-time. Thus we
shall say that space-time is spherically symmetric if it admits the
group 80(3) as a group of isometries, with the group orbits spacelike
two-surfaces. These orbits are then necessarily two-surfaces of con­
stant positive curvature.

For each point q in any orbit f/(q), there is a one-dimensional sub­
group I q of isometries which leaves q invariant (when there is a central
axis 2, this is the group ofrotations aboutp which leaves the geodesic
pq invariant). The set <i!J'(q) of all geodesics orthogonal to f/(q) at q
locally form a two-surface left invariant by Iv. (since Iv., which permutes
directions in f/(q) about q, leaves invariant directions perpendicular
to f/(q)). At any other point r of <i!J'(q), I q again permutes directions
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(A2)

orthogonal to ~(q), as it leaves ~(q) invariant; since I q must operate
in the group orbit 9'(1') through 1', this orbit is orthogonal to ~(q).

Thus (Schmidt (1967)) the group orbits 9' are orthogonal to the
surfaces ~. Further these surfaces define locally a one-one map
between the group orbits, where the image f(q) of q in 9'(1') is the
intersection of ~(q) and 9'(1'). Since this map is invariant under Iq ,

vectors of equal magnitude in 9'(q) at q are mapped into vectors of
equal magnitude in 9'(1') at f(q); and since all the points of 9'(q) are
equivalent, the same magnitude multiplication factor occurs for the
maps of vectors from any point in 9'(q) to its image in 9'(1'). Thus
(Schmidt (1967)) the orthogonal surfaces ~ map the trajectories 9'
conformally onto each othero

Ifone chooses coordinates {t, 1', e, ~} so that the group orbits 9' are
the surfaces {t, l' = constant} and the orthogonal surfaces ~ are the
surfaces {e, ~ = constant}, it now follows that the metric takes the
form ds2= dr2(t, 1') + Y2(t, 1') dn2(e, ~), where dr2is an indefinite two­
surface and dn2 is a surface of positive constant curvature. If one
further chooses the functions t, l' so that the curves {t = constant},
{1' = constant} are orthogonal in the two-surfaces ~ (cf. Bergmann,
Cahen and Komar (1965)), one can write the metric in the form

_dt2

ds2 = F2(t, 1') +X2(t, 1') d1'2+ Y2(t, 1')(d(J2+sin2ed~2)o (A 1)

(Note that this still leaves the freedom to choose arbitrarily either
l' or't in these surfaces.)

Let an observer moving along the t-lines measure an energy density
p, an isotropic pressure p, an energy flux q, and no anisotropic pres­
sures. Then the field equations for the metric (A 1) may be written
in the form

2X(r' X"Y' rF')
-81Tq=y y- XY + YF '

1 2 ( Y')' ( Y')2 x·r (r)281Tp = Y2+ X - XY -~ XY +2F2 XY +F2 Y ,(A3)

1 (r)· (r)2 2 Y'F' (Y')2-81Tp = p+ 2F Fy +3 Y F2+ X2 YF - XY , (A4)

1 ( F')' (X·)O (r)· (XO
)241T(P+3p) = X - FX -F F y -?oF J!'y -F2 Y

_ 2(r)2 ..!.- (F')2_~ Y'F'
2F Y +Xv. F Xv. YF' (A 5)

where' denotes %r and . denotes o/Ot.
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We first consider the empty space field equations R ab = 0; this means
that in (A2)-(A5) we must set p = p = q = o. The local solution
depends on the nature of the surfaces {Y = constant}; these surfaces
may be timelike, spacelike or null, or they may not be defined (if Y is
constant). In the exceptional case when Y: "Y;a = 0on some open set 111
(this includes the case when Y is constant),

~ = FY" (A6)

holds in 111. However when (A 6) holds, the value of Y"' determined
by (A 2) is inconsistent with (A 3). Thus we may consider some point
p where y;aY;a < 0 or Y; aY;a > 0; the same inequality must hold in
some open neighbourhood 111 ofp.

Consider first the situation when Y; aY;a < o. Then the surfaces
{Y = constant} are timelike in 111, and one can choose Y to be the
coordinate r. (Then r is an area coordinate, as the area of the two­
surfaces {r, t = constant} is 417r2.) Thus Y" = 0, Y' = 1 and (A 2) shows
that X· = o. Further (A4) shows that (F'IF)" = 0, so one can choose
a new time coordinate t'(t) in such a way as to se.t F = F(r). Then one
has F = F(r), X = X(r), Y = r; the solution is necessarily static.
Equation (A 3) now shows d(rIX2)/dr = 1, so solutions are of the form
X2 = (1- 2m/r)-1 where 2m is a constant of integration. Equation
(A 4) can be integrated, with a suitable choice of a constant ofintegra­
tion, to give F2 = X2, and then (A 5) is identically satisfied. With
these forms of F and X the metric (A 1) becomes

ds2 = _ (1- 2m) dt2+ dr
2

+r2(d02+sin2ed~2). (A 7)
r (1- 2;n) ,

this is the Schwarzschild metric for r > 2m.
Now suppose y; aY;a > o. Then the surfaces {Y = constant} are

spacelike in 111, and one can choose Y to be the coordinate t. Then
yo = 1, Y' = 0 and (A2) shows F' = o. One can choose the r-coordinate
so that X = X(t); thEm F = F(t), X = X(t), Y = t and the solution is
spatially homogeneous. Now (A 4) and (A 5) can be integrated to find
the solution

d8' ~ - (~dt~ I) +("~ - I) d'"H'(de'+sin' 0d¢~. (A 8)

This is part of the Schwarzschild solution inside the Schwarzschild
radius, for the transformation t-+r', r-+t' transforms this metric into
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the form (A 7) with r' < 2m. Finally, ifthe surfaces {Y = constant} are
spacelike in some part of an open set "I'" and timelike in another part,
one can obtain solutions (A 8) and (A 7) in these parts, and then join
them together across the surfaces where Y; aY;a = 0 as in §5.5,
obtaining a part of the maximal Schwarzschild solution which lies
in "1'". Thus we have proved Birkhoff's theorem: any 0 2 solution of
Einstein's empty space equations which is spherically symmetric in
an open set "1'", is locally equivalent to part of the maximally extended
Schwarzschild solution in "1'". (This is true even if the space is CO,
piecewise 0; see Bergmann, Cahen and Komar (1965).)

We now consider spherically symmetric static perfect fluid solutions.
Then one can find coordinates {t, r, e,~} such that the metric has the
form (A 1), the fluid moves along the t-lines (so q = 0), and F = F(r),
X = X(r), Y = Y(r). The field equations (A 3), (A 4) now show that
if Y' = 0, then p + p = 0; we exclude this as being unreasonable for
a physical fluid, so we assume Y' =t= o. One may therefore again choose
Y as the coordinate r; the metric then h~ the form

dt2 ,
ds2= - F2(r) +X2(r)dr2+r2(de2+sin2ed~2). (A9)

The contracted Bianchi identities Tab;b = 0 now shows

p'-(p+p)F'/F = 0; (A 10)

(A 5) is identically satisfied if (A 3), (A 4) and (A 10) are ~tisfied.

Equation (A 3) can be directly integrated to show

X 2 = ( 1- 2~rl , (A 11)

where 111(1') == 41T f:pr2dr,

and the boundary condition X (0) = 1 has been used (i.e. the fluid
sphere has a regular centre). With (A 10), (A 11), equation (A 4) takes
the form dp (p,+p) (if + 41Tpr3)

dr = - r(r- 2111) (A 12)

which determinesp as a function ofr, ifthe equation ofstate is known.
Finally (A 10) shows that

f
Pcrl dp

F(r) = Oexp -,. (A 13)
pCO)P+P

where 0 is a constant. Equations (A 11)-(A 13) determine the pletric
inside the fluid sphere, i.e. up to the value ro of r representing the
surface of the fluid.
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Notation

Numbers refer to pages where definitions are given

_ definition => implies
3 there exists 1: summation sign

o end of a proof

Sets

u A uB, union of A and B
nAn B, intersection of A and B
:::> A c: B, B :::> A, A is contained in B

A -B, B subtracted from A
e xeA,isamemberofA
o the empty set

Maps

r/J: %'~Y'; r/J ma.pspe%'to r/J(p)E"I'"
r/J(%') image of %' under r/J
r/J-l inverse map to r/J
fog composition, g followed by f
r/J., r/J* mappings of tensors induced by map r/J, 22-4

Topology

A closure of A
A" boundary of A, 183
intA interior of A, 209

Differentiability
0 0 , or, or-, O~ differentia.bility conditions, 11

Manifolds

Jt n-dimensional manifold, 11
(%'a' r/Ja) local chart determining local coordinates xa, 12
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382 NOTATION

oJl boundary of JI, 12
R'" Euclidean n-dimensional space, 11
iBn lower half Xl ~ 0 of R"', 11
S'" n-sphere, 13
x Cartesian product, 15

Tensors
(o/Oth, X vectors, 15
w,df one-forms, 16, 17
(w, X) scalar product of vector and one-form, 16
{Ea},{Ea} dual bases of vectors and one-forms, 16, 17
Ta•...a'b•...b.' components of tensor T of type (r, s), 17-19
® tensor product, 18
1\ skew product, 21
() symmetrization (e.g. T cab», 20
IJ skew symmetrization (e.g.1iabJ)' 20
8a

b Kronecker delta (+ 1 if a = b, 0 if a =+: b)
Tp, T*p tangent space at p and dual space at p, 16
T~(p) space of tensors of type (r,s)atp, 18
T~(JI) bundle of tensors oftype (r, s) on JI, 51

T(JI) tangent bundle to JI, 51

L(JI) bundle of linear frames on JI, 51

Derivatives and connection
0/&'" partial derivatives with respect to coordinate Xi

(a/at»). derivative along curve A(t), 15
d exterior derivative, 17, 25
LxY, [X, Y] Lie deriva.tive ofY with respect to X, 27-8
V, Vx, Tab;c covariant derivative, 30-2
D/ot covariant derivative along curve, 32
r i jk connection components, 31
exp exponential map, 33

Riemannian spaces
(JI, g) manifold Jlwith metric g and Christoffel connection
'I volume element, 48
Robed Riemann tensor, 35
Rab Ricci tensor, 36



NOTATION

R curvature scalar, 41
0aOOd Weyl tensor, 41
O(p, q) orthogonal group leaving metric Gab invariant, 52
Gab diagonal metric diag (+ 1, + 1, ... , + 1, -1, "', -1)

...... , ....... .J

P terms q terms
O(.A) bundle of orthonormal frames, 52

383

Space-time
Space-time is a 4-dimensional Riemannia.n space (.A, g) with
metric normaHorm diag (+ 1, + 1, + 1, -1). Local coordinates are
chosen to be (Xl, x2, x3, x4).
Tab energy momentum tensor of matter, 61
'Y(i)a... bc... d matter fields, 60
L Lagrangian, 64
Einstein's field equations take the form

Rab - iRgab +AUab = 81TTab ,
where A is the cosmological constant.
(~w) is an initial data set, 233

Timelike curves
.L perpendicular projection, 79
DF!08 Fermi derivative, 80-1
(J expansion, 83
wa, wab' W vorticity, 82-4
CTab' CT shear, 83-4

Null geodesics
() expansion, 88
CJab , CJ vorticity, 88
&ab' & shear, 88 .

Causal structure
1+,1- chronological future, past, 182
J+, J- causal future, past, 183
E+,E- future, past horismos, 184
D+, D- future, past Cauchy developments, 201
H+, H- future, past Cauchy horizons, 202



384 NOTATION

Boundary of space-time
Jt* = Jt ub. where b. is the c-boundary, 220
J+, J-, i+, i- c-boundary of asymptotically simple and empty

spaces, 122, 225
.Ii = Jt UoJt when Jt is weakly asymptotically simple; the

boundary oJt of JI consists of J+ and J-, 221, 225
Jt+ = Jlu 0 where 0 is the b-boundary, 283



Index

Referencu in italiC8 are main referencu or deftniti0n8.

acausal set, 211
partial Cauchy surface, 204

acceleration vector, 70, 72, 79, 84, 107
relative acceleration of world lines,

78-80
achronal boundary, 187, 312
achronalset,186, 187,202,203,209,211,

266, 267: edge, 202
affine parameter, 33, 86

generalized, 259, 278, 291
Alexandrov topology, 196
anti-de Sitter space, 131-4, 188,206,218
apparent horizon, 320, 321-3, 324
area law for black holes, 318, 332, 333
asymptotic tlatness, 221-5

asymptotically simple spaces, 222:
empty and simple spaces, 222

weakly asymptotically simple and
empty spaces, 225, 310: asymptoti­
cally predictable spaces, 310, 311,
312

strongly future asymptotically pre­
dictable, 313, 315, 317: regular
predictable space, 318, 319, 320;
static, 325, 326; stationary, 324,
325,327-31,334-47

asymptotically simple past, 316
atlas, 11, 12, 14
axisymmetric stationary space-times,

161-70
black holes, 329, 331, 341-7

b-boundary, 283, 289
b-bounded, 292, 293
b-completeness, 259,277,278
bases of vectors, one-forms, tensors,

16-18,51
change of basis, 19, 21
coordinate basis, 21
orthonormal basis, 38, 52
pseudo-orthonormal basis, 86

beginning of universe, 3, 8, 358-9, 363
in Robertson-Walker models, 137-42
in spatiallyhomogeneousmodels, 144-9

Bianchi's identities, 36, 42, 43, 85
bifurcation

of black holes, 315-16
of event horizons, 326

BirkhotI's theorem, 372
black-body radiation in universe, 348­

50,354-5,357, 363
black holes, 308-23, 315

final state of, 323-47
rotating black hole, 329

boundary
of manifold, 12
of future set, 187
of space-time: c-boundary, 217-21,

222-6: b-boundary, 276-84, 289-91
Brans-Dicke scalar field, 59, 64, 71, 77,

362
energy inequalities, 90, 95

bundle, 50, 174
of linear frames, 51, 53, 64, 174,

292-4
of orthonormal frames, 52, 54, 27&-83,

289: metric on, 278
of tensors, 51, 04, 198
tangent bundle, 51, 54

c-boundary, 217-21, 224-6
canonical form, 48
Carter's theorem, 331
Cartesian product, 15
Cauchy data, 147, 231-3, 254
Cauchy development, 6, 94, 119, 147,

201-6,209-11,217,228
local existence, 248, 265
global existence, 251, 255
stability, 253, 256, 301, 310

Cauchy horizon, 202-4, 265, 287, 362
examples, 120, 133, 169, 178,203,206,

287
Cauchy problem, 60, 226-55
Cauchy sequences, 257,282
Cauchy surface, 205, 211, 212, 263, 265,

274,287, 313
examples, 119, 125, 142, 154
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Cauchy surface (cant.)
lack of, 133, 169, 178, 206, 206
partial Cauchy surface, 204, 217,

301-2, 310-20, 323
causal boundary of space-time, 217-21,

221-5: /lee alIlo conformal structure
causal future (past), J+(J-), 183

causal structure, 6, 127-30,180-225
causally simple set, 188,206, 207, 223
local causality neighbourhood, 195

causality conditions
local causality, 60 .
chronology condition, 189
causality condition, 190
future, past distinguishing conditions,

192
strong causality condition, 192
stable causality condition, 198

causality violations, 6, 162, 164, 170, 175,
189,492, 197

and singularity theorems, 272
caustics, 120, 132-3, 170; /lee alIlo

conjugate points
charged scalar field, 68
chart, 11
Christoffel relations, 40
chronological future (past), 1+(1-), 182,

217
chronology condition, 189, 192, 194, 266

violating set, 189
cigar singularity, 144
closed trapped surface, 2, 262, 263, 266

examples, 156, 161
in asymptotically fiat spaces, 311, 319
outer trapped surface, 319; marginally

outer trapped surface, 321
outside collapsing star, 301, 308
in expanding universe, 363-8

Codacci's equaticn, 47, 232, 362
collapse of star, 3, 8, 300-23, 360
compact space-time, 40, 189
compact space sections, 272-5
completeness conditions

inextendibility,58
metric completeness, 257
geodesic completeness, 257
b-completeness, 259, 278-283

completion by Cauchy sequences, 282,
283

components of connection, 31
components of tensor, 19

of p.form, 21
conformal curvature tensor, 41, 86; /lee

Weyl tensor
conformal metrics, 42, 60, 63, 180,222
conformal structure of infinity and

singUlarities
c-boundary, 217-21

examples, 122, 127, 132, 141, 146, 164,
168, 160, 166, 177

in asymptotically fiat spaces, 222-4
horizons, 128-30

conformally fiat theory, 75-6
congruence of curves, 69
conjugate points, 4, 6, 267

on timelike geodesics, 97, 98, 111, 100,
112,217

on null geodesics, 100, 101, 116, 102,
116

connection, 30, 31, 34, 40, 41, 69, 63
and bundles over .I, 53-6, 277
on hypersurface, 46

conservation
ofenergy and momentum, 61,62,67, 73
of matter, theorem, 94, 298
of vorticity, 83-4

constraint equations, 232
continuity conditions

for map, 11
of space-time, 57, 284

contraction of tensor, 19
contracted Bianchi identities, 43
convergence of curves, /lee expansion
convergence of fields

weak,243
strong, 243

convex normal neighbourhood, 34, 60,
103, 105, 184

local causality neighbourhood, 196
coordinates, 12

normal coordinates, 34, 41
coordinate singularities, 118, 133, 160,

156, 163, 171,
Copernican principle, 134, 135, 142,

350, 366, 368
cosmological constant, 73, 96, 124, 137,

139, 168, 362
cosmological models

isotropic, 134-42
spatially homogeneous, 142-9

covariant derivatives, 31-5, 40, 69
covering spaces, 181, 204-5, 273,293
cross-section of a bundle, 52
curvature tensor, 35, 36, 41

identities, 36, 42, 43
of hypersurface, 47
physical significance, 78-116

curve, 15
geodesic, 33, 63,103-16,213-17
non-spacelike, 106, 112, 184, 185, 207,

213
null,86-8
timelike, 78-86, 103, 182,184,213-17

de Sitter space-time, 124-31
density of matter in universe, 137, 367
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development, 228,248,251,263
existence, 246-9

deviation equation
timelike curves, 80
null geodesics, 87

diffeomorphism, 22, 66, 74, 227
differentiability conditions, 11, 12

and singularities, 284-7
of initial data, 251
of space-time, 67-8

differential of function, 17
distance from point, 103-5
distance function, 216
distributional solution of field equations,

286
domain of dependence, Bee Cauchy

development, 201
dominant energy condition, 91, 92, 94,

237, 293, 323

edge of achronal set, 202
Einstein's field equations, 74, 75, 77, 96,

227-55
constraint equations, 232
distributional solutions, 286
exact solutions, 117-79
existence and uniqueness of solutions,

248, 251, 2M
initial data, 231-3
reduced equations, 230
stability of solutions, 253, 2M

Einstein-static universe, 139
spaces conformal to part of, 121, 126,

131, 139
Einstein-de Sitter universe, 138
electromagnetic field, 68
energy conditions

weak energy condition, 89
dominant energy condition, 91
null convergence condition, 95
timelike convergence condition, 95
strong energy condition, 95

energy extraction from black holes,
327-8, 332-3

energy-momentum tensor of matter
fields, 61, 66-71, 88-96, 256

equation of state of cold matter,
303-7

ergosphere, 327-31
EUler-Lagrange equations, 65
event horizon, 129, 140, 165

in asymptotically fiat spaces, 312,
315-20, 324-47

existence of solutions
Einstein equations with matter, 250
empty space Einstein equations, 248,

251
second order linear equations, 243

exp, exponential map, 33, 103, 119
generalized, 292

expansion
ofnull geodesics, 88, 101.312,319,321,

324, 364
of timelike curves, 82-4, 97, 271, 356
of universe, 137, 273, 348-59

extension
of development, 228, 249
ofmanifold, 58: locallyinextendible, 59
of space-time, 145, 160-6, 156-9,

163-4, 171, 176: inextendible, 68,
141; inequivalent extensions, 171-2

exterior derivative, 25, 35

Fermi derivative, 80-1
fibre bundles, Bee bundles
field equations

for matter fields, 6li
for metric tensor, 71-7
for Wayl tensor, 86

fiuid, 69; BU al80 perfect fiuid
focal points, Bee conjugate points
forms

one-forms, 16, 44-6
q-forms, 211 47-9

Friedmann equation, 138
Friedmann space-times, 136
function, 14
fundamental forms of surfaces

first, 44, 99, 231
second, 46, 99, 100, 102, 110,232,262,

273,274
future

causal, J+, 183
chronological, 1+, 182

future asymptotically predictable, 310
future Cauchy development, D+, 201

horizon, H+, 202
future directed non-spacelike curve, 184

inextendible, 184, 194,268
future distinguishing condition, 192,

195
future event horizon, 129, 312
future horismos, E+, 184
future set, 186, 187
future trapped set, 267, 268

g-completeness, 257, 258
gauge conditions, 230, 247
GauSB'equation, 47, 336, 362
GaUSB' theorem, 49-60
General Relativity, 56-77,363

postulates, (a), 60, (b), 61, (e), 77
breakdown of, 362-3

generalized affine para.meter, 259, 278,
291

generic condition, 101, 192, 194,266
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geodesics, 33, 55, 63,217,284-5
as extremum, "107, 108,213
Bee al80 null geodesics and timelike

geodesics
geodesically complete, 33, 257

examples, 119, 126, 133, 170
geodesically incomplete, 258, 287-9

examples, 141-2, 155, 159, 163, 176,
190

Bee a140 singularities
globally hyperbolic, 206-12, 213, 215,

223
GOdel's universe, 168-70
gravitational radiation from black holes,

313, 329, 333

harmonic gauge condition, 230, 247
Hausdorff spaces, 13, 56,221,283

non-Hausdorff b-boundary, 283, 289­
92

non-Hausdorff spaces, 13, 173, 177
homogeneity

homogeneous space-time, 168
spatial homogeneity, 134, 142-9, 371

horismos, E+, 184
horizons

apparent horizon, 320-3,324
event horizon, 129, 312, 315, 319,

324-33
particle horizon, 128

horizontal subspace (in bundle), 53-5,
277-82

lift, 54, 277
Hoyle and Narlikar's Cofield, 90, 126
Hubble constant, 137,355
Hubble radius, 351

IF, indecomposable future set, 218
imbedding, 23, 44,228

induced maps cf tensors, 45
immersion, 23
imprisoned curves, 194-6, 261, 289­

98
inequalities for energy-momentum ten­

sor, 89-96
and second order differential equations,

237, 240, 241
inextendible curve, 184, 218, 280
inextendible manifold, 58, 59, 141-2
infinity, BU conformal structure of

infinity
initial data, 233, 252, 254
injective map, 23
int, interior of set, 209
integral curves of vector field, 27
integration of forms, 26, 49
intersection of geodesics, 8U conjugate

points

IP, indecomposible past set, 218
isometry, 43, 56, 135-6, 142, 164, 168,

174, 323, 326, 329, 330, 334, 340-6,
369-70

isotropy of observations, 134-5, 349, 358
and universe, 351, 354

Israel's theorem, 326

Jacobi equation, 80, 96
Jacobi field, 96, 97, 99, 100

Kerr solution, 161-8, 225, 301, 310, 327,
332

as final state of black hole, 325-33
global uniqueness, 331

Killing vector field, 43, 62, 164, 167, 300,
323,325, 327, 330, 339

bivector, 167, 330, 331
Kruskal extension of Schwarzschild

solution, 103-5

Lagrangian, 64-7
for matter fields, 67-70
for Einstein's equations, 75

Laplace, 2, 364, 365-8
length of curve, 37

generali~d, 259, 280
non-spacelike curve, 105,213,214,215:

longest curve, 5, 105, 107-8, 120,213
Lie derivative, 27-30, 34-5, 43, 79, 87,

341-6
light cone, BU null cone
limit of non-spacelike curves, 184-5
limiting mass of star, 304-7
Lipschitz condition, 11
local Cauchy development theorem, 248
local causality assumption, 60
local causality neighbourhoods, 195
local conservation of energy and momen-

tum, 61
local coordinate neighbourhood, 12
locally inextendible manifold, 59
Lorentz metric, 38, 39, 44, 56, 190,

252
Lorentz group, 52, 62, 173, 277-80
Lorentz transformation, 279, 290-1

m-completeness, 257, 278
manifold, 11, 14

as space-time model, 56, 57, 363
map of manifold, 22, 23

induced tensor maps, 22-4
marginally outer trapped surface, 321
matter equations, 59-71, 88-96, 117,

254
maximal development, 251-252
maximsl timelike curve, 110-12
Maxwell's equations, 68, 85, 156, 179
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metric tensor, 36-44, 61, 63-4
covariant derivative, 40, 41
Lorentz, 38,39, 44, 56, 57, 190,237
on hypersurface, 44-6, 231
positive definite, 38, 45, 126, 257, 259,

278, 282, 283
space of metrics, 198, 252

microwave background radiation, 139,
348-50, 364, 366

isotropy, 348-53, 358
Minkowski space-time, 118-24, 205, 218,

222, 274, 275, 310
Misner's two-dimensional space-time,

171-4

naked singularities, 311
Newman-Penrose formalism, 344
Newtonian gravitational theory, 71-4,

76, 80, 201, 303-5
non-spacelike curve, 60, 112, 184, 180,

207
geodesic, 105, 213

Nordstrom theory, 76
normal coordinates, 34, 41, 63
normal neighbourhood, 34, 280; au also

convex normal neighbourhood
null vector, 38, 57

cone, 38, 42, 60, 103-5, 184, 198:
reconverging, 266, 354

convergence condition, 95, 192, 263,
265, 311, 318, 320

geodesics, 86-8, 103, 105, 116, 133,
171, 184, 188, 203, 204, 258, 312,
319,354: reconverging, 267, 271,
364, 355; closed null geodesics,
190-1, 290

hypersurface,45

optical depth, 355, 357, 359
orientable manifold, 13

time orientable, 181, 182
space orientable, 181, 182

orientation
of boundary, 27
of hypersurface, 44

orthogonal group O(p, q), 52, 277-83
orthogonal vectors, 36
orthonormal basis, 38, 52, 64, 80-2,

276-83,291
pseudo-orthonormal basis, 86-7, 344

outer trapped surface, 319, 320

pancake singularity, 144
paracompact manifold, 14,34,38,57
parallel transport, 32, 40, 277

non-integrability, 35, 36
p.p. singularity, 260, 290, 291

parallelizable manifold, 52, 182

partially imprisoned non-spacelike curve,
194,289-92

partial Cauchy surface, 204, 217, 266,
274, 290, 301

and black holes, 310-24
particle horizon, 128, 140, 144
past, dual of future, 183: thu8 past set

is dual of future set, 186
PIPs, PIFs, 218
Penrose collapse theorem, 262
Penrose diagram, 123
perfect fiuid, 69-70,79,84,136, 143, 168,

305, 372
plane-wave solutions, 178, 188, 206, 260
postulates for special and general

relativity
space-time model, 56
local causality, 60
conservation ofenergyand momentum,

61
metric tensor, 71, 77

p.p. curvature singularity, 260, 289-92
prediction in General Relativity, 206-6
product bundle, 50
propagation equations

expansion, 84, 88
shear, 85, 88
vorticity, 83, 88

properly discontinuous group, 173
pseudo-orthonormal basis, 86-7, 102,

114,271,290, 344

rank of map, 23
Raychaudhuri equation, 84, 97, 136,275,

286, 352
redshut, 129, 139, 144, 161,309,350, 308
regular predictable space, 318, 323
Reissner-Nordstrom solution, 156-61,

188, 206, 225, 310, 360-1
global uniqueness, 326

Ricci tensor, 36, 41,72-5,85,88,95,290,
352

Riemann tensor, 35, 36, 41, 85, 290, 352
Robertson-Walker spaces, 134-42, 276,

352-7

scalar field, 67, 68, 95; Bee alBo Brans­
Dicke

scalar polynomial curvature singularities,
141-2, 146, 151, 260, 289

Schwarzschild solution, 149-66, 225, 262,
310, 316, 326

local uniqueness, 371
global uniqueness, 326
outside star, 299, 306, 308-9, 316, 360

Schwarzschild radius, 299, 300,307-8,353
mass, 306, 309
length, 353, 358
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second fundamental form of hypersur­
surface, 46, 47

of 3-surface, 99, 273, 274
of 2-surface, 102, 262

second order hyperbolic equation, 233-43
second variation, 108, 110, 114, 296
semispacelike set, Bee achronal set,

186
separation of timelike curves, 79, 96, 99

of null geodesics, 86-7, 102
shear tensor, 82, 86, 88, 97, 324, 361
singularity, 3, 256-61, 360-4

s.p. singularity, 260, 289
p.p. singularity, 260, 290-2
examples, 137-42, 144-6, 160-1, 159,

162, 171-4, 177
theorems, 7, 147, 263, 266, 271, 272,

274, 286, 288, 292
description, 276-84
nature, 284-9, 360-1, 363
in collapsing stars, 308, 310, 311, 360-1
in universe, 356, 368-9

singularity-free space-times, 268, 260
examples, 119, 126, 133, 139, 170,

306-6
skew symmetry, 20-1
Sobolev spaces, 234
s.p. curvature singularity, 141-2, 146,

151, 260, 289
spacelike hypersurface, 45
spacelike three-surface, 99,170,201.204,

313
spacelike two-surface, 101, 262
spacelike vector, 38, 67
space-orientable, 181
space-time manifold, 4, 14, 56, 67

breakdown, 363
connection, 41, 69, 63
differentiability, 67, 68, 284-7
inextendible, 58
metric, 66, 60, 227
non-compact, 190
space and time orientable, 181-2
topology, 197

spatially homogeneous, 134, 142-9,
371

Special Relativity, 60, 62, 71, 118
speed of light, 60, 61, 94
spinors, 52, 59, 182
spherically symmetric solutions, 136,

149-61, 299, 305-6, 369-72
stable causality, 198
stability

of Einstein's equations, 263, 266, 301
of singularity, 273, 360

star, 299-308
white dwarfs, neutron stars, 304, 307
life history, 301, 307-8

static space-times, 72, 73
spherically symmetric, 149-61, 305-6,

371
regular predictable space-times, 326-9

stationary axisymmetric solutions, 161­
70

stationary regular predictable space-
times, 323-47

stationary limit surface, 165-167, 328,331
steady-state universe, 90, 126
Stokes' theorem, 27
strong causality condition, 192, 194, 196,

208, 209, 217, 222, 261, 267, 271
strong energy condition, 95
strongly future asymptotically predict­

able, 313, 317, 318
summation convention, 15
symmetric and skew-symmetric tensors,

20-1
synunetries of space-time, 44

axial symmetry, 329
homogeneity, 168
spatial homogeneity, 135, 142
spherical symmetry, 369
s\;atic spaces, 72, 326
stationary spaces, 323
time-symmetry, 326

tangent bundle, 51, 63-4, 292, 351
tangent vector space, 16, 51

dual space, 17
Taub-NUT space, 170-8, 206, 261, 289­

92
tensor of type (r, 8), 17

field of type (r, 8), 21
bundle of tensors of type (r,8), 51

tensor product, 18
theorems

conservation theorem, 94
singularities in homogeneous cos-

mologies, 147
local Cauchy development, 248
global Cauchy development, 251
Cauchy stability theorem, 253
singularity theorems: theorem I, 263;

theorem 2, 266; theorem 3, 271;
theorem 4, 272; theorem 5, 292;
weakened conditions, 285, 288

tidal force, 80
TIFs, TIPs, 218
time coordinates, 170, 198
time orient,able, 131, 181, 182
timesymmetric,326,328

black hole, 330
timelike convergence conditions, 95, 266,

266, 271, 272, 286, 363
timelike curves, 69, 79-86, 103, 184,

213-15, 218
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timelike geodesics, 63, 96-100, 103,
111-12, 133, 169, 170, 217, 268,
288\

timelike hypersurface, 44
timelike singularity, 169, 360-1
timelike vector, 38, 67
topology of manifold, 12-14

Alexandrov topology, 196, 197
topology of set of Lorentz metrics, 198,

262
topology of space of curves, 208, 214
torsion tensor, 34, 41
totally imprisoned curves, 194, 196,289-

98
trapped region, 319-20
trapped set, 267
trapped surface, BU closed trapped sur­

face

uniqueness of solutions
of Einstein's equations: locally, 246,

2M; globally, 261, 266
of second order linear equations, 239,

243
universe, 3, 348-69, 360, 362, 364

spatiallyhomogeneous universe models
anisotropic, 142-9; isotropic, 134­
42, 361-3, 366-7

vacuum solutions offield equations, 118,
160, 161, 170, 178. 244-64

variation
of fields in Lagrangian, 6li
of timelike curve, 106-10, 296
of non-spacelike curves. 112-16, 191

vector, 15, 16,38, 67
field, 21, 27, 61, 62, 54, 66, 277, 278
variation vector, 107-16, 191, 275, 296
Bee alBo Killing vector

vertical subspaces in bundles, 53, 277
volume, 48, 49
vorticity

of Jacobi fields, 97
of null geodesics, 88
of timelike curves, 82-4, 362

weak energy condition, 89, 94
weakly asymptotically simple and empty

spaces, 225, 310
Weyl tensor, 41,42,85,88,101,224,344


