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1
The role of gravity

The view of physics that is most generally accepted at the moment is
that one can divide the discussion of the universe into two parts. First,
there is the question of the local laws satisfied by the various physical
fields. These are usually expressed in the form of differential equations.
Secondly, there is the problem of the boundary conditions for these
equations, and the global nature of their solutions. This involves
thinking about the edge of space—time in some sense. These two parts
may not be independent. Indeed it has been held that the local laws
are determined by the large scale structure of the universe. This view
is generally connected with the name of Mach, and has more recently
been developed by Dirac (1938), Sciama (1953), Dicke (1964), Hoyle
and Narlikar (1964), and others. We shall adopt a less ambitious
approach: we shall take the local physical laws that have been experi-
mentally determined, and shall see what these laws imply about the
large scale structure of the universe.

There is of course a large extrapolation in the assumption that the
physical laws one determines in the laboratory should apply at other
points of space-time where conditions may be very different. If they
failed to hold we should take the view that there was some other
physieal field which entered into the local physical laws but whose
existence had not yet be.n detected in our experiments, because it
varies very little over a region such as the solar system. In fact most of
our results will be independent of the detailed nature of the physical
laws, but will merely involve certain general properties such as the
description of space-time by a pseudo-Riemannian geometry and the
positive definiteness ot energy density.

The fundamental interactions at present known to physics can be
divided into four classes: the strong and weak nuclear interactions,
electromagnetism, and gravity. Of these, gravity is by far the weakest
(the ratio Gm?fe? of the gravitational to electric force between two
electrons is about 10~%°). Nevertheless it plays the dominant role in
shaping the large scale structure of the universe. This is because the




Preface

The subject of this book is the structure of space-time on length-
scales from 10-13c¢m, the radius of an elementary particle, up to
10%cm, the radius of the universc. For reasons explained in
chapters 1 and 3, we base our treatment on Einstein’s General
Theory of Relativity. This theory leads to two remarkable pre-
dictions about the universe: first, that the final fate of massive
stars is to collapse behind an event horizon to form a ‘black hole’
which will contain a singularity; and secondly, that there is a
singularity in our past which constitutes, in some sense, a begin-
ning to the universe. Qur discussion is principally aimed at developing
these two results. They depend primarily on two areas of study : first,
the theory of the behaviour of families of timelike and null curves in
space-time, and secondly, the study of the nature of the various
causal relations in any space—time. We consider these subjects in
detail. In addition we develop the theory of the time-development
of solutions of Einstein’s equations from given initial data. The dis-
cussion is supplemented by an examination of global properties of
a variety of exact solutions of Einstein’s field equations, many of
which show some rather unexpected behaviour.

This book is based in part on an Adams Prize Essay by one of us
(S. W.H.). Many of the ideas presented here are due to R. Penrose
and R. P. Geroch, and we thank them for their help. We would refer
our readers to their review articles in the Battelle Rencontres (Penrose
(1968)), Midwest Relativity Conference Report (Geroch (1970c¢)),
Varcnna Sumamer School Proceedings (Geroch (1971)), and Pittsburgh
Conference Report (Penrose (1972b)). We have benefited from dis-
cussions and suggestions from many of our collcagues, particularly
B. Carter and D. W. Sciama. Our thanks are due to them also.

Cambridge S. W. Hawking
January 1973 G. F. R. Ellis

[xi]




2 THE ROLE OF GRAVITY

strong and weak interactions have a very short range (~ 10-13cm or
less), and although electromagnetism is a long range interaction, the
repulsion of like charges is very nearly balanced, for bodies of macro-
scopic dimensions, by the attraction of opposite charges. Gravity on
the other hand appears to be always attractive. Thus the gravitational
fields of all the particles in a body add up to produce & field which, for
sufficiently large bodies, dominates over all other forces.

Not only is gravity the dominant force on a large scale, but it is a
force which affects every particle in the same way. This universality
was first recognized by Galileo, who found that any two bodies fell
with the same velocity. This has been verified to very high precision
in more recent experiments by Eotvos, and by Dicke and his collabo-
rators (Dicke (1964)). It has also been observed that light is deflected
by gravitational fields. Since it is thought that no signals can travel
faster than light, this means that gravity determines the causal
structure of the universe, i.e. it determines which events of space-time
can be causally related to each other.

These properties of gravity lead to severe problems, for if a suffi-
ciently large amount of matter were concentrated in some region, it
could deflect light going out from the region so much thatit was in fact
dragged back inwards. This was recognized in 1798 by Laplace, who
pointed out that a body of about the same density as the sun but
250 times its radius would exert such a strong gravitational field that
no light could escape from its surface. That this should have been
predicted so early is so striking that we give a translation of Laplace’s
essay in an appendix.

One can express the dragging back of light by a massive body more
precisely using Penrose’s idea of a closed trapped surface. Consider
a sphere J surrounding the body. At some instant let 7 emit a flash
of light. At some later time ¢, the ingoing and outgoing wave fronts
from .7 will form spheres .7; and .7, respectively. In a normal situa-
tion, the area of Z; will be less than that of 7 (because it represents
ingoing light) and the area of 7, will be greater than that of 7
(because it represents outgoing light; see figure 1). However if s suffi-
ciently large amount of matter is enclosed within 7, the areas of J;
and 7, will both be less than that of.7. The surface.7 is then said to
be a closed trapped surface. As ¢t increases, the area of Z, will get
smaller and smaller provided that gravity remains attractive, i.e. pro-
vided that the energy density of the matter does not become negative.
Since the matter inside J cannot travel faster than light, it will be
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trapped within a region whose boundary decreases to zero within a
finite time. This suggests that something goes badly wrong. We shall
in fact show that in such a situation a space-time singularity must
occeur, if certain reasonable conditions hold.

One can think of & singularity as a place where our present laws of
physics break down. Alternatively, one can think of it as representing
part of the edge of space-time, but a part which is at a finite distance
instead of at infinity. On this view, singularities are not so bad, but one
still has the problem of the boundary conditions. In other words, one
does not know what will come out of the singularity.

.,,

@)

O

Ficure 1. At some instant, the sphere 5 emits a flash of light. At a later time,
the light from & point p forms a sphere & around p, and the envelopes.7 | and
 , form the ingoing and outgoing wavefronts respectively. If the areas of both
T, and 7, are less than the area of 7, then 7 is a closed trapped surface.

There are two situations in which we expect there to be a sufficient
concentration of matter to cause a closed trapped surface. The first is
in the gravitational collapse of stars of more than twice the mass of
the sun, which is predicted to occur when they have exhausted their
nuclear fuel. In this situation, we expect the star to collapse to a singu-
larity which is not visible to outside observers. The second situation is
that of the whole universe itself. Recent observations of the microwave
background indicate that the universe contains enough matter to
cause a time-reversed closed trapped surface. This implies the exist-
ence of a singularity in the past, at the beginning of the present epoch
of expansion of the universe. This singularity is in principle visible to
us. It might be interpreted as the beginning of the universe.




4 THE ROLE OF GRAVITY

In this book we shall study the large scale structure of space—time
on the basis of Einstein’s General Theory of Relativity. The predic-
tions of this theory are in agreement with all the experiments so far
performed. However our treatment will be sufficiently general to cover
modifications of Einstein’s theory such as the Brans-Dicke theory.

While we expect that most of our readers will have some acquain-
tance with General Relativity, we have endeavoured to write this
book so that it is self-contained apart from requiring a knowledge of
simple calculus, algebra and point set topology. We have therefore
devoted chapter 2 to differential geometry. Our treatment is reason-
ably modern in that we have formulated our definitions in & manifestly
coordinate independent manner. However for computational con-
venience we do use indices at times, and we have for the most part
avoided the use of fibre bundles. The reader with some knowledge of
differential geometry may wish to skip this chapter.

In chapter 3 a formulation of the General Theory of Relativity is
given in terms of three postulates about a mathematical model for
space-time. This model is a manifold .# with a metric ¢ of Lorentz
signature. The physical significance of the metric is given by the first
two postulates: those of local causality and of local conservation of
energy-momentum. These postulates are common to both the General
and the Special Theories of Relativity, and so are supported by the
experimental evidence for the latter theory. The third postulate, the
field equations for the metric g, is less well experimentally established.
However most of our results will depend only on the property of the
field equations that gravity is attractive for positive matter densities,
This property is common to General Relativity and some modifications
such as the Brans-Dicke theory.

In chapter 4, we discuss the significance of curvature by considering
its effects on families of timelike and null geodesics. These represent
the paths of small particles and of light rays respectively. The curva-
ture can be interpreted as a differential or tidal force which induces
relative accelerations between neighbouring geodesics. If the energy—
momentum tensor satisfies certain positive definite conditions, this
differential force always has a net converging effect on non-rotating -
families of geodesics. One can show by use of Raychaudhuri’s equation
(4.26) that this then leads to focal or conjugate points where neigh-
bouring geodesies intersect.

To see the significance of these focal points, consider a one-dimen-
sional surface & in two-dimensional Euclidean space (figure 2). Let p
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be a point not on . Then there will be some curve from % to » which
is shorter than, or as short as, any other curve from & to p. Clearly
this curve will be a geodesic, i.e. a straight line, and will intersect %
orthogonally. In the situation shown in figure 2, there are in fact three
geodesics orthogonal to & which pass through p. The geodesic through
the point 7 is clearly not the shortest curve from & to p. One way of
recognizing this (Milnor (1863)) is to notice that the neighbouring

Ficure 2. The line pr cannot be the shortest line from p to &, because there is
a focal point g between p and r. In fact either px or py will be the shortest line
from p to &.

geodesics orthogonal to % through # and v intersect the geodesic
through r at a focal point ¢ between.# and p. Then joining the segment
ug to the segment ¢p, one could obtain a curve from % to p which had
the same length as a straight lino 7p. However as ugp is not a straight
line, one could round off the corner at ¢ to obtain a curve from & to p
which was shorter than rp. This shows that 7p is not the shortest curve
from & to p. In fact the shortest curve will be either zp or yp.

One can carry these ideas over to the four-dimensional space-time
manifold .# with the Lorentz metric g. Instead of straight lines, one
considers geodesics, and instead of considering the shortest curve one
considers the longest timelike curve between a point p and a spacelike
surface & (because of the Lorentz signature of the metric, there will
be no shortest timelike curve but there may be a longest such curve).
This longest curve must be a geodesic which intersects¥ orthogonally,
and there can be no focal point of geodesics orthogonal to % between
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& and p. Similar results can be proved for null geodesics. These results
are used in chapter 8 to establish the existence of singularities under
certain conditions.

In chapter 5 we describe & number of exact solutions of Einstein’s
equations. These solutions are not realistic in that they all possess
exact symmetries. However they provide useful examples for the suc-
ceeding chapters and illustrate various possible behaviours. In
particular, the highly symmetrical cosmological models nearly all
possess space—time singularities. For a long time it was thought that
these singularities might be simply a result of the high degree of
symmetry, and would not be present in more realistic models. It will
be one of our main objects to show that this is not the case.

In chapter 6 we study the causal structure of space-time. In Special
Relativity, the events that a given event can be causally affected by,
or can causally affect, are the interiors of the past and future light
cones respectively (see figure 3). However in General Relativity the
metric ¢ which determines the light cones will in general vary from
point to point, and the topology of the space—time manifold .# need
not be that of Euclidean space E%. This allows many more possibilities.
For instance one can identify corresponding points on the surfaces
&, and &, in figure 3, to produce & space-time with topology K3 xSt
This would contain closed timelike curves. The existence of such a
curve would lead to causality breakdowns in that one could travel into
one’s past. We shall mostly consider only space—times which do not
permit such causality violations. In such & space-time, given any
spacelike surface &, there is & maximal region of space—time (called
the Cauchy development of &) which can be predicted from knowledge
of data on &. A Cauchy development has a property (‘Global hyper-
bolicity’) which implies that if two points in it can be joined by a time-
like curve, then there exists a longest such curve between the points.
This curve will be & geodesic.

The causal structure of space-time can be used to define a boundary
or edge to space-time, This boundary represents both infinity and the
part of the edge of space-time which is at a finite distance, i.e. the
singular points.

In chapter 7 we discuss the Cauchy problem for General Relativity.
We show that initial dats on a spacelike surface determines a unique
solution on the Cauchy development of the surface, and that in a
certain sense this solution depends continuously on the initial data.
This chapter isincluded for completeness and because it uses a number
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Future light cone
Future

s 7

Time
Space P
Space
P Past light cone

/ /

Ficure 3. In Special Relativity, the light cone of an event p is the set of all
light rays through p. The past of p is the interior of the past light cone, and the
future of p is the interior of the future light cone.

of results of the previous chapter. However it is not necessary to read
it in order to understand the following chapters.

In chapter 8 we discuss the definition of space—time singularities.
This presentscertain difficulties because one cannot regard the singular
points as being part of the space~time manifold .

We then prove four theorems which establish the occurrence of
space—time singularities under certain conditions. These conditions
fall into three categories. First, there is the requirement that gravity
shall be attractive. This can be expressed as an inequality on the
energy—momentum tensor. Secondly, there is the requirement that
there is enough matter present in some region to prevent anything
escaping from that region. This will occur if there is & closed trapped
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surface, or if the whole universe is itself spatially closed. The third
requirement is that there should be no causality violations. However
this requirement is not necessary in one of the theorems. The basic
idea of the proofs is to use the results of chapter 6 to prove there must
be longest timelike curves between certain pairs of points. One then
shows that if there were no singularities, there would be focal points
which would imply that there were no longest curves between the pairs
of points.

We next describe a proceduresuggested by Schmidt for constructing
a boundary to space-time which represents the singular points of
space~time. This boundary may be different from that part of the
causal boundary (defined in chapter 8) which represents singularitios.

In chapter 9, wo show that the socond condition of theorem 2 of
chaptor 8 should be satisfiod noar stars of more than 1} times the solar
mass in the final stages of their evolution. The singularities which occur
are probably hidden behind an event horizon, and so are not visible
frone outehle. To an oxtorunl obrervoer, there uppoars to be a “blwck
hole’ where the star once was. We discuss the properties of such black
holes, and show that they probably settle down finally to one of the
Kerr family of solutions. Assuming this to be the case, one can place
certain upper bounds on the amount of energy which can be extracted
from black holes. In chapter 10 we show that the second conditions of
theorems 2 and 3 of chapter 8 should be satisfied, in a time-reversed
sense, in the whole universe. In this case, the singularities are in our
past and constitute a beginning for all or part of the observed universe.

The essential part of the introductory material is that in §3.1, § 3.2
and § 3.4. A reader wishing to understand the theorems predicting the
existence of singularities in the universe need read further only chap-
ter 4, §6.2-§6.7, and § 8.1 and § 8.2. The application of these theorems
to collapsing stars follows in §9.1 (which uses the results of appen-
dix B); the application to the universe as a wholeis given in § 10.1, and
relies on an understanding of the Robertson-Walker universe models
(§5.8). Our discussion of the nature of the singularities is contained
in §8.1, §8.3-§ 8.6, and § 10.2; the example of Taub-NUT space (§ 5.8)
plays an important part in this discussion, and the Bianchi I universe
model (§ 6.4) is also of some interest.

A reader wishing to follow our discussion of black holes need read
only chapter 4, §6.2-§6.6, §6.9, and §9.1, §9.2 and §9.3. This discus-
sion relies on an understanding of the Schwarzschild solution (§ 5.5)
and of the Kerr solution (§5.6).
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Finally a reader whose main interest is in the time evolution
properties of Einstein’s equations need read only §6.2-§6.6 and
chapter 7. He will find interesting examples given in §5.1, §5.2 and
§5.5.

We have endeavoured to make the index a useful guide to all the
definitions introduced, and the relations between them.




2
Differential geometry

The space—time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in § 2.1 the concept of & manifold and
in §2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. A discussion of maps of manifolds in §2.3
leads to the definitions of the induced maps of tensors, and of sub-
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes’ theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec-
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss-Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss’ theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu-
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[10]
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2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined, but does not distinguish intrin-
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold, after some preliminary definitions.

Let R denote the Euclidean space of n dimensions, that is, the set
of all n-tuples (z1,2%, ...,2") (—00 < af < 0c0) with the usual topology
(open and closed sets are defined in the usual way), and let $R* denote
the ‘lower half’ of B, i.e. the region of E* for which ! < 0. Amap ¢ of
an open set @ < R™ (respectively $R") to an open set @' < R™ (respec-
tively #R™) is said to be of class C7 if the coordinates (z'1,z'%,...,z"™) of
the image point ¢(p) in @' are r-times continuously differentiable
functions (the rth derivatives exist and are continuous) of the co-
ordinates (!, 2%, ...,2") of pin 0. If a map is C* for all r > 0, then it is
said to be C*. By a C°® map, we mean & continuous map.

A function f on an open set @ of R* is said to be locally Lipschitz if
for each open set < @ with compact closure, there is some constant
K such that for each pair of points p,g€%, |f(p)—f(q)| < K |p—g|,
where by |p| we mean

{ @)+ (@P(P)* +... + (™) 3.
A map ¢ will be said to be locally Lipschitz, denoted by C-, if the
coordinates of ¢(p) are locally Lipschitz functions of the coordinates
of p. Similarly, we shall say that a map ¢ is Cr~ if it is C*1 and if the
(r— 1)th derivatives of the coordinates of ¢(p) are locally Lipschitz
functions of the coordinates of p. In the following we shall usually only
mention Cr, but similar definitions and results hold for Cr—.

If #is an arbitrary set in R™ (respectively $R*), a map ¢ from 2 to
8 set ' < R™ (respectively $R™) is said to be a Cr map if ¢ is the
restriction to & and £’ of a C" map from an open set 0 containing &
to an open set @' containing &'.

A Cr n-dimensional manifold A is a set A together with a C* atlas
{#,, ¢.}, that is to say a collection of charts (%,, ¢,) where the %, are
subsets of 4 and the ¢, are one—one maps of the corresponding %, to
open sets in E” such that

(1) the %, cover #,i.e. # =U%,,

«
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(2) if %, n % is non-empty, then the map
o 0Pt Pp(U, N Ug) > Dol U N Uy)

is & Cr map of an open subset of E" to an open subset of B" (see figure 4).

Each %, is a local coordinate neighbourhood with the local coordinates
22 (@ = 1ton)defined by the map ¢, (i.e. if p €%, then the coordinates
of p are the coordinates of ¢_(p) in B*). Condition (2) is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are C functions of the coordinates
in the other neighbourhood, and vice versa.

Rn
” j $al¥a 0 Ug)

F1oURE 4. In the overlap of coordinate neighbourhoods %, and %, coordinates
are related by a Cr map ¢, 0,72

Another atlas is said to be compatible with a given Cr atlas if their
union is & Cr atlas for all .#. The atlas consisting of all atlases com-
patible with the given atlasis called the complete atlas of the manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering .#.

The topology of A is defined by stating that the open sets of 4
consist of unions of sets of the form %, belonging to the complete atlas.
This topology makes each map ¢, into a homeomorphism.

A Cr differentiable manifold with boundary is defined as above, on
replacing ‘ B*’ by ‘4R"’. Then the boundary of .#, denoted by 0.4, is
defined to be the set of all points of 4 whose image under a map ¢, lies
on the boundary of $E™in R™. 2.4 is an (n — 1)-dimensional Cr manifold
without boundary.
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These definitions may seem more complicated than necessary. How-
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Euclidean plane R? is clearly a manifold. Rectangular coordinates
(x, ¥y; —0<x <00, —00 <y < o) cover the whole plane in one
coordinate neighbourhood, where ¢ is the identity. Polar coordinates
(r,6) cover the coordinate neighbourhood (r > 0, 0 < 6 < 277); one
needs at least two such coordinate neighbourhoods to cover R2 The
two-dimensional cylinder C?is the manifold obtained from R? by identi-
fying the points (z,y) and (z+ 2m,y). Then (z,y) are coordinates in
a neighbourhood (0 < =z < 277, —00 < y < o0) and one needs two
such coordinate neighbourhoods to cover C%. The Mdbius strip is the
manifold obtained in a similar way on identifying the points (z,y) and
(z+ 271, —y). The unit two-sphere S% can be characterized as the surface
in R® defined by the equation (z)2+ (22)2+ (2%)* = 1. Then

(2,23 —1<a? <1, -1 <2®<1)

are coordinates in each of the regions 2! > 0, 2! < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover S? by a single coordinate neighbourhood. The
n-sphere 8™ can be similarly defined as the set of points

(xl)z + (xz)z +...4 (xn+1)2 =1
in Rn+1,

A manifold is said to be orientable if there is an atlas {%,, ¢,} in the
complete atlas such that in every non-empty intersection %, n %;, the
Jacobian |9z%/9z'l| is positive, where (z,...,2") and (z%,...,2'") are
coordinates in %, and %, respectively. The M6bius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that .# is Hausdorff
and that .# is paracompact, which will ensure reasonable local

" behaviour.

A topological space . is said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: whenever p, g are two distinct points
in ., there exist disjoint open sets %, ¥ in .4 such that pe%, ge¥".
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points &, b’ on the two lines if and only if 2, = g, < 0. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset of E1. However there are no disjoint open neighbourhoods
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b
—— - >y
v =) y=0
F1GURE 5. An example of a non-Hausdorff manifold. The two lines above are

identical for x = y < 0. However the two points a (x = 0) and &’ (y = 0) are
not identified.

%,V satisfying the conditions a € %, a’ € ¥”, where a is the point z = 0
and a’ is the point y = 0.

An atlas {%,, ¢,} is said to be locally finite if every point p € . has
an open neighbourhood which intersects only a finite number of the
sets %,. A is said to be paracompact if for every atlas {#,, ¢,} there
exists a locally finite atlas {¥}, {4} with each ¥}, contained in some %Z,.
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this
collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected C° Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on 4 (the
existence of an affine connection, see §2.4) the requirement of para-
compactness will be automatically satisfied because of the other
restrictions.

A function f on a C* manifold . is a map from 4 to Rl. It is said to
be of class CT (r < k) at a point p of #, if the expression fo ¢, 1 of f on
any local coordinate neighbourhood %, is a C function of the local
coordinates at p; and f is said to be a C" function on a set ¥~ of 4 if
fis a Cr function at each point pe¥".

A property of paracompact manifolds we will use later, is the fol-
lowing: given any locally finite atlas {#,, .} on a paracompact C*
manifold, one can always (sce c.g. Kobayashi and Nomizu (1963),
p- 272) find a set of C* functions g, such that

(1) 0 <g, < 1on .« foreacha;

(2) the support of g,, i.e. the closure of the set {pe #: g.(p) + 0}, is
contained in the corresponding %,;

(3) X g.(p) =1, forall pe A.



2.1] MANIFOLDS 15

Such a set of functions will be called a partition of unity. The result
isin particular true for C* functions, but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood of each point p € 4, and so is zero
everywhere if it is zero on any open neighbourhood).

Finally, the Cartesian product & x # of manifolds &7, Z is a mani-
fold with a natural structure defined by the manifold structures of
&, &: for arbitrary points p € &, g€ %, there exist coordinate neigh-
bourhoods %, ¥ containing p, g respectively, so the point (p, ¢) e & x#
is contained in the coordinate neighbourhood % x ¥ in & x % which
assigns to it the coordinates (x%,%7), where z* are the coordinates of p
in % and ¢ are the coordinates of g in ¥".

2.2 Vectors and tensors

Tensor fields are the set of geometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold, so we first define
tensors at a point of the manifold, starting from the basic concept of
a vector at a point.

A C* curve A(t) in A is a C* map of an interval of the real line R!into
A . The vector (contravariant vector) (9/2t), |, tangent to the C* curve
A(t) at the point A(t,) is the operator which maps each C* function f at
A(t,) into the number (3f/ét),,,; that is, (9f/et), is the derivative of fin
the direction of A(t) with respect to the parameter ¢{. Explicitly,

7
(5{“' = Tim S+ 2) —FAE) (2.1)

The curve parameter ¢ clearly obeys the relation (8/t),t = 1.
If (=%, ..., 2") are local coordinates in a neighbourhood of p,

(gf) _x o) o] _do of
ot Alte F=1 .dt ,_,0'3.'1:1 PYTA) - dt ot l\(lo).

(Here and throughout this book, we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point p can be expressed as
a linear combination of the coordinate derivatives

(9]0 s ---» (8027

Conversely, given a linear combination ¥4(3/227)], of these operators,
where the V/ are any numbers, consider the curve A(t) defined by
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2(A(t)) = 2(p) +tV7, for t in some interval [ ¢, €]; the tangent vector
to this curve at p is V#(9/éx’)],. Thus the tangent vectors at p form
a vector space over R!spanned by the coordinate derivatives (9/927)|,,
where the vector space structure is defined by the relation

(@X +BY)f = a(Xf)+ B(YS)

which is to hold for all vectors X, ¥, numbers «, £ and functions f.
The vectors (9/2«7), are independent (for if they were not, there
would exist numbers V7 such that V#(/027)|,, = 0 with at least one V/
non-zero; applying this relation to each coordinate 2* shows

Vioak|ow) = V= 0,

a contradiction), so the space of all tangent vectors to A ut p, denoted
by T, (#) or simply 7, is an n-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to A at p. One may think of a vector Ve 7, as an arrow at p,
pointing in the direction of a curve A(t) with tangent vector V at p,
the ‘length’ of V being determined by the curve parameter ¢ through
the relation V(f) = 1. (As V is an operator, we print it in bold type;
its components V7, and the number V(f) obtained by V acting on a
function f, are numbers, and so are printed initalics.)

If {E,} (a = 1 ton) are any set of n vectors at p which are linearly
independent, then any vector Ve 7, can be written V = V°E_ where
the numbers {V°} are the components of V with respect to the basis
{E} of vectors at p. In particular one can choose the E, as the coordi-
nate basis (9/92%)|,; then the components V¢ = V(a%) = (dz?/dt)],, are
the derivatives of the coordinate functions z* in the direction V.

A one-form (covariant vector) w at p is a real valued linear function
on the space 7}, of vectors at p. If X is a vector at p, the number into
which w maps X will be written {w, X); then the linearity implies that

(w,aX+ YY) = alw, X)+ f{w,Y)

holds for all &, fe R* and X, Y e€7},. The subspace of 7}, defined by
{w,X) = (constant) for a given one-form ¢, is linear. One may there-
fore think of a one-form at p as a pair of planes in 7}, such that if
{w,X) = 0 the arrow X lies in the first plane, and if (w,X) =1 it
touches the second plane.

Given a basis {E_} of vectors at p, one can define a unique set of
n one-forms {E} by the condition: Ef maps any vector X to the
number X* (the sth component of X with respect to the basis {E_}).
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Then in particular, (E® E;) = 6%,. Defining linear combinations of
one-forms by the rules
(e + 0, X) = alw, X) + (0, X)

for any one-forms w,  and any a, fe R, X €7, one can regard {E%}
as a basis of one-forms since any one-form « at  can be expressed as
w = w; E* where the numbers w, are defined by w; = (w, E;). Thus the
set of all one forms at p forms an n-dimensional vector space at p, the
dual space T*,, of the tangent space 7},. The basis {E%} of one-forms is
the dual basis to the basis {E_} of vectors. For any we7'*,, X7, one
can express the number (w, X) in terms of the components w;, X* of
w, X with respect to dual bases {E9}, {E,} by the relations

(0, X) = (w,E, XIE) — e, X'
Each fnaction f on 4 defines a one-form df at » by the rule: for
each vector X, @f, Xy = Xf.
dfis called the differential of f. If (2, ..., 2") are local coordinates, the

set of differentials (d21, d«? ...,dz") at p form the basis of one-forms
dual to the basis (9/0z!, 9[ox?, ..., [oxm) of vectors at p, since
(dzt, 8/oa?y = oxt[oxt = 8%,

In terms of this basis, the differential df of an arbitrary function f is
given by af = (of /o) dxt.
If df is non-zero, the surfaces {f = constant} are (n — 1)-dimensional
manifolds. The subspace of 7, consisting of all vectors X such that
{df,X) = 0 consists of all vectors tangent to curves lying in the
surface {f = constant} through p. Thus one may think of df as a
normal to the surface {f = constant} at p. If & & 0, adf will also be
a normal to this surface.

From the space 7, of vectors at p and the space 7'*, of one-forms
at p, we can form the Cartesian product

8 . Mk * *
0§ =7*,xT px...xTJpr&prx...pr,

r factors s factors

i.e. the ordered set of vectors and one-forms (n%,...,%",Y,,...,Y,)
where the Ys and ns are arbitrary vectors and one-forms respectively.

A tensor of type (r, 8) at p is a function on I which is linear in each
argument. If T is a tensor of type (7, 8) at p, we write the number into
which T maps the element (v}, ...,0",Y,,...,Y,) of [12 as

T, ..om, Yy, .., Y).
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Then the linearity implies that, for example,
T, ..., eX+ Y, Y,, ..., Y,) =a. T, ...n" X Y,,...,Y,)

+8.7(Y ..., Y, Y,, ..., Y,)
holds for all &, fe R and X, Y e T},
The space of all such tensors is called the tensor product

7ip) = ,8..07, @ T*,Q...0T™,.
r factors s factors
In particular, T}(p) = 7, and T'Y(p) = T'*,.
Addition of tensors of type (r, s) is defined by the rule: (T +T") is the
tensor of type (r,s) at p such that for all Y, &7, n/ e T*,,
@+, ..o, Y, o, Y) =T .05 Yy, 0, YY)
+T"mY, ..., Yy, .., Y,)

Similarly, multiplication of a tensor by a scalar o€ R! is defined by the
rule: (¢T) is the tensor such that for all Y,e7,, n/eT*,,

@T) (Y, .., Yy, ., Y,) = . T(qY,y .o, Yy, oy Yo).

With these rules of addition and scalar multiplication, the tensor
product T%(p) is a vector space of dimension n™* over R

Let X;e7, (i =1 to r) and w/eT*,(j=1 to s). Then we shall
denote by X; ® ... ® X, ® 0! ® ... ® w?* that element of 7"(p) which
maps the element (n?,...,9", Y,,...,Y,) of IT¢ into

ML XD A Xe) . (N X)) (Wl Yo (@, Y.

Similarly, if Re T(p) and S € T%(p), we shall denote by R ® S that
element of 7'315(p) which maps the element (n!,...,n*",Y;,..., Y, )
of 1842 into the number

ROty o, Yo, o, V) S, ™9, Y, o, Y, ).

With the product ®, the tensor spaces at p form an algebra

over R.
If {E,}, {E°} are dual bases of 7},, T*, respectively, then

{Ee, ®..QE, ®E"®... E¥}, (a;b;runfrom 1ton),

will be a basis for 7%(p). An arbitrary tensor T & ."I’,’,'(p) can be expressed
in terms of this basis as

T =742, . ,E, ®..0FE, QE"®..E»
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where {719, , } are the components of T with respect to the dual
bases {E,}, {E%} and are given by

Torvetey 4 =T(ES, . E7E,,.. E,).

Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

4 ae sue ?, ven
(T+T)tny = D00y o+ T oy
(aT)al'"a'bl...b, =a. Talma'bl...b,l

10y ... - TTa,... ’,
(T RT')yaoremy, p,, = T0ny o T %sr-0rtny o

Because of its convenience, we shall usually represent tensor relations
in this way.

If {E,} and {E“} are another pair of dual bases for 7}, and 7'*,, they
can be represented in terms of {E,} and {E°} by

E, = Q,%E, (2.2)
where @,¢ is an 7 x n non-singular matrix. Similarly
E¢ = ¢« E° (2.3)
where @%, is another » x n non-singular matrix. Since {E,}, {E®} are
dual bases,
8, = (EY,E_) = (OV,E, O 2E,) = O, 2D, 8.t = O, 2 Q¥ ,

ie. @2, @7, are inverse matrices, and 6%, = 9%, d¥,.
The components 7'¢1+9%, . of a tensor T with respect to the
dual bases {E,}, {E“} are given by

Tardr, . = T(E%, ..., B9, Ey,,...,Ey).

They are related to the components 7@-¢, ., of T with respect to
the bases {E,}, {E®} by

Ta'x...a',.b'l-“b,s = Tar‘"arbl...b‘ q)a'lal vee (Da"o., (Db',b‘ eee q)b;’bJ. (2.4)

The contraction of a tensor T of type (r,s), with components

Tab--4,,  , with respect to bases {E}, {E%}, on the first contravariant

and first covariant indices is defined to be the tensor C}(T) of type

(r—1,8—1) whose components with respect to the same basis are
Tebd . e

CYT) =T34, E,Q®..QE;QE/®...QE".
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If {E_}, {E*} are another pair of dual bases, the contraction C}(T)
defined by them is

CYT) = T4, Ey®..RE;QE/'®... FE
= O, By, THVd Db D00, D0,
E®..QE,QFE.. QFE
=fa-¢ EQ..QE,QE®..®E =C}T),

so the contraction C} of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra-
variant and covariant indices. (If we were to contract over two contra-
variant or covariant indices, the resultant tensor would depend on the

basis used.)

The symmetric part of a tensor T of type (2, 0) is the tensor S(T)
defined by 1
S(T) (n1,m2) = 5; {T(2,m) + T )}

for all ;,m,€ 7*,,. We shall denote the components S(T)? of S(T) by
T, then 1
THab) — E_'_ {Tab + Tba}_

Similarly, the components of the skew-symmetric part of T will be

denoted by ;
_;lvlubl — _2__' {_Illub - _llvlm}_

In general, the components of the symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

T(a,... a,)b"' 4

1 < s
=5 {sum over all permutations of the indices a, to a,(7,, _,°%/)}
and
T(al... ar]b"- !

1 .
=5 {alternating sum over all permutations of the indices
' a, to a, (7, .0, )}

For example,

Koeqy = ${E %ca+ Kqpe+ K% gy — K% — K%pq~ K%}
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A tensor is symmelric in a given set of contravariant or covariant
indices if it is equal to its symmetrized part on these indices, and is
antisymmetric if it is equal to its antisymmetrized part. Thus, for
example, a tensor T of type (0, 2) is symmetric if 7, = 3(75, + T}.)s
(which we can also express in the form: 7, = 0).

A particularly important subset of tensors is the set of tensors of
type (0, ¢) which are antisymmetric on all ¢ positions (so ¢ < n); such
a tensor is called a g-form. If A and B are p- and ¢-forms respectively,
one can define a (p+¢g)-form A A B from them, where A is the skew-
symmetrized tensor product ®; that is, A A B is the tensor of type
(0, »+¢q) with components determined by

(A A B)a...bc...f = A[a...bBc...f]'

This rule implies (A A B) = (—)?¢(B A A). With this product, the
space of forms (i.e. the space of all p-forms for all p, including one-
forms and defining scalars as zero-forms) constitutes the Grassmann
algebra of forms. If {E% is a basis of one-forms, then the forms
E% A ... AE% (@, run from 1 to ») are a basis of p-forms, as any p-form
A can be written A = 4, ,E®A... AE% where 4, , = 4, -

So far, we have considered the set of tensors defined at a point on
the manifold. A set of local coordinates {zf} on an open set % in #
defines a basis {(9/2x%)|,,} of vectors and a basis {(dzf)|,} of one-forms
at each point p of %, and so defines a basis of tensors of type (7, s) at
onch point. of . Such n basis of tensors will be enlled a coordinnto
basis. A C tensor field T of type (r, s) on a set ¥~ < .4 is an assignment
of an element of 7%(p) to each point pe?¥” such that the components
of T with respect to any coordinate basis defined on an open subset
of ¥~ are C* functions.

In general one need not use a coordinate basis of tensors, i.e. given
any basis of vectors {E,} and dual basis of forms {E%} on ¥, there will
not, necessarily exist any open set in ¥~ on which there are local
coordinates {z¢} such that E_, = 2/9z® and E® = da¢. However if one
does use a coordinate basis, certain specializations will result; in parti-
cular for any function f, the relations E (E,f) = E,(E,f) are satisfied,
being equivalent to the relations 22f/ox®dx® = &%f/oa®0z®. If one
changes from a coordinate basis E, = 9/2x® to a coordinate basis
E, = 9[22, applying (2.2), (2.8) to z¢, x* shows that

oz .0

[/ = —
P, = o v, Pt

Clearly a general basis {E,} can be obtained from a coordinate basis
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{8/} by giving the functions E * which are the components of the E,
with respect to the basis {9/0z%}; then (2.2) takes the form E, = E *9[0x*
and (2.3) takes the form E¢ = E%,dxt, where the matrix E¢; is dual to
the matrix E .

2.3 Maps of manifolds

In this section we define, via the general concept of a C*¥ manifold map,
the concepts of ‘imbedding’, ‘immersion’, and of associated tensor
maps, the first two being useful later in the study of submanifolds, and
the last playing an important role in studying the behaviour of
families of curves as well as in studying symmetry properties of
manifolds.

A map ¢ from a C* n-dimensional manifold 4 to a C* »’-dimensional
manifold 4’ is said to be a C" map (r < k, r < ¥') if, for any local
coordinate systems in .# and .#’, the coordinates of the image point
&(p) in A" are Cr functions of the coordinates of p in 4. As the map
will in general be many-one rather than one-one (e.g. it cannot be
one-one if n > n'), it will in general not have an inverse; and if a C*
map does have an inverse, this inverse will in general not be C* (e.g.
if ¢ is the map R!-» R! given by x-» 3, then ¢! is not differentiable at
the point 2 = 0).

Iffis a function on .#”, the mapping ¢ defines the function ¢*fon .4
as the function whose value at the point p of # is the value of f at

#p), Le. ¢*f(p) = f(3(P)). (2.5)
Thus when ¢ maps points from .# to .4’, ¢* maps functions linearly
from A" to A.

If A(t) is a curve through the point pe.#, then the image curve
#(A()) in A’ passes through the point ¢(p). If r 2 1, the tangent
vector to this curve at ¢(p) will be denoted by ¢, (2/2t);|44»; one can
regard it as the image, under the map ¢, of the vector (9/2t),|,.. Clearly
&« is a linear map of 7,,(#) into Ty, (#’). From (2.5) and the defini-
tion (2.1) of a vector as a directional derivative, the vector map ¢,
can be characterized by the relation: for each Cr (r > 1) function f at
é(p) and vector X at p,

X(6*)p = S+ X ()] - (2.6)

Using the vector mapping ¢, from . to .#', we can if r > 1 define

a linear one-form mapping ¢* from 7'*y,(A#") to T*,(#) by the
condition: vector-one-form contractions are to be preserved under the
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maps. Then the one-form AeT*y,, is mapped into the one-form
¢*A eT*, where, for arbitrary vectors X €7},

<¢ *A’ X){p = <Av ¢* X)“(p)'
A consequence of this is that
$*(df) = d(*f). (2.7)

The maps ¢, and ¢* can be extended to maps of contravariant
tensors from .4 to .#' and covariant tensors from .4’ to .# respec-
tively, by the rules ¢,: TeT§(p)> ¢ TeTHPH(p)) where for any

e o g, s B0 = ST o) g
and o*: TeTy((p))»¢*TeTi(p),
where for any X;e T,

S*T(Xys s Xy = T(Da Xy, oo B X, g0

When 7 > 1, the C” map ¢ from A to A" is said to be of rank s at p
if tho dimension of ¢ 4(7),(#)) is s. It is said to be injeclive at pif s = n
(and so n < »’) at p; then no vector in 7}, is mapped to zero by ¢,. It
is said to be surjective if s=n" (son > n )

A C" map ¢ (r > 0) is said to be an immersion if it and its inverse
are Cr maps, i.e. if for each point pe.# there is a neighbourhood
% of p in A such that the inverse ¢! restricted to ¢(%) is also
n 7 map. Thir implirs n < n’. By the implicit function theorem
(Spivak (1965), p. 41), whenr > 1 , ¢ will be an immersion if and only if
it is injective at every point pe.#; then ¢, is an isomorphism of T},
into the image ¢.(7},) < Ty, The image @(A) is then said to be an
n-dimensional immersed submanifold in #’. This submanifold may
intersect itself, i.e. ¢ may not be a one-one map from A to ¢(#)
although it is one—one when restricted to asufficiently smallneighbour-
hood of 4. An immersion is said to be an imbedding if it is a homeo-
morphism onto its image in the induced topology. Thus an imbedding
is a one-one immersion ; however not all one-one immersions are
imbeddings, cf. figure 6. A map ¢ is said to be a proper map if the
inverse image ¢—1(X") of any compact set ¥ < .#” is compact. It can
be shown that a proper one-one immersion is an imbedding. The
image ¢(.#) of A under an imbedding ¢ is said to be an n-dimensional
imbedded submanifold of A’.

The map ¢ from A to A’ is said to be a Cr dz_ﬁ"eomorphwm if it is
a one—one CT map and the inverse ¢! is a Cr map from .4’ to 4. In
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this case, n = n’, and ¢ is both injective and surjective if » > 1; con-
versely, the implicit function theorem shows that if ¢, is both injective
and surjective at , then there is an open neighbourhood % of p such
that ¢: % - (%) is a diffeomorphism. Thus ¢ is a local diffeomorphism
near p if @, is an isomorphism from 7}, to Ty,

.’/‘}

A
I/

FIGURE 6. A one—one immersion of R!in K2 which is not an imbedding, obtained
by joining smoothly part of the curve y = sin (1/2) to the curve

{(%,0); —0o<y <1}

When the map ¢ is a C” (7 > 1) diffeomorphism, ¢, maps T, (#) to
Ty(A') and (¢671)* 'maps T*,(A) to T* 4, (A"). Thus we can define
a map ¢, of T5(p) to T ((p)) forany r, 3, by

T, ..., ns Xy -0r X,
= xT(($1)*n, .., (F71)* 0%, P Xy oo, G2 XK ) g0

for any X;eT,, n'eT*,. This map of tensors of type (r, ) on 4 to
tensors of type (7, 8) on 4" preserves symmetries and relations in the
tensor algebra; e.g. the contraction of ¢, T is equal to ¢, (the con-
traction of T).

2.4 Exterior differentiation and the Lie derivative

We shall study three differential operators on manifolds, the first two
being defined purely by the manifold structure while the third is
defined (see § 2.5) by placing extra structure on the manifold.
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The exterior differentiation operator d maps r-form fields linearly to
(r+1)-form fields. Acting on a zero-form field (i.e. a function) f, it
gives the one-form field df defined by (cf. §2.2)

(df,X) = Xf for all vector fields X (2.8)
and acting on the r-form field
A=4, sdz*adzbA... Adz?
it gives the (7 + 1)-form field dA defined by
dA =dd, sAdztAdzdA... Adad. (2.9

To show that this (r + 1)-form field is independent of the coordinates
{z°} used in its definition, consider another set of coordinates {x}.

Then A=Ay odz®ada® A... A dat,
where the components 4., 4 are given by
oz x> Dt

Agy..o = gazr - geaAav...a
Thus the (r+ 1)-form dA defined by these coordinates is

dA = dd,,  pdz® Ada¥ A... Adzd

b
- d(?h—x:%...z—;;Aabmd) AdzT Ad2Y A ... A da?

_ 2% dab ol
S wad w
e oxb ot
b .= A
ox® oxf ga¥ """ Oxd
=dA, sAdzeAdabA... Ada?

as P%x%[0x® dx is symmetric in a’ and ¢’, but dz® A dz* is skew. Note
that this definition only works for forms; it would not be independent
of the coordinates used if the A product were replaced by a tensor
product. Using the relation d(fg) = gdf+fdg, which holds for arbi-
trary functions f, g, it follows that for any r-form A and form B,
d(AAB) =dAAB+(—) AAdB. Since (2.8) implies that the local
coordinate expression for df is df = (9f/22t)d=z?, it follows that
d(df) = (6%f|oxt 8a?)dat A da? = O, as the first term is symmetric and
the second skew-symmetric. Similarly it follows from (2.9) that

d(dA) =10
holds for any 7-form field A.

dd,, sndz® Ada A... Ada?

ab...ad?? Adz® Ada¥ AL At +. 4+
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The operator d commutes with manifold maps, in the sense: if
b: M A i8aCr(r > 2)mapand A is a C* (k > 2) form field on .#*,

then (by (2.7)) d($*A) = g*(dA)

(which is equivalent to the chain rule for partial derivatives).

The operator d occurs naturally in the general form of Stokes’
theorem on a manifold. We first define integration of n-forms: let .4
be a compact, orientable n-dimensijonal manifold with boundary 2.4
and let {f,} be a partition of unity for a finite oriented atlas {#,, ¢,}.
Then if A is an n-form field on .#, the integral of A over .# is defined as

f A= ()13 f foliy. Aida? ...z (2.10)
v 4 a J $a@e)

where 4,, , are the components of A with respect to the local co-
ordinates in the coordinate neighbourhood %,, and the integrals on
the right-hand side are ordinary multiple integrals over open sets
é.(%,) of R*. Thus integration of forms on .# is defined by mapping
the form, by local coordinates, into R* and performing standard
multiple integrals there, the existence of the partition of unity
ensuring the global validity of this operation.

The integral (2.10) is well-defined, since if one chose another atlas
{¥4 ¥4} and partition of unity {gﬂ} for this atlas, one would obtain
the integral

(S| gphyy. et da . o,
£ J¥p(¥p)
where z%" are the corresponding local coordinates. Comparing these
two quantities in the overlap (%, n %}) of coordinate neighbourhoods
belonging to two atlases, the first expression can be written

)3 fuGgha ... Aot da? ... da,
a B JPa(¥an¥p)
and the second can be written
CHEDIDY Jou9sAsp ... o d2¥ da® .. da™,

a B pr(% nyY 8)
Comparing the transformation laws for the form A and the multiple
integrals in RB", these expressions are equal at each point, so f Ais

M

independent of the atlas and partition of unity chosen.
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Similarly, one can show that this integral is invariant under
diffeomorphisms:
f PuA = f A
Wy v

if ¢ is a C7 diffeomorphism (r > 1) from A to 4.
Using the operator d, the generalized Stokes’ theorem can now be
written in the form: if B is an (n — 1)-form field on .#, then

f B=f dB,
oN M

which can be verified (see e.g. Spivak (1965)) from the definitions
above; it is essentially a general form of the fundamental theorem of
calculus. To perform the integral on the left, one has to define an
orientation on the boundary .4 of .#. This is done as follows: if %, is
a coordinate neighbourhood from the oriented atlas of .4 such that
%, intersects .4, then from the definition of &4, ¢.(%, n 8.#) lies in
the plane 2! = 0 in R™ and ¢, (%, n -#) lies in the lower half 21 < 0.
The coordinates (x%,2%,...,2") are then oriented coordinates in the
neighbourhood %, n 9.4 of 8.#. It may be verified that this gives an
oriented atlas on a.4.

The other type of differentiation defined naturally by the manifold
structure is Lie differentiation. Consider any Cr (r > 1) vector field X
on .#. By the fundamental theorem for systems of ordinary differential
equations (Burkill (1956)) thereis a unique maximal curve A(t) through
each point p of A such that A(0) = p and whose tangent vector at the
point A(t) is the vector X|,,. If {z*} are local coordinates, so that the
curve A(f) has coordinates z*(f) and the vector X has components X?,
then this curve is locally a solution of the set of differential equations

dai/dt = Xi(21(t), ..., z™(t)).

This curve is called the integral curve of X with initial point p. For each
point g of 4, there is an open neighbourhood % of g and an € > 0such
that X defines a family of diffeomorphisms ¢,: % ->.# whenever
lt| < ¢, obtained by taking each point p in % a parameter distance ¢
along the integral curves of X (in fact, the ¢, form a one-parameter
local group of diffeomorphisms, as ¢, = §,04, = $,0¢, for
|t], |8], |t+5] <€ s0 ;= () and @, is the identity). This
diffeomorphism maps each tensor field T at p of type (r,s) into

¢l* T|¢,(p)'
The Lie derivative Ly T of a tensor field T with respect to X is
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defined to be minus the derivative with respect to ¢ of this family of
tensor fields, evaluated at ¢t = 0, i.e.

LT}, = lim (T}, ~ 6 Tl,}

From the properties of @, it follows that

(1) Ly preserves tensor type, i.e. if T is a tensor field of type (7, 8),
then Ly T is also a tensor field of type (7, s);

(2) Ly maps tensors linearly and preserves contractions.

As in ordinary calculus, one can prove Leibniz’ rule:

(3) ForarbitrarytensorsS, T,Lx(S@ T) = LyS @ T+S ® L T.

Direct from the definitions:

(4) Lxf = Xf, where f is any function.

Under the map ¢,, the point ¢ = ¢_,(p) is mapped into p. Therefore
&« 1s & map from T}, to 7,,. Thus, by (2.6),

(Pex Y)ffp = Y(¢t*f)fq-

If {'} are local coordinates in a neighbourhood of p, the coordinate
components of ¢, Y at p are

(ex V)i, = Pow Ypat = Yj{a'éx”?(q_)(xi@))
_ %24$d9) ¥

aa3(q) le
Now dx‘(g;@» _ Xifh(q):
d hi(¢t(9))) Xt
theref d (——- =241,
erefore G\ D Moo~ ),
] d oY+ oxX?
80 (LxY) = —a'i(¢t* Y)ilt-o‘_"é“x‘;xj“'é“x‘; Y. (2.11)

One can rewrite this in the form
(Ly Y)f = X(¥f)— Y(Xf)
for all C2 functions f. We shall sometimes denote Ly Y by [X, Y], i.e.
LyY = - LyX = [X,Y] = - [Y,X].

If the Lie derivative of two vector fields X, Y vanishes, the vector
fields are said to commute. In this case, if one starts at a point p, goes
a parameter distance ¢ along the integral curves of X and then a
parameter distance s along the integral curves of Y, one arrives at the
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same point as if one first went a distance s along the integral curves
of Y and then a parameter distance ¢ along the integral curves of X
(see figure 7). Thus the set of all points which can be reached along
integral curves of X and Y from a given point p will then form an
immersed two-dimensional submanifold through p.

Sov(dex(p))
= gx(¢uv(p))

Figure 7. The transformations generated by commuting vector fields X, Y

move a point p to points ¢x(p), d.x(p) respectively. By successive applications
of these transformations, p is moved to the points of a two-surface.

The components of the Lie derivative of a one-form ¢« may be found
by contracting the relation

L{w®®Y)=Lyw ®Y+w® Ly Y
(Lie derivative property (3)) to obtain

Ly, Y) = (Lxw, Y) +{w, Ly Y)
(by property (2) of Lie derivatives), where X, Y are arbitrary C?
vector fields, and then choosing Y as a basis vector E,. One finds the
coordinate components (on choosing E, = d/éx?) to be

(Lgew); = (9w;/0x?) XI + w(0.X7 |0at)
because (2.11) implies

(Ly(3fe))? = — oX[oac.

Similarly, one can find the components of the Lie derivative of any
Cr (r > 1) tensor field T of type (7, 8) by using Leibniz’ rule on

Ly(TQE*®...QEIQE,®...QF,),
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and then contracting on all positions. One finds the coordinate com-
ponents to be

(LXT)ab"'dqf...g = (aTab... def...g/axi)‘X‘ — ib... def...g aXa/axt

— (all upper indices) + 74, 9X*%/ox*+ (all lower indices).
(2.12)

Because of (2.7), any Lie derivative commutes with d, i.e. for any
p-form field w, A(Lgew) = Ly(dw).

From these formulae, as well as from the geometrical interpretation,
it follows that the Lie derivative Ly T, of a tensor field T of type
(r,8) depends not only on the direction of the vector field X at the
point p, but also on the direction of X at neighbouring points. Thus
the two differential operators defined by the manifold structure are
too limited to serve as the generalization of the concept ofa partial
derivative one needs in order to set up field equations for physical
quantities on the manifold; d operates only on forms, while the
ordinary partial derivative is a directional derivative depending only
on a direction at the point in question, unlike the Lie derivative. One
obtains such a generalized derivative, the covariant derivative, by
introducing extra structure on the manifold. We do this in the next
section.

2.5 Covariant differentiation and the curvature tensor

The extra structure we introduce is a (affine) connection on ..
A connection V at a point p of A is a rule which assigns to each vector
field X at p a differential operator Vy which maps an arbitrary
Cr(r 2 1) vector field Y into a vector field Vg Y, where:

(1) VxY is a tensor in the argument X, i.e. for any functions f, g,
and C! vector fields X, Y, Z,

Vﬂ+oyz = foZ + gVYZ;

(this is equivalent to the requirement that the derivative Vg at p
depends only on the direction of X at p);
(2) VxYislinearin Y, i.e. for any C? vector fields Y, Zand a, f € R},

(3) for any C? function f and C? vector field Y,
Vx(fY) = X(f)Y +fVgY.
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Then Vy Y is the covariant derivative (with respect to V) of Y in the
direction X at p. By (1), we can define VY, the covariant derivative of Y,
as that tensor field of type (1,1) which, when contracted with X,
produces the vector Vx Y. Then we have

(3)<> V(fY)=dfQY +fVY.

A Cr connection V on a C* manifold 4 (k > r+2) is a rule which
assigns a connection V to each point such that if Y is a Cr+! vector field
on A, then VY is a Cr tensor field.

Given any Cr+! vector basis {E,} and dual one-form basis {E%} on
a neighbourhood %, we shall write the components of VY as Y@, ,, so

VY = Y2, , E*'QE,.
The connection is determined on % by »2 Cr functions I'%, defined by
= (E% Vg E;)<VE, = I'*, E*QE,.
For any C* vector field Y,
VY = V(YE,) = dY*®E,+ YT, E’®E,.
Thus the components of VY with respect to coordinate bases {9/2x°},
{d="} are Ye,, = 0Y%[aad + T, Ye.
The transformation properties of the functions I'%,, are determined by
connection properties (1), (2), (3); for
[y = (B, Vg, Ep) = (@7, E% Vg, 45,(PE,))

= Q% OBy D) + O T'%,)
ifE, = ®,4E, E¥ = @% E¢ One can rewrite this as

Do = Oy (By(Dp%) + Pp® D T'%).

In particular, if the bases are coordinate bases defined by coordinates
{z9}, {z*}, the transformation law is

re. . = ox® [ %0 3x” Ot
ve = gaa \oab 0z° T oa® o

Because of the term E,.(Q_2), the I'%,, do b not transform as the compo-

nents of a tensor. However if VY and VY are covariant derivatives

obtained from two different connections, then
VY -¥Y = (e, — %, ) YEPQE,

will be a tensor. Thus the difference terms (I'¢,,— f““,,c) will be the
components of a tensor.
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The definition of a covariant derivative can be extended to any
Cr tensor field if r > 1 by the rules (cf. the Lie derivative rules):

(1) if T is a Or tensor field of type (g, 8), then VT is a C1 tensor field
of type (g, s+1);

(2) V is linear and commutes with contractions;

(3) for arbitrary tensor fields S, T, Liebniz’ rule holds, i.e.

V(S®T)=VS®T+S®VT;
(4) Vf = df for any function f.
We write the components of VT as (Vg, T)*4, = T4, .. As
a consequence of (2) and (3),
Vg, E° = — I, E%,
where {E9} is the dual basis to {E,}, and methods similar to those used
in deriving (2.12) show that the coordinate components of VT are

Tobd, o = gTab-d,,  |oohy Tay Tiv-d,
+ (all upper indices) — I, T'%>~4,,  —(all lower indices). (2.13)

As a particular example, the unit tensor E,® E®, which has compo-
nents 6%, has vanishing covariant derivative, and so the generalized
unit tensors with components 8@, 81, ...8%), , dlay, dos, ... aapl,,p
(p < n) also have vanishing covariant derivatives.

If Tisa O (r > 1) tensor field defined along a C" curve A(t), one can
define DT/at, the covariant derivative of T along A(t), as Vy, T where T
is any Cr tensor field extending T onto an open neighbourhood of A.
DT/ét is a O tensor field defined along A(t), and is independent of
the extension T. In terms of components, if X is the tangent vector
to A(t), then DTe-4, |ot = T4, ., X" In particularone can choose
local coordinates so that A(t) has the coordinates z2(t), X* = dz¢/dt,
and then for a vector field Y

DY¢[ot = Ye[ot+ I3, Yedxb/dL. (2.14)

The tensor T is said to be parallelly transported along A if DT/ét = 0.
Given a curve A(t) with endpoints p, ¢, the theory of solutions of
ordinary differential equations shows that if the connection V is at
least 1~ one obtains a unique tensor at ¢ by parallelly transferring
any given tensor from p along A. Thus parallel transfer along A is a
linear map from 74(p) to T%(g) which preserves all tensor products and
tensor contractions, so in particular if one parallelly transfers a basis
of vectors along a given curve from p to ¢, this determines an iso-
morphism of 7, to 7. (If there are self-intersections in the curve,
2 and g could be the same point.)
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A particular case is obtained by considering the covariant deriva-
tive of the tangent vector itself along A. The curve A(f) is said to be
a geodesic curve if

wx=2(2)
at\at/,

is parallel to (9/@t),, i.e. if there is a function f (perhaps zero) such that
Xe,, X% = fXea, For such a curve, one can find a new parameter (t)
along the curve such that

D (i) _o:

ov\ov/, !

such a parameter is called an affine parameter. The associated tangent
vector V = (8/dv), is parallel to X but has its scale determined by
V(v) = 1; it obeys the equations

d x® da? da*
Tt e q
the second expression being the local coordinate expression obtainable
from (2.14) applied to the vector V. The affine parameter of a geodesic
curve is determined up to an additive and & multiplicative constant,
ie. up to transformations v’ = av+b where a, b are constants; the
freedom of choice of b corresponds to the freedom to choose a new
initial point A(0), the freedom of choice in a corresponding to the
freedom to renormalize the vector V by a constant scale factor,

= (1/a) V. The curve parametrized by any of these affine parameters
is said to be a geodesic.

Given a C (r > 0) connection, the standard existence theorems for
ordinary differential equations applied to (2.15) show that for any
point p of 4 and any vector X, at p, there exists a maximal geodesic
Ax(v) in A with starting point » and initial direction X, i.e. such that
Ax(0) = p and (8/dv)y |y = X,. If r > 1 —, this geodesxc is unique and
depends continuously on p and X,. If r > 1, it depends differentiably
on p and X,,. This means that if » > 1, one can define a C" map exp:
T,—»>H, where for each X €7}, exp (X) is the point in 4 a unit para-
meter distance along the geodesic Ax from p. This map may not be
defined for all X €7}, since the geodesic Ax(v) may not be defined for
all v. If v does take all values, the geodesic A(v) will be said to be a
complete geodesic. The manifold # is said to be geodesically complete
if all geodesics on .# are complete, that is if exp is defined on all 7}, for
every point p of A.

Whether # is complete or not, the map exp, is of rank » at p. There-
fore by the implicit function theorem (Spivak (1965)) there exists an

Ve, Vb = =0, (2.15)
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open neighbourhood A; of the origin in 7}, and an open neighbourhood
A, of p in A such that the map exp is a Cr diffeomorphism of 47,
onto . Such a neighbourhood ./, is called a normal neighbourhood
of p. Further, one can choose ./, to be convez, i.e. to be such that any
point g of A, can be joined to any other point » in ./, by & unique
geodesic starting at ¢ and totally contained in .. Within a convex
normal neighbourhood A" one can define coordinates (21,...,2") by
choosing any point g €.4", choosing & basis {E,} of 7, and defining the
coordinates of the point » in A" by the relation r = exp (z°E,) (i.e. one
assigns to r the coordinates, with respect to the basis {E,}, of the point
exp~1(r) in 7}.) Then (3/2x*)|, = E; and (by (2.15)) I'"p|, = 0. Such
coordinates will be called normal coordinates based on ¢. The existence
of normal neighbourhoods has been used by Geroch (1968¢) to prove
that a connected C?* Hausdorff manifold .4 with a C! connection has
a countable basis. Thus one may infer the property of paracompactness
of a C® manifold from the existence of a C! connection on the manifold.
The ‘normal’ local behaviour of geodesics in these neighbourhoods is
in contrast to the behaviour of geodesics in the large in a general space,
where on the one hand two arbitrary points cannot in general be
joined by any geodesic, and on the other hand some of the geodesics
through one point may converge to ‘focus’ at some other point. We
shall later encounter examples of both types of behaviour.

Given a Cr connection V, one can define a C™1 tensor field T of
type (1, 2) by the relation

TX,Y) = VY - V3 X~ [X,Y],

where X, Y are arbitrary Cr vector fields. This tensor is called the
torston tensor. Using a coordinate basis, its components are

thk = Fijk— Ftk]‘

We shall deal only with torsion-free connections, i.e. we shall assume
T = 0. In this case, the coordinate components of the connection obey
I'%,, = I, so such a connection is often called a symmetric connec-
tion. A connection is torsion-free if and only if f,;; = f.,; for all func-
tions f. From the geodesic equation (2.15) it follows that a torsion-free
connection is completely determined by a knowledge of the geodesics
on .#.

When the torsion vanishes, the covariant derivatives of arbitrary C1
vector fields X, Y are related to their Lie derivative by

[X,Y] = Vg Y= VyX <= (L Y)? = Yo, X0 Xo,, V0, (2.16)
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and for any C* tensor field T of type (r, s) one finds
(LxT)eo-4,, , = Tob-d, . Xh_Tiv.d  Xa,
— (all upper indices) + 7'#*-4,, X7, + (all lower indices). (2.17)

One can also easily verify that the exterior derivative is related to the
covariant derivative by

dA = Aa...c;ddxd/\ dz?A ... A dxcé(dA)a...cd =(- )pA[a...c;d]r

where A is any p-form. Thus equations involving the exterior deriva-
tive or Lie derivative can always be expressed in terms of the co-
variant derivative. However, because of their definitions, the Lie
derivative and exterior derivative are independent of the connection.

If one starts from a given point p and parallelly transfers a vector
X, along a curve y that ends at p again, one will obtain a vector X',
which is in general different from X, ; if one chooses a different curve
7', the new vector one obtains at p will in general be different from
X, and X’ . This non-integrability of parallel transfer corresponds to
the fact that the covariant derivatives do not generally commute. The
Riemann (curvature) tensor gives a measure of this non-commutation.
Given Crtlvector fields X, Y, Z, a Cr-1 vector field R(X, Y) Z is defined
by a C connection V by

R(X,Y)Z = Vg(VyZ)—Vy(Vx Z) - Vix 1, Z. (2.18)
Then R(X,Y)Z is linear in X,Y,Z and it may be verified that the
value of R(X, Y)Z at p depends only on the valuesof X, Y, Z at p, i.e,
it is a Cr-! tensor field of type (3,1). To write (2.18) in component
form, we define the second covariant derivative VVZ of the vector Z
as the covariant derivative V(VZ) of VZ; it has components

Za;bc = (Za;b);c'
Then (2.18) can be written
Ry XoYOZP = (2%, Y9), X~ (2°,, X9, Y°
—Za;d(yd; c'Xc_‘Xd;c Yc)
= (Za: dc_za;cd) _chd,

where the Riemann tensor components R?,, with respect to dual
bases {E,}, {E%} are defined by R%,.; = (E%, R(E_, E;)E,). As X, Y are
arbitrary vectors, Z“; - Z“; oa = B8y.q 20 (2.19)
expresses the non-commutation of second covariant derivatives of Z
in terms of the Riemann tensor.
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Since
Vxn®VyZ) = Vxn®@Vy Z+n®VxVyZ
=M, VxVy Z) = X((n, V3 Z)) - (Vxn, Yy Z)

holds for any C? one-form field v and vector fields X, Y, Z, (2.18)
implies

(B2, R(E, Ep)E,) = E((E?, Vg, Ep)) — E4((E?, Vg Ep))

— (Vg E%, Vg, Ep) + (Vg E%, Vg E,) — (E%, Vg, g Ep)-
Choosing the bases as coordinate bases, one finds the expression
Rey g = 81y, [02° — 8%, [0 + T T g — T2y TV, (2.20)

for the coordinate components of the Riemann tensor, in terms of the
coordinate components of the connection.
It can be verified from these definitions that in addition to the

symmetry Re,, = — Royg <o Royy = 0 (2.21a)
the curvature tensor has the symmetry
Similarly the first covariant derivatives of the Riemann tensor satisfy
Bianchi’s identities
Royeq,q = OéRabcd;e'*'Rabec;d"‘Rabdc;c: 0. (2.22)

It now turns out that parallel transfer of an arbitrary vector along
an arbitrary closed curve islocally integrable (i.e. X', is necessarily the
same as X, for each p € #) only if R%, ; = 0 at all points of .#; in this
case we say that the connection is flat.

By contracting the curvature tensor, one can define the Ricci tensor
as the tensor of type (0, 2) with components

Ry, = Rey,,.

2.6 The metric

A metric tensor g at a point p € A is a symmetric tensor of type (0, 2)
at p, 80 & Cr metric on 4 is a Cr symmetric tensor field g¢. The metricg
at p assigns a ‘magnitude’ (|g(X,X)|)} to each vector Xe7}, and
defines the ‘cos angle’ o

& g(X.Y)

(|9X,X).g(Y, V)|t

between any vectors X, Y €7}, such that g(X, X).g(Y, Y) # 0; vectors
X, Y will be said to be orthogonal if g(X,Y) = 0.
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The components of g with respect to a basis {E,} are

Jap = g(Ea’ Eb) = g(Eb’ Ea)’

i.e. the components are simply the scalar products of the basis vectors
E,.If a coordinate basis {8/dx%} is used, then

g = g,, dzt@dz®. (2.28)

Tangent space magnitudes defined by the metric are related to
magnitudes on the manifold by the definition: the path length between
points p = y(a) and ¢ = y(b) along a C?, piecewise C! curve y(t) with
tangent vector 8/dt such that g(d/ét, 8/ot) has the same sign at all points
along ¥(t), is the quantity

L= f * (l9(@/a, 3jan))k de. (2.24)

We may symbolically express the relations (2.23), (2.24) in the form

used in classical textbooks to represent the length of the ‘infinitesimal’
arc determined by the coordinate displacement xf-> 2%+ dat.

The metric is said to be non-degenerale at p if there is no non-zero
vector X €7}, such that g(X, Y) = 0 for all vectors Ye7,,. In terms of
components, the metric is non-degenerate if the matrix (g,;) of com-
ponents of g is non-singular. We shall from now on always assume the
metric tensor is non-degenerate. Then we can define a unique sym-
metric tensor of type (2, 0) with components g*® with respect to the
basis {E,} dual to the basis {E?}, by the relations

g° bgbc = 6ac’
i.e. the matrix (go%) of components is the inverse of the matrix (g,,).
It follows that the matrix (ga%) is also non-singular, so the tensors
g%, g, can be used to give an isomorphism between any covariant
tensor argument and any contravariant argument, or to ‘raise and
lower indices’. Thus, if X@ are the components of a contravariant
vector, then X, are the components of a uniquely associated covariant
vector, where X, = g,, X?, X@ = g2 X, similarly, to a tensor 7, of
type (0, 2) we can associate unique tensors 7%, = g*T,,, T.b = gb<T,,
Tab = gacgtaT, ;. We shall in general regard such associated covariant
and contravariant tensors as representations of the same geometric
object (soin particular, g,,, 6,° and g® may be thought of asrepresenta.-
tions (with respect to dual bases) of the same geometric object g),
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although in some cases where we have more than one metric we shall
have to distinguish carefully which metric is used to raise or lower
indices.

The signature of g at p is the number of positive eigenvalues of the
matrix (g,,) at », minus the number of negative ones. If g is non-
degenerate and continuous, the signature will be constant on .#; by
suitable choice of the basis {E,}, the metric components can at any
point p be brought to the form

Oap = diag (+ 1, +1,..., +1, —1,..., —1),
[
3(n +s) terms 3(n—s) terms
where s is the signature of g and » is the dimension of .. In this case
the basis vectors {E,} form an orthonormal set at p, i.e. each is & unit
vector orthogonal to every other basis vector.

A metric whose signature is % is called a positive definite metric; for

such a metric, g(X, X) = 0 = X = 0, and the canonical form is
Gap = diag (+1,..., +1).
Nttt s
n terms
A positive definite metric is a ‘metric’ on the space, in the topological
sense of the word.

A metric whose signature is (n—2) is called & Lorentz metric; the

canonical form is

Jap = diag (+1,..., +1, — 1),
N e
(n—1)terms

With a Lorentz metric on .4, the non-zero vectors at p can be divided
into three classes: a vector X €7, being said to be timelike, null, or
spacelike according to whether g(X,X) is negative, zero, or positive,
respectively. The null vectors form a double cone in 7, which separates
the timelike from the spacelike vectors (see figure 8). If X, Y are any
two non-spacelike (i.e. timelike or null) vectors in the same half of the
light cone at p, then g(X,Y) < 0, and equality can only hold if X and
Y are parallel null vectors (i.e. if X = aY, g(X, X) = 0).

Any paracompact C" manifold admits a C7-! positive definite metric
(that is, one defined on the whole of #). To see this, let {f,} be a parti-
tion of unity for a locally finite atlas {%,, ¢,}. Then one can define g by

g(X’ Y) = %fa<(¢a)* Xr (¢a)* Y))

where {( , ) is the natural scalar product in Euclidean space B";
thus one uses the atlas to determine the metric by mapping the
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E.

Null cone

Null vectors lie
on the null cones

Spacelike vectors lie
outside the null cones

E._,
/<Hyperplane spanned by

13 -»-3 Lnoy

Timelike vectors
lie inside the
null cones

Null cone

F1oure 8. The null cones defined by a Lorentz metric.

Euclidean metric into .. This is clearly not invariant under change of
atlas, so there are many such positive definite metrics on .

In contrast to this, a C" paracompact manifold admits a Cr?
Lorentz metric if and only if it admits a non-vanishing Cr! line
element field; by a line element field is meant an assignment of & pair
of equal and opposite vectors (X, — X) at each point p of A4, i.e. a line
element field is like a vector field but with undetermined sign. To see
this, let § be a C-! positive definite metric defined on the manifold.
Then one can define & Lorentz metric g by
X, Y)9(X,Z)

X, X)

at each point p, where X is one of the pair (X, — X) at p. (Note that as
X appears an even number of times, it does not matter whether X or
—X is chosen.) Then g(X, X) = —§(X, X), and if Y, Z are orthogonal
to X with respect to §, they are also orthogonal to X with respect to
g and g(Y,Z) = §(Y,Z). Thus an orthonormal basis for § is also an
orthonormal basis for g¢. As § is not unique, there are in fact many
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Lorentz metrics on 4 if there is one. Conversely, if g is a given
Lorentz metric, consider the equation g,, X® = A§,, X® where § is any
positive definite metric. This will have one negative and (n—1)
positive eigenvalues. Thus the eigenvector field X corresponding to
the negative eigenvalue will locally be a vector field determined up to
a sign and a normalizing factor; one can normalize it by g,, X2X% = — 1,
so defining a line element field on .#.

In fact, any non-compact manifold admits a line element field,
while & compact manifold does so if and only if its Euler invariant is
zero (e.g. the torus 7' does, but the sphere 8% does not, admit a line
element field). It will later turn out that a manifold can be a reasonable
model of space-time only if it is non-compact, so there will exist many
Lorentz metrics on 4.

So far, the metric tensor and connection have been introduced as
separate structures on 4. However given a metric g on 4, there is
a unique torsion-free connection on 4 defined by the condition: the
covariant derivative of g is zero, i.e.

Gabse = 0. (2.25)
With this connection, parallel transfer of vectors preserves scalar
products defined by g, so in particular magnitudes of vectors are
invariant. For example if 8/t is the tangent vector to a geodesic, then
g(djat, 8/at) is constant along the geodesic.

From (2.25) it follows that

X(g(Y,Z)) = Vx(g(Y,Z)) = Vxg(Y,Z) +g(Vx Y, Z)

+9(Y, Vx Z) = 9(Vx Y, Z) +9(Y, Vx Z)
holds for arbitrary C! vector fields X, Y, Z. Adding the similar expres-
sion for Y(g(Z, X)) and subtracting that for Z(g(X, Y)) shows

9(Z,VxY) = { - Z(g(X,Y))+ Y(9(Z, X)) + X(g(Y, Z))
+9(Z,[X, Y]) +9(Y, [Z,X]) - 9(X, [Y, Z])}.

Choosing X, Y, Z as basis vectors, one obtains the connection
components Lape = 9(E,, an E;) = goal%,
in terms of the derivatives of the metric components g,, = g(E,, E,),
and the Lie derivatives of the basis vectors. In particular, on using

a coordinate basis these Lie derivatives vanish, so one obtains the
usual Christoffel relations

Lape = 3{0g0p/0%° + 09| 02° —~ O,/ 02} (2.26)
for the coordinate components of the connection.
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From now on we will assume that the connection on .4 is the unique
Cr-1 torsion-free connection determined by the Cr metric 8. Using this
connection, one can define normal coordinates (§2.5) in a neighbour-
hood of a point ¢ using an orthonormal basis of vectors at ¢. In these
coordinates the components g,, of g at g will be + &, and the compo-
nents I'%,, of the connection will vanish at ¢. By ‘normal coordinates’,
we shall in future mean normal coordinates defined using an ortho-
normal basis.

The Riemann tensor of the connection defined by the metric is a
Cr-2 tensor with the symmetry

Bpyea = 0« Rypeq = "'Rbacd (2.27a)

in addition to the symmetries (2.21); as & consequence of (2.21) and
(2.27a), the Riemann tensor is also symmetric in the pairs of indices

{ab}, {ed}, Le. Ropoy = Bosey (2.27b)
This implies that the Ricei tensor is symmetric:
Ry = Ry, (2.27¢)
The curvature scalar R is the contraction of the Ricci tensor:
E = R°, = Ry, %2

With these symmetries, there are {4n%(n2— 1) algebraically inde-
pendent components of R, ;, where n is the dimension of M; n(n + 1)
of them can be represented by the components of the Ricci tensor. If
n=1, Ry.,=0; if n =2 there is one independent component of
R_y.4, which is essentially the function R. If n = 3, the Ricci tensor
completely determines the curvature tensor; if n > 3, the remaining
components of the curvature tensor can be represented by the Weyl
tensor C, 4, defined by

2
n—2

2
Covea = Bopeat {gt_z[d Ray+9pie Bara} +m BgoeGae-

As the last two terms on the right-hand side have the curvature tensor
symmetries (2.21), (2.27), it follows that C,, ; also has these sym-
metries. One can easily verify that in addition,

Cabad =0,

i.e. one can think of the Weyl tensor as that part of the curvature
tensor such that all contractions vanish.
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An alternative characterization of the Weyl tensor is given by the
fact that it is a conformal invariant. The metrics g and § are said to

be conformal if g =0% (2.28)
for some non-zero suitably differentiable function Q. Then for any
vectors X, Y, V, W at a point p,

gX,Y) _ 9%, Y)

g(V,W) g(V, Wy’
so angles and ratios of magnitudes are preserved under conformal

transformations; in particular, the null cone structure in 7}, is pre-
served by conformal transformations, since

g(X,X)>0, =0, < 0=>§(X,X)>0, =0, <0,

respectively. As the metric components are related by
v = Q% o, gab = Q~%g,

the coordinate components of the connections defined by the metrics

(2.28) are related by
A oQ aQ aQ
a _ Te -1f 8a __ da 2 gad_
Do = T+ 0 ( Fa cgd Joe 6xd)'

(2.29)
Calculating the Riemann tensor of g, one finds

Rabod = ()-2 Ra.bcd + a[a[c [912) a1
where %y = 4Q7HQ1), b, g% — 2(Q7Y), Q7). 5g°98%,;

the covariant derivatives in this equation are those determined by the
metric 8. Then (assuming » > 2)

Ry = Q7R+ (n = 2) QQ); 20— (n— 2) QO 0,08,
and 6“50.1 = C%q,

the last equation expressing the fact that the Weyl tensor is con-
formally invariant. These relations imply

R=Q2R-2(n—1)Q3Q 40~ (n—1)(n—~4) Q2 Q. Q. 6. (2.30)
Having split the Riemann tensor into a part represented by the
Ricci tensor and a part represented by the Weyl tensor, one can use

the Bianchi identities (2.22) to obtain differential relations between
the Ricci tensor and the Weyl tensor: contracting (2.22) one obtains

Rlyea; 0 = Rpg;c— Bpe;a (2.31)
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and contracting again one obtains
Ee ca = %R;c'

From the definition of the Weyl tensor, one can (if n > 3) rewrite
(2.31) in the form
C%ge 0 = 2-@(12 —— L aR )) (2.32)
bed; a n—2 bld; ¢l 2(n_1)gb[d scll ) .
If » < 4, (2.31) contain all the information in the Bianchi identities
(2.22), so if n = 4, (2.32) are equivalent to these identities.

A diffeomorphism ¢: A4 > A will be said to be an isometry if it
carries the metric into itself, that is, if the mapped metric ¢, g is equal
to ¢ at every point. Then the map ¢,: T, Ty, preserves scalar
products, as

g(X, Y)Ip = Prg(Px X, Px Y)|¢(p) = g(Ps X, ¢*Y)| ¢lo)
If the local one-parameter group of diffeomorphisms ¢, generated

by & vector field K is a group of isometries (i.e. for each t, the trans-
formation ¢, is an isometry) we call the vector field K a Killing vector
field. The Lie derivative of the metric with respect to K is
. 1
Lyg = ltlmo? (8—dix8)=0,
since g = ¢, 8 for] each t. But from (2.17), Lgg,, = 2K(,. ), 80 &
Killing vector field K satisfies Killing’s equation
Ky + Ky, o= 0. (2.33)

Conversely, if K is a vector field which satisfies Killing’s equation,
then Lgg = 0, s0

P58, = 8lp +f(:£7(¢l’*g)|p a’
td
=gy +f03§ (Br 4 Ps 28)em |pdt’
t d
=l + [ (¢rs g002)

t
= glp‘fo Do x (Lely_ ) A" = g,

dt'

P

8=0

Thus K is & Killing vector field if and only if it satisfies Killing’s equa-
tion. Then one can locally choose coordinatesz® = (27,¢) (v = 1ton—1)
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such that K¢ = dx[ét = &2,; in these coordinates Killing’s equation
takes the form agabl ot = Oégab = gab(xy)'

A general space will not have any symmetries, and so will not admit
any Killing vector fields. However a special space may admit 7
linearly independent Killing vector fields K, (@ = 1,...,7). It cen be
shown that the set of all Killing vector fields on such & space forms a
Lie algebra of dimension r over R, with the algebra product given by
the Lie bracket [ , ] (see (2.18)), where 0 < r £ in(n+1). (The
upper limit may be lessened if the metric is degenerate.) The local
group of diffeomorphisms generated by these vector fields is an
r-dimensional Lie group of isometries of the manifold .#. The full
group of isometries of .# may include some discrete isometries (such
as reflections in a plane) which are not generated by Killing vector
fields; the symmetry properties of the space are completely charac-
terized by this full group of isometries.

2.7 Hypersurfaces

If ¥ is an (n — 1)-dimensional manifold and 6: - # is an imbedding,
the image 6(&) of & is said to be a hypersurface in M. If pe &, the
image of 7}, in Tj,, under the map 6, will be a (n — 1)-dimensional plane
through the origin. Thus there will be some non-zero form neT*,,,
such that for any vector Xe7,, (n,6, X) = 0. The form n is unique
up to a sign and & normalizing factor, and if (%) is given locally by
the equation f = 0 where df + 0 then n may be taken locally as df.
If 6(%) is two-sided in #, one can choose n to be a nowhere zero
one-form field on 6(%). This will be the situation if & and A are both
orientable manifolds. In this case, the choice of a direction of n will
relate the orientations of (%) and of A : if {x*} are local coordinates
from the oriented atlas of # such that locally 6(%) has the equation
2! = 0 and n = adz! where a > 0, then (2% ...,2") are oriented local
coordinates for 6(%).

If g is a metric on .#, the imbedding will induce & metric 6*g on &,
where if X,YeT,, 6*¢(X,Y)|, =9(6+X,0,Y)|n, This metric is
sometimes called the first fundamental form of &. If g is positive
definite the metric 6*g will be positive definite, while if g is Lorentz,
6*g will be

(a) Lorentz if g®bn,n, > O (in this case, 6(’) will be said to be a
timelike hypersurface), ’
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(b) degenerate if g*®n,n, = 0 (in this case, 6(%) will be said to be a
null hypersurface),

(c) positive definite if g°n,n, < 0 (in this case, 8(%) will be said to
be a spacelike hypersurface).

To see this, consider the vector N® = n,g°. This will be orthogonal
to all the vectors tangent to 6(%), i.e. to all vectors in the subspace
H = 6,(T,) in Ty, Suppose first that N does not itself lie in this
subspace. Then if (E,, ..., E,) are a basis for 7),, (N, 6,(E,), ..., 04(E,))
will be linearly independent and so will be a basis for Zj,,. The compo-
nents of g with respect to this basis will be

_ (g(N, N) 0 ) _ (g(N, N) 0 )

= 0 gOuE), 6u(Ey) 0 6*g(E,Ep)
As the metric g is assumed to be non-degenerate, this shows that
g(N, N) # 0. If g is positive definite, g(IN, N) must be positive and so
the induced metric 8*g must also be positive definite. If g is Lorentz
and g(N, N) = gttn_n, < 0, then 6*¢ must be positive definite since
the matrix of the components of g has only one negative eigenvalue.
Similarly if g(N, N) = gen,n, > 0, then 6*g will be a Lorentz metric.
Now suppose that N is tangent to 6(%). Then there is some non-zero
vector X €7}, such that 6,(X) = N. But g(N, 6,Y) = 0 for all Ye7T,,,
which implies 6*g(X,Y) = 0. Thus 6*g is degenerate. Also, taking
Y to be X, g(N, N) = g®n,n, = 0.

If gotn,m, + 0, one can normalize the normal form n to have unit
magnitude, i.e. g*®n,n, = + 1. In this case the map 6*: T*,,>T*,
will be one-one on the (n— 1)-dimensional subspace H*y , of T*y,,
consisting of all forms w at 6(p) such that getn,w, = 0, because
6*n = 0 and n does not lie in H*. Therefore the inverse (6*)1 will be
a map 0, of T*, onto H*,,, and so into 7%, ,.

This map can be extended in the usual way to & map of covariant
tensors on % to covariant tensors on #(%) in .#; as there already is
& map 6, of contravariant tensors on & to 6(.%), one can extend 6, to
a map 0, of arbitrary tensors on & to 6(%). This map has the property
that 8, T has zero contraction with n on all indices, i.e.

(g*T)a'"bc...dna =0 and (9*T by agn, = 0
for any tensor T e T%(%).

The tensor h on 6(¥) is defined by h = §,(6*g). In terms of the

normalized form n (remember g?%n,n, = + 1),

hab = Gab + NaMp
since this implies 6*h = 6*g and k,,g%n, = 0.
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The tensor h#, = goh,, is a projection operator, i.e. h%,h% = k9, It
projects & vector X € Ty, into its part lying in the subspace H = 6,(T,)
of Ty, tangent to 6(5),

Xe = o, XP + non, XO,
where the second term represents the part of X orthogonal to 6(%).
Also A%, projects a form w €T *y,, into its part lying in the subspace
B o W = hby 0y + 110w,
Similarly one can project any tensor T e7%(0(p)) into its part in
H(6(p)) = Hypy®... @ Hyyy @H» ® ... @ H G,
r factors s factors

i.e. its part which is orthogonal to n on all indices.

The map 6, is one—one from 7, to Hy,,. Therefore one can define
a map 0* from Ty, to T}, by first projecting with A%, into Hy,,and then
using the inverse (6),1. As one already has a map 6* of forms on 6(%)
to forms on &, one can extend the definition of 6* to & map 6* of
tensors of any type on 6(%’) to tensors on %. This map has the property
that 6*(8, T) = T for any tensor T eT"(p) and §,(6*T) = T for any
tensor T eH%(6(p)). We shall identify tensors on % with tensors in
H: on 6(%) if they correspond under the maps ,, 8*. In particular,
h can then be regarded as the induced metric on 6(.%).

If i is any extension of the unit normal n onto an open neighbour-
hood of (%) then the tensor ¥, defined on 6(%) by

- d 5
Xap = P b g, o

is called the second fundamental form of &. It is independent of the
extension, since the projections by h¢, restrict the covariant deriva-
tives to directions tangent to 8(%). Locally the field fi can be expressed
in the form fi = adf where f and « are functions on 4 and f = O on
6(S). Therefore y,, must be symmetric, sincef,,;, = f,andf, k% =
The induced metric h = 6*¢ on & defines a connection on &. We
shall denote covariant differentiation with respect to this connection
by a double stroke, ||. For any tensor T € Hj, ’

7ot = Timlk...l;mhai .. hbjhkc - Kb,

where T is any extension of T to a neighbourhood of 6(&). This
definition is independent of the extension, as the hs restrict the
covariant differentiation to directions tangential to (). To see this
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is the correct formula, one has only to show that the covariant deriva-
tive of the induced metric is zero and that the torsion vanishes. This
follows because

habnc = (gef + ﬁe'ﬁl);nhcahlbhgc = Or

and fnab = heah”bf;ea = heah”bf;ac = fnba'

The curvature tensor R'%,.4 of the induced metric h can be related
to the curvature tensor R%,; on 6(%) and the second fundamental
form y as follows. If Ye H is a vector field on 6(%), then

2,
R Y0 = Y%~ Y%,

Now
Yo = (Yahe = (Ye;fh”ehfi);khaghidhkc
= Ye, ko bk 5 Y, 7, 70, B g RO RE, ¥ Y6, fny,  ho By Bk,
and Ye, iy = (YR,), hfy— YR, by = ~ YR, 1Ty,
since Y7, = 0 on 6(%), therefore
R Y° = (Roppeh® R¥ By £ Xpa X% F XoeX“2) Y°.
Since this holds for all Ye H,
Ry = Repph® RO RO R 3 & X% Xpa F X%a Xoc- (2.34)

This is known as Gauss’ equation.
Contracting this equation on a and ¢ and multiplying by k%2, one
obtains the curvature scalar R’ of the induced metric:
R = R3 2R, n*n%+ (x%)* F X°®Xap- (2.35)

One can derive another relation between the second fundamental
form and the curvature tensor R%,; on 6(%) by subtracting the

expressions (Xa a)nb = (ﬁa;dhda);eheb
a'nd (Xab)na = (ﬁc;dhachde);fhlaheb»
ﬁnding Xbia— XCamp = Refn,heb' (2-36)

This is known as Codacci’s equation.

2.8 The volume element and Gauss’ theorem

If {E%} is a basis of one-forms, one can form from it the n-form

e=nlElAE2A ... AE™
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If {E<}, related to {E¢} by E¢ = @ E¢, is another basis, the n-form
€ defined by this basis will be related to e by

€ = det (D%,)e,

so this form is not unique. However, one can use the existence of the
metric to define (in a given bagis) the form

n=|glte
where g = det (g,;)- This form has components

”ab...d = n! Ig,* 61“; azb coe G”d].

The transformation law for g will just cancel the determinant,
det (9%,), provided that det (0%',) > 0. Therefore if .# is orientable
the n-forms v defined by coordinate bases of an oriented atlas will be
identical, i.e. given an orientation of .#, one can define & unique
n-form field ), the canonical n-form, on 4.

The contravariant antisymmetric tensor

”ab...d — g“gb,.. . gdh”ef...h
has components

gob-d = (— )=l |g|d 8o 87, . 81

where s is the signature of g (so 4(n—s) is the number of negative
eigenvalues of the matrix of metric components (g,,)). Therefore these
tensors satisfy the relations

Wab"'dﬂef...h = (- )i(n—s),n! (S‘a[e 8bf 6dh]' (2-37)

The Christoffel relations imply that the covariant derivatives of
Nab... g 8nd 7%+ 4 with respect to the connection defined by the metric

vanish, i.e. bod
/e e = 0= Nab...d;e

Using the canonical n-form, one can define the volume (with respect
to the metric g¢) of an n-dimensional submanifold % as ;%—, f .
Ja

Thus ) can be regarded as a positive definite volume measure on .#.
We shall often use it in this sense, and shall denote it by dv. Note that
d is not meant to represent the exterior differential operator here; dv
is simply & measure on . If f is a function on #, one can define its
integral over % with respect to this volume measure as

Lfdv = ;:—!Lfn-
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With respect to local oriented coordinates {x°}, this can be expressed
as the multiple integral

f flgltdatda?... da,
%

which is invariant under & change of coordinates.
If X is a vector field on .#, its contraction with v will be an (n—1)-
form field X ., where

X-0)y...a = X9q...a-

This (n—1)-form may be integrated over any (n-— 1)-dimensional
compact orientable submanifold ¥". We write this integral as

1
fyX dO’a = ('n_-—.i_ﬁfyx.n,

where the canonical form ) is regarded as defining a measure-valued
form do, on the submanifold ¥". If the orientation of ¥” is given by
the direction of the normal form =, then do, can be expressed as
n,do where do is a positive definite volume measure on the sub-
manifold #”. The volume measure do is not unique unless the normal
7, is normalized. If n, is normalized to unit magnitude in 8 metric g
on A, i.e n,n,g% = + 1, then do is equal to the volume measure on ¥~
defined by the induced metric on ¥~ (to see this, simply choose an
orthonormal basis with n,g® as one of the basis vectors).

Using the canonical form, one can derive Gauss’ formula from
Stokes’ theorem: for any compact n-dimensional submanifold % of A4,

a =..____1 =.._.._._1 .
faqx 4o, = == fwx.n (n—-l)!Ld(X"’)'

(d(X -n))a...dc = ( - )n_l (Xnvgla... d):e]
= (- )n—l 6s[a s 6td 6“e] Wﬂs...th;u

But

= (- )(n—l)—é(n—s)% .,,s...tu Na...delgs..t Xg:u

= g...2e0% -+ 6‘Elf‘?“nl‘xg;u

=n"19,. deX”;w

on using relation (2.837) twice. Therefore

Xedo, = f X9, ,dv
x

o
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holds for any vector field X; this is Gauss’ theorem. Note that the
orientation on % for which this theorem is valid is that given by the
normal form v such that (n, X) is positive if X is a vector which points
out of . If the metric g is such that g*®n,n, is negative, the vector
g%n, will point into %.

2.9 Fibre bundles

Some of the geometrical properties of a manifold 4 can be most
easily examined by constructing a manifold called a fibre bundle,
which is locally a direct product of 4 and a suitable space. In this
section we shall give the definition of a fibre bundle and shall consider
four examples that will be used later: the tangent bundle 7'(.#), the
tensor bundle 7%(.#), the bundle of linear frames or bases L(.#), and
the bundle of orthonormal frames O(.#).

A C* bundle over a C*® (s > k) manifold . is a C* manifold & and
a C* surjective map 7: £ — 4. The manifold £ is called the total space,
A is called the base space and 7 the projection. Where no confusion
can arise, we will denote the bundle simply by &. In general, the
inverse image 7~1(p) of a point p € 4 need not be homeomorphic to
7~1(g) for another point ge 4. The simplest example of a bundle is
8 product bundle (M x &/, M, m) where & is some manifold and the
projection 7 is defined by m(p, v) = p for all p € #, ve . For example,
if one chooses # as the circle S! and &/ as the real line B3, one con-
structs the cylinder C? as a product bundle over S1.

A bundle which is locally a product bundle is called a fibre bundle.
Thus a bundle is a fibre bundle with fibre & if there exists a neighbour-
hood % of each point q of 4 such that 7-1(%) is isomorphic with % x %,
in the sense that for each point p €% there is a diffeomorphism ¢, of
m-1(p) onto F such that the map ¥ defined by Yr(u) = (n(u), P,u) i8
a diffeomorphism y: 7-Y¥)—> % x F. Since .4 is paracompact, we
can choose a locally finite covering of # by such open sets #,. If
%, and %, are two members of such a covering, the map

(¢a, p) o (¢ﬂ, p_l)

is a diffeomorphism of # onto itself for each pe (%, N ¥;). The inverse
images m~1(p) of points pe.# are therefore necessarily all diffeo-
morphic to & (and s0 to each other). For example, the Mébius strip
is a fibre bundle over ! with fibre R?; we need two open sets %,, %,
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to give a covering by sets of the form %, x R*. This example shows that
if a manifold is locally the direct product of two other manifolds, it is
nevertheless not, in general, a product manifold; it is for this reason
that the concept of a fibre bundle is 8o useful.

The tangent bundle T(#) is the fibre bundle over a C* manifold .4

obtained by giving the set & = U 7, its natural manifold structure
peN

and its natural projection into 4. Thus the projection 7 maps each
point of T}, into p. The manifold structure in &€ is defined by local
coordinates {z4} in the following way. Let {z*} be local coordinates in
an open set % of #. Then any vector VeT, (for any pe %) can be
expressed as V = Vid[dz!|,. The coordinates {z4} are defined in
n~Y%) by {z4} = {z%, V}. On choosing a covering of 4 by coordinate
neighbourhoods %, the corresponding charts define a C*-1 atlas on &
which turn it into a C** manifold (of dimension n2%); to check this, one
needs only note that in any overlap (%, n %) the coordinates {2%,} of
a point are C* functions of the coordinates {xs} of the point, and the
components {V¢,} of a vector field are C*¥-1 functions of the compo-
nents {V} of the vector field. Thus in 7Y%, n.%p), the coordinates
{z4,} are C¥1 functions of the coordinates {z4,}.

The fibre 7~(p) is 7},, and s0 is a vector space of dimension n. This
vector space structure is preserved by the map @, ,: 7,,~ R*, which
is given by @, ,(u) = V(u), i.e. ¢, , maps a vector at p into its com-
ponents with respect to the coordinates {z?,}. If {x%:} are another set
of local coordinates then the map (@, ,) 0 (¢4, ,7?) is a linear map of
R® onto itself. Thus it is an element of the general linear group
GL(n, R) (the group of all non-singular = x n matrices).

The bundle of tensors of type (r,s8) over A, denoted by T%5(A), is

defined in a very similar way. One forms the set & = |J T%(p), defines
peEN

the projection 7 as mapping each point in 7%(p) into p, and, for any
coordinate neighbourhood % in ., assigns local coordinates {z4} to
7Y U) by {24} = {af, T*¥,  ;} where {z%} are the coordinates of the
point p and {728, .} are the coordinate components of T (that is,
T = Te8,  ;8/02°®...®dz?Y,). This turns & into a C*~! manifold of
dimension n'+#+!; any point u in 7Tj(4) corresponds to a unique
tensor T of type (r, 5) at 7(u).

The bundle of linear frames (or bases) L(.#) is a C*-1 fibre bundle
defined as follows: the total space & consists of all bases at all points
of .#, that is all sets of non-zero linearly independent n-tuples of
vectors {E,}, E, € T, for each p € # (a runs from 1 ton). The projection
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7 is the natural one which maps a basis at a point p to the point p. If
{z%} are local coordinates in an open set % < .#, then
{4} = {z°, EJ, E}¥, ..., E,™}
are local coordinates in 7-1(%),-where E 7 is the jth components of the
vector E, with respect to the coordinate bases 9/dz*. The general
linear group GL(n, R) acts on L(.#) in the following way: if {E,} is
a basis at pe.#, then A e GL(n, R) maps u = {p,E,} to
Aw) = {p, Ap Ep}.

When there is a metric g of signature s on 4, one can define a sub-
bundle of L(#), the bundle of orthonormal frames O(4), which con-
sists of orthonormal bases (with respect to g) at all points of A.
O(A#) is acted on by the subgroup O(}(n+s), $(n—s)) of GL(n, R).
This consists of the non-singular real matrices 4, such that

Aoy Coe gy = Cag,
where G, is the matrix
disg(+1, +1,..., +1, =1, =1,..., = ).
$n+s) terms  }(n—s) terms
It maps (p, E,) € O(A#) to (p, A, E,) €O(A). In the case of a Lorentz
metric (i.e. 8 = n—2), the group O(n —~ 1, 1) is called the n-dimensional
Lorentz group.

A C" cross-section of a bundle is a C" map ©: A — & such that mo ®
is the identity map on .#; thus a cross-section is a Cr assignment to
each point p of A of an element ®(p) of the fibre 71(p). A cross-
section of the tangent bundle 7'(.#) is a vector field on .#; a cross-
section of T'5(.#) is a tensor field of type (r, 5) on #; a cross-section of
L(.4) is a set of n non-zero vector fields {E,} which are linearly inde-
pendent at each point, and a cross-section of O(#) is a set of ortho-
normal vector fields on .

Since the zero vectors and tensors define cross-sections in 7'(.#) and
T(A), these fibre bundles will always admit cross-sections. If .# is
orientable and non-compact, or is compact with vanishing Euler
number, there will exist nowhere zero vector fields, and hence cross-
sections of T(#) which are nowhere zero. The bundles L(.#) and
O(A4) may or may not admit cross-sections; for example L(8%) does
not, but L(R") does. If L(.#) admits a cross-section, J is said to be
parallelizable. R.P.Geroch has shown (1968¢) that a non-compact
four-dimensional Lorentz manifold .# admits a spinor structure if
and only if it is parallelizable.
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One can describe a connection on 4 in an elegant geometrical way
in terms of the fibre bundle L(.#). A connection on .4 may be regarded
as a rule for parallelly transporting vectors along any curve y(t) in .
Thus if {E,} is a basis at a point p = y(t,), i.e. {p,E,} is a point « in
L(.#), one can obtain a unique basis at any other point y(t), i.e. a
unique point ¥(¢) in the fibre #~1(y(t)), by parallelly transporting {E }
along ¥(t). Therefore there is a unique curve ¥(¢t) in L(.#), called the
Iift of y(t), such that:

(1) o) = =,

(2) #(7(t)) = v(t),

(3) the basis represented by the point #(¢) is parallelly transported
along the curve y(t) in .#.

In terms of the local coordinates {z4}, the curve %(t) is given by
{x2(y(t)), B, (t)}, where

dE,,'(t)

l FR i Y A 07 =

Consider the tangent space 7),(L(.#)) to the fibre bundle L(.#) at
the point «. This has a coordinate basis {9/224| }. The n-dimensional
subspace spanned by the tangent vectors {(9/2¢);],} to the lifts of all
curves ¥(t) through p is called the horizontal subspace H, of 7, (L(.#)).
In terms of local coordinates,

(a) _dey) 2 dE,t &

at dt 2z dt oF,}

¥

dza(p(t)) [ @ 8
==& (ﬁ‘Em’ oy @;‘)

so a coordinate basis of H,, is {¢/6x*— E,?I'!,, 8/0E,%}. Thus the con-
nection in .4 determines the horizontal subspacesin the tangentspaces
at each point of L(.#). Conversely, a connection in 4 may be defined
by giving an n-dimensional subspace of 7, (L(.#)) for each ue L(.#)
with the properties: i

(1) If AeGL(n,R"), then the map A,: T, (L(A))—> Ty(L(A))
maps the horizontal subspace H, into H ,;

(2) H, contains no non-zero vector belonging to the vertical sub-
space V.

Here, the vertical subspace ¥, is defined as the 7n2-dimensional
subspace of 7,(L(.#)) spanned by the vectors tangent to curves in the
fibre 77Y(m()); in terms of local coordinates, ¥, is spanned by the




54 DIFFERENTIAL GEOMETRY [2.6

vectors {9/0F,,*}. Property (2) implies that 7, is the direct sum of H,,
and V.

The projection map 7: L(.#)— 4 induces a surjective linear map
7t T(L(AM)) > To( M), such that 7, (V,) = 0 and #,, restricted to H,
is 1-1 onto 7}, Thus the inverse 7, is a linear map of 7, (A4)
onto H, . Therefore for any vector X € 7,,(.#) and point z e 7~(p), there
is a unique vector X € H,, called the horizontal lift of X, such that
7,.(X) = X. Given a curve ¥(¢) in ., and an initial point « in 7=Y(y(t,)),
one can construct a unique curve ¥(¢) in L(.#), where 7(t) is the curve
through » whose tangent vector is the horizontal lift of the tangent
vector of y(¢) in 4. Thus knowing the horizontal subspaces at each
point in L(.#), one can define parallel propagation of bases along any
curve () in . One can then define the covariant derivative along
v(t) of any tensor field T by taking the ordinary derivatives with
respect to ¢, of the components of T with respect to a parallelly
propagated basis.

If there is a metric g on .# whose covariant derivative is zero, then
orthonormal frames are parallelly propagated into orthonormal
frames. Thus the horizontal subspaces are tangent to O(.#) in L(.#),
and define a connection in O(.#).

Similarly a connection on .# defines #-dimensional horizontal sub-
spaces in the tangent spaces to the bundles 7'(#) and 7%(.#), by
parallel propagation of vectors and tensors. These horizontal sub-
spaces have coordinate bases

] ]
‘5;'1 — Verv,, a—w}
and

{a%_ (Tf---bc_" al%;+ (all upper indices)

- 9
—_Ma...b f M —
qe-b, GI7,.—(all lower 1nd1ces)) Tt a}

respectively. As with L(.#), 7, maps these horizontal subspaces

one—one onto 7,,,,(#); thus again 7, can be inverted to give a unique

horizontal lift X € 7], of any vector X €7, In the particular case of,
T(M), u itself corresponds to a unique vector WeZ,,,(4), and so

there is an intrinsic horizontal vector field W defined on 7'(#) by the

connection. In terms of local coordinates {z*, V*},

_ 2 2
= — — Vel —
i Va( Vr,,,av,).
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This vector field may be interpreted as follows: the integral curve of W
through % = (p, X)e7'(.#) is the horizontal lift of the geodesic in .#
with tangent vector X at p. Thus the vector field W represents all
geodesics on 4. In particular, the family of all geodesics through
peM is the family of integral curves of W through the fibre
mY(p) < T(A); the curves in 4 have self intersections at least at p,
but the curves in 7'(.#) are non-intersecting everywhere.




3
General Relativity

In order to discuss the occurrence of singularities and the possible
breakdown of General Relativity, it is important to have a precise
statement of the theory and to indicate to what extent it is unique.
Wa shull thorofors prosont the theory na o nnmber of postatindes nhout,
a mathematical model for space~time.

In § 3.1 we introduce the mathematical model and in § 3.2 the first
two postulates, local causality and local energy conservation. These
postulates are common to both Special and General Relativity, and
thus may be regarded as tested by the many experiments that have
been performed to check the former. In § 3.3 we derive the equations
of the matter fields and obtain the energy—momentum tensor from a
Lagrangian.

The third postulate, the field equations, is given in § 3.4. This is not
so well established experimentally as the first two postulates, but we
shall see that any alternative equations would seem to have one or
more undesirable properties, or else require the existence of extra
fields which have not yet been detected experimentally:

3.1 The space-time manifold

The mathematical model we shall use for space-time, i.e. the collection
of all events, is a pair (.#, g8) where .# is a connected four-dimensional
Hausdorff C* manifold and g is a Lorentz metric (i.e. a metric of
signature +2) on 4.

Two models (.#,g) and (#’,8') will be taken to be equivalent if
they are isomefric, that is if there is a diffeomorphism 6: .# —» .’
which carries the metric g into the metric g’, i.e. 6,8 = g'. Strictly
speaking then, the model for space-time is not just one pair (#, g) -
but a whole equivalence class of all pairs (.#’, 8') which are equivalent
to (A, g). We shall normally work with just one representative mem-
ber (#,8) of the equivalence class, but the fact that this pair is defined
only up to equivalence is important in some situations, in particular
in the discussion of the Cauchy problem in chapter 7.

[56]
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The manifold 4 is taken to be connected since we would have no
knowledge of any disconnected component. It istaken to be Hausdorff
since this seems to accord with normal experience. However in
chapter 5 we shall consider an example in which one might dispense
with this condition. Together with the existence of a Lorentz metric,
the Hausdorff condition implies that .# is paracompact (Geroch
(1968c)).

A manifold corresponds naturally to our intuitive ideas of the con-
tinuity of space and time. So far this continuity has been established
for distances down to about 10-cm by experiments on pion scat-
tering (Foley et al. (1967)). It may be difficult to extend this to much
smallor longths as Lo do so would require a particle of such high onergy
that several other particles might be created and confuse the expori-
ment. Thus it may be that a manifold model for space-time is inap-
propriate for distances less than 10~cm and that we should use
theories in which space-time has some other structure on this scale.
However such breakdowns of the manifold picture would not be
expected to affect General Relativity until the typical gravitational
length scale became of that order. This would happen when the density
became about 10 gm ecm—3, which is a condition so extreme as to be
completely beyond our present knowledge. Nevertheless, by adopting
a manifold model for space-time, and making certain other reasonable
assumptions, we shall show in chapters 8-10 that some breakdowns
of General Relativity must occur. It may be the field equations that
go wrong, or it may be that quantization of the metric is needed, or it
may be a breakdown of the manifold structure itself that occurs.

The metric g enables the non-zero vectors at a point pe .4 to be
divided into three classes: a non-zero vector X e 7], being said to be
timelike, spacelike or null according to whether g(X, X) is negative,
positive or zero respectively (cf. figure 5).

The order of differentiability, r, of the metric ought to be sufficient
for the field equations to be defined. They can be defined in a distribu-
tional sense if the metric coordinate components g, and g2 are con-
tinuous and have locally square integrable generalized first derivatives
with respect to the local coordinates. (A set of functions f,, on R" are
said to be the generalized derivatives of a function f on R" if, for any
C= function y on R with compact support,

[1.0v a0 = - [ Rejoun) ane.
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However this condition is too weak, since it guarantees neither the
existence nor the uniqueness of geodesics, for which a C?~ metric is
required. (A €%~ metric is one for which the first coordinate derivatives
of the metric coordinate components satisfy a local Lipschitz condi-
tion, see §2.1.) We shall in fact assume for most of the book that the
metric is at least C2. This allows the field equations (which involve the
second derivatives of the metric) to be defined at every point. In § 8.4
we shall weaken the condition on the metric to C2~ and show that this
does not affect the results on the occurrence of singularities.

In chapter 7, we use a different kind of differentiability condition
in order to show that the time development of the field equations is
determined by suitable initial conditions. We require there that the
metric components and their generalized first derivatives up to order
m(m > 4) are locally square integrable. This would certainly be true if
the metric were C4,

In fact, the order of differentiability of the metric is probably not
physically significant. Since one can never measure the metric exactly,
but only with some margin of error, one could never determine that
there was an actual discontinuity in its derivatives of any order. Thus
one can always represent one’s measurements by a C® metric.

If the metric is assumed to be C7, the atlas of the manifold must be
Cr+1_ However, one can always find an analytic subatlas in any C®atlas
(s = 1) (Whitney (1936); of. Munkres (1954)). Thus it is no restriction
to assume from the start that the atlas is analytic, even though one
could physically determine only a Cr+! atlas if the metric were C”.

We have to impose some condition on our model (.#,8) to ensure
that it includes all the non-singular points of space-time. We shall say
that the C pair (#',8') is a C™-extension of (#,g) if there is an iso-
metric C” imbedding u: .4 — .#'. If there were such an extension
(', g') we should have to regard points of 4" as also being points of
space-time. We therefore require that the model (#,g) is C™-
inextendible, that is there is no Cr extension (', g8’) of (4, g¢) where
M(A) does not equal ',

As an example of a pair (,, 8,) which is not inextendible, consider
two-dimensional Euclidean space with the z-axis removed between
z; = —1 and x, = + 1. The obvious way to extend this would simply
be to replace the missing points, but one could also extend it by taking
another copy (., g,) of the space, and identifying the bottom side
of the z,-axis for |z,| < 1 with the top side of the z,-axis for |z,| < 1,
and also identifying the top side of the z,-axis for |z,| < 1 with the
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bottom side of the z,-axis for |z,] < 1. The resultant space (4, g;) is
inextendible but not complete as we have left out the points z; = + 1,
7, = 0. We cannot put these points back in because we were perverse
enough to extend the top and bottom sides of the z-axis on different
sheets. If however one takes the subset % of 4, defined by 1 < z, < 2,
—1 < y, < 1, then one could extend the pair (%, 8,]4) and put back
the point 2, = 1, y, = 0. This motivates a rather stronger definition of
inextendibility: a pair (#,8) is said to be C-locally inextendible if
there is no open set % < 4 with non-compact closure in ., such that
the pair (%, g|4) has an extension (%', ¢') in which the closure of the
image of % is compact.

3.2 The matter fields

There will be various fields on .#, such as the electromagnetic field, the
neutrino field, etc., which describe the matter content of space-time.
These fields will obey equations which can be expressed as relations
between tensors on 4 in which all derivatives with respect to position
are covariant derivatives with respect to the symmetric connection
defined by the metric g. This is s0 because the only relations defined
by a manifold structure are tensor relations, and the only connec-
tion defined so far is that given by the metric. If there were another
connection on ., the difference between the two connections would
be a tensor and could be regarded as another physical field. Similarly
another metric on 4 could be regarded as a further physical field.
(The equations of the matter fields are sometimes expressed as
relations between spinors on 4. We do not deal with such relations
in this book, as they are not needed for the problems we wish to
consider. In fact, all spinor equations can be replaced by rather more
complicated tensor equations; see e.g. Ruse (1937).)

The theory one obtains depends on what matter fields one incorpo-
rates in it. One should of course include all such fields which have been
experimentally observed, but one might postulate the existence of as
yet undetected fields. Thus for example Brans and Dicke (Dicke
(1964), appendix 7) postulate the existence of a long range scalar field
which is weakly coupled to the trace of the energy-momentum tensor.
In the form given in Dicke (1964) appendix 2, the Brans—Dicke theory
can be regarded simply as General Relativity with an extra scalar
field. Whether this scalar field has been experimentally detected or
not is at present under dispute.
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We shall denote the matter fields included in the theory by
Yp® b, 5, where the subscript (¢) numbers the fields considered. The
following two postulates on the nature of the equations obeyed by the
Yp??, 4 are common to both the Special and the General Theories
of Relativity.

Postulate (a): Local causality

The equations governing the matter fields must be such that if % is
a convex normal neighbourhood and p and g are points in % then a
signal can be sent in % between p and ¢ if and only if » and ¢ can be
joined by a C* curve lying entirely in %, whose tangent vector is every-
wherenon-zero and is either timelike or null; we shall call such a curve,
non-spacelike. (Our formulation of relativity excludes the possibility
of particles such as tachyons, which move on spacelike curves.)
Whether the signal is sent from p to g or from g to p will depend on the
direction of time in %. The problem of whether a consistent direction
of time can be assigned at all points of space-time will be considered
in §6.2.

A more precise statement of this postulate can be given in terms of
the Cauchy problem of the matter fields. Let » €% be such that every
non-spacelike curve through p intersects the spacelike surface z4 = 0
within %. Let & be the set of points in the surface 24 = 0 which can be
reached by non-spacelike curves in % from p. Then we require that the
values of the matter fields at » must be uniquely determined by the
values of the fields and their derivatives up to some finite order on &,
and that they are not uniquely determined by the values on any
proper subset of & to which it can be continuously retracted. (For
a fuller discussion of the Cauchy problem, see chapter 7.)

It is this postulate which sets the metric g apart from the other
fields on .# and givesit its distinctive geometrical character. If {z°} are
normal coordinates in % about p, it is intuitively fairly obvious (and
is proved in chapter 4) that the points which can be reached from p by
non-spacelike curves in % are those whose coordinates satisfy

(@)2+ (%) + (2°)° — (24)* < O.

The boundary of these points is formed by the image of the null cone
of p under the exponential map, that is the set of all null geodesics
through p. Thus by observing which points can communicate with p,
one can determine the null cone N, in 7;,. Once N, is known, the metric
at » may be determined up to a conformal factor. This may be seen as
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follows: let X,Y €7, be respectively timelike and spacelike vectors.
The equation

g(X+2Y, X 4+ 2Y) = g(X, X) + 2Ag(X, Y) + A%(Y, Y)
=0

will have two real roots A, and A, as g(X, X) < 0 and ¢g(Y,Y) > 0. If
N, is known, A, and A, may be determined. But

AlAz = g(x: X)Ig(Y’ Y)

Thus the ratio of the magnitudes of a timelike vector and a spacelike
vector may be found from the null cone. Then if W and Z are any two
non-null vectors at p,

gW,Z) = Hg(W,W)+9g(Z,2)-g(W+Z,W+Z)).

Each of the magnitudes on the right-hand side may be compared with
the magnitude of either X or Y, and so g(W, Z)/g(X, X) may be found.
(If W+Z is null, the corresponding expression involving W 4+ 2Z
could be used.) Thus observation of local causality enables one to
measure the metric up to a conformal factor. In practice this measure-
ment is performed most conveniently using the experimental fact that
no signal has been observed to travel faster than electromagnetic
radiation. This means that light must travel on null geodesics. This
however is a consequence of the particular equations the electro-
magnetic field obeys, not of the theory of relativity itself. Causality
will be considered further in chapter 6. Among other results, it will be
shown that causal relations may be used to determine the topological
structure of .#. The conformal factor in the metric may be determined
using postulate (b) below; thus all the elements of the theory will be
physically observable.

Postulate (b): Local conservation of energy and momentum

The equations governing the matter fields are such that there exists
a symmetric tensor 7', called the energy—momentum tensor, which
depends on the fields, their covariant derivatives, and the metric, and
which has the properties:

(i) 7% vanishes on an open set % if and only if all the matter fields
vanish on %,

(ii) 7'* obeys the equation

7o, = 0, (3.1)
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Condition (i) expresses the principle that all fields have energy. One
might possibly object to the ‘ only if” on the grounds that there might
be two non-zero fields, one of whose energy—-momentum tensor exactly
cancelled that of the other. This possibility is related to that of the
existence of negative energy which will be discussed in §3.3.

If the metric admits a Killing vector field K, equations (3.1) can be
integrated to give a conservation law. To see this, define P to be the
vector whose components are P¢ = 79°K,. Then,

Pe, =T, K,+ToK,,,.

The first term is zero by the conservation equations, and the second
vanishes as 7% is symmetric and 2K, = Lgg,, = 0, since K is a
Killing vector. Thus if 2 is a compact orientable region with boundary
892, Gauss’ theorem (§2.7) shows

Ptdg, =f Pt dv = 0. (3.2)
29 )

This may be interpreted as saying that the total flux over a closed
surface of the K-component of energy—-momentum is zero.

When the metric is flat, as it is in the Special Theory of Relativity,
one may choose coordinates {z%} in which the components of the metric
are g,, = €,0, (no summation) where 6, is the Kronecker delta and
e,is —1ifa=4 and is +1 if a = 1,2,3. Then the following are

Killing vectors:  y _ piape (0 =1, 2,3, 4)

(these generate four translations) and

] 9 .
i\g = 62 5 —eﬂxﬁ% (no summation; , § = 1, 2, 3, 4)
(these generate six ‘rotations’ in space-time). These isometries form
the ten-parameter Lie group of isometries of flat space-time known as
the inhomogeneous Lorentz group. One may use them to define ten
vectors P" and P" which will obey (3.2). We may think of P as repre-

senting the ﬂow of energy and P P P as the flow of the three compo-

nents of linear momentum. The P can be interpreted as the flow of
ap
angular momentum.

If the metric is not flat there will not, in general, be any Killing
vectors and so the above integral conservation laws will not hold. How-
ever, in a suitable neighbourhood of a point ¢ one may introduce
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normal coordinates {x%}. Then at ¢ the components g, of the metric are
e, 0, (no summation), and the components I'?,, of the connection are
zero. One may take a neighbourhood 2 of g in which the g, and I's,,
differ from their values at ¢ by an arbitrarily small amount; then the
L, and Jlg (a; » Will not exactly vanish in 2, but will in this neigh-
a a,

bourhood differ from zero by an arbitrarily small amount. Thus

Pbdo, and Pbdo,
9a 2D ap

will still be zero in the first approximation; that is to say, one still has
approximate conservation of energy, momentum and angular
momentum in a small region of space-time. Using this it can be shown
that a small isolated body moves approximately on a timelike geodesic
curve independent of its internal constitution provided that the energy
density of matter in it is non-negative (for an account of the motion of
a small body in relativity, see Dixon (1970)). This may be thought of
as Galileo’s principle that all bodies fall equally fast. In Newtonian
terms one would say that the inertial mass (the m in F = ma) and the
passive gravitational mass (the mass acted on by a gravitational field)
are equal for all bodies. This has been verified to a high order of
accuracy in experiments by Ebtvos and by Dicke (1964).

Postulate (a) enables one to measure the metric up to a conformal
factor at each point. Using postulate (b) one may relate these factors
at different points, for the conservation equations 7%, , = 0 would not
in general hold for a connection derived from a metric § = Q2g. One
way of doing this would be to observe the paths of small ‘test’ particles
and so to determine the timelike geodesic curves. Then if y(t) is such a
curve with tangent vector K = (9/2t),, one has from (2.29)

A

D Ke =D ke 20710, KoKe— QY (KOKG,0) 990,

Since y(t) is a geodesic with respect to the space-time metric g,
K®(Djot) K = 0. Thus
D

b
K[at

Kol = — (K‘cK‘dacd) K[baa]e (lOg Q)' e (33)
Knowing the conformal structure, one can choose a metric § which
represents the conformal equivalence class of metrics and can evaluate
the left-hand side of (3.3) for any test particle. Then the right-hand side
of (3.3) determines (log Q). , up to the addition of a multiple of K§,,,.
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By considering another curve y’(t) whose tangent vector K'e is not
parallel to K*, one can find (logQ)., and so can determine (2 every-
where up to a constant multiplying factor. This constant factor
specifies one’s units of measurement, and so can be chosen arbitrarily.

This is, of course, not the way one measures the conformal factor in
practice; one makes use of the fact that there exist a large number of
similar systems (such as the electronic states of atoms) whose internal
motions define a number of events along the timelike curve which
represents their position in space-time. The intervals between these
events seem to be independent of their past history in the sense that
the intervals measured by two nearby systems correspond. If one can
effectively isolate them against external matter fields (so they must
move on geodesic curves) and if one assumes their internal motion is
independent of the curvature of space-time, then the only thing it can
depend on is the metric. Thus the arc-length between two successive
events on a curve must be the same for each pair of successive events
on any such curve. If one takes this arc-length as one’s unit of measure-
ment, one can determine the conformal factor at any point of space-
time.

In fact it may not be possible to isolate a system from external
matter fields. Thus for example in the Brans-Dicke theory there is
a scalar field which is non-zero everywhere. However the conformal
factor can still be determined by the requirement that the conserva-
tion equation 7%, , = 0 should hold. Thus knowledge of the energy—
momentum tensor 7),, determines the conformal factor.

3.3 Lagrangian formulation

The conditions (i) and (ii) of postulate (b) do not tell one how to con-
struct the energy—momentum tensor for a given set of fields, or whether
it is unique. In practice one relies heavily on one’s intuitive knowledge
of what energy and momentum are. However, there is a definite and
unique formula for the energy—momentum tensor in the case that the
equations of the fields can be derived from a Lagrangian.

Let L be the Lagrangian which is some scalar function of the fields
Wp®,..a, their first covariant derivatives, and the metric. One
obtains the equations of the fields by requiring that the action

I=f Ldv
2]
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be stationary under variations of the fields in the interior of a compact
four-dimensional region 9. By a variation of the fields Vb, 4in 2D
we mean a one-parameter family of fields W¥(,(u,7) where ue(—¢,¢)
and re .#, such that

(i) ¥ep(0,7) = Fip(r),

(i) W(u,r) = Fp(r) when red—9.

We denote ¥y, 7)oul,o by A¥q.
Then

ol
ou

oL
= e — AW 8o
u=0 uz):fg (a‘{f(‘)a"'bc"_d ® c...d

P
allf“)a...b

C...d; e

A(T(oa'"bc...a;c)) dv,

where Wy2%,  a.. are the components of the covariant derivatives
of ¥y. But AWy % a.c) = (A¥% 2. 4);. thus the second term
can be expressed as

aL a...b
%fg I:(allf({)a."bc...d; e AIF“) c...d) e
oL
- (5‘?(_#_“_) A‘V«)"""’c...a] dv.

c...dse

The first term in this expression can be written as

[eato= [ @oao

where Q is a vector whose components are

oL
=3 A¥ -

) alF(()ambc...d;e ® o8
This integral is zero as condition (ii) is the statement that A%¥(, vanish
at the boundary 2. Thus in order that 8I/du|,_, should vanish for
all variations on all volumes 2, it is necessary and sufficient that the
Euler-Lagrange equations,

oL oL
alF(()a"'hc...d_- (aqf({)a"'bc...d;c);c =0 (3-4)

hold for all :. These are the equations of the fields.
We obtain the energy-momentum tensor from the Lagrangian by
considering the change in the action induced by a change in the metric.
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Suppose a variation g,,(u,7) leaves the fields ¥ %%, 4 unchanged
but alters the components g,, of the metric. Then

oI oL oL
u o =f (% 7, oa...bc.:'d—; cA(lY(oa e...dze) + Agab) dv
d(dv)
+| L Ag,,. (3.5
fQ agab Gad ( )

The last term arises because the volume measure dv depends on the
metric, and so will vary when the metric is varied. To evaluate this
term, recall that dv is in fact the four-form (4!)~'v whose compo-
nents are 74,2 = (—g)¥4! 6,1 5,28,2 8d]‘, where g = det (g,,). Therefore

Tt — () 18,2638,
= j(-g)d 0" g4l &, 8,783 8¢
= 39 Y apea-

Thus Adv) _ 3g°*du.
agab

The first term in (3.5) arises because A(W %%, _4..) will not neces-
sarily be zero even though AW,2--%, , is, since the variation in the
metric willinduce a variation in the components I'e, . of the connection.
As the difference between two connections transforms like a tensor,
AI'¢,, may be regarded as the components of a tensor. They are related
to the variation in the components of the metric by

AFabc = igad{(Agdb); c+ (Agdc), b (Agbc), d}'

(The easiest way to derive this formula is to note that since it is a tensor
relation, it must be valid in any coordinate system. In particular, one
could choose normal coordinates about a péint p. For these coordinates
the components I'%,, and the coordinate derivatives of the components
Jqp vanish at p. The formula given can then be verified to hold at .)
Using this relation, AW,%®, 4., may be expressed in terms of
(Agy.). 4 and the usual integration by parts employed to give an inte-
grand involving Ag,, only. Thus we may write &1/du as

lf (TMAgab) d”:
2)e

where 7% are the components of a symmetric tensor which is taken
to be the energy—momentum tensor of the fields. (See Rosenfeld (1940)
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for the relation between this tensor and the so-called canonical energy-
momentum tensor.)

This energy-momentum tensor satisfies the conservation equations
as a consequence of the field equations obeyed by the ¥,2, ;. For
suppose one has a diffeomorphism ¢: 4 — .4 which is the identity
everywhere except in the interior of 2. Then, by the invariance of
integrals under a differential map,

I=.[9Ldv= an 4‘f¢) - f¢"‘(Im)

Thus 5], =gt ~ 0

If the diffeomorphism ¢ is generated by a vector field X (non-zero only
in the interior of 2) it follows that

L
S JQ Ly(In) =0
But

1 oL oL .
| LgIn) = —
4-'f9 x(In) (%: 9(3‘I’(n°""’c...a (3‘}'(i)°"'°c...a;c);c)

X LxlF(t)a"'bc...adv'*‘§1 f T Lxg,,dv.
)

The first term vanishes as a consequence of the field equations. In the
second term, Lgg,, = 2X,. . Thus

j (T L) d0 = 2 [ (TX,),p= T, X ) do,
@ @

The first contribution may be transformed into an integral over the
boundary of 2 which vanishes as X is zero there. Since the second
term must therefore be zero for arbitrary X, it follows that 79, , =

We shall now give as examples Lagrangians for some fields which
will be of interest later.

Example 1: A scalar field
This can represent, for example, the 7%-meson. The Lagrangian is

L=- isb;a;b;bgab—_ _;02
where m, # are constants. The Euler-Lagrange equations (3.4) are

2
%l’;aog“"—%'ﬁ = 0.
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The energy-momentum tensor is

T =¥ a¥;0— e (¢' ¥ a{fd'*‘ 11’2) (3.6)

Example 2: The electromagnetic field

This is described by a one-form A, called the potential, whichis defined
up to the addition of a gradient of a scalar function. The Lagrangian is

1
L=—Té;FabE:d9“9bds

where the electromagnetic field tensor F is defined as 2dA, i.e.
F,, = 24,,. 5 Varying 4,, the Euler-Lagrange equations (3.4) are
-Fab; cgbc =0.

This and K, 4 = 0 (which is the equation dF = d(dA) = 0) are the
Maxwell equations for the source-free electromagnetic field. The
energy-momentum tensor is

1
Top = i (Foe Foa 9°% — 390p Fiy Fryg*g™y. (3.7)

Example 3: A charged scalar field

This is really a combination of two real scalar fields ¢, and y,. These
are combined into a complex scalar field ¥ = i, +iy,, which could
represent, for example, 7+ and 7~ mesons. The total Lagrangian of the
scalar field and electromagnetic field is

. 1 m? 1
L=- %(il’;a+ieAu¢)9"b($;b—1eAb$) SR ¥ - 167 Fop Feag™g®®,

where ¢ is a constant and ¥ is the complex conjugate of . Varying
¥, ¥ and 4, independently, one obtains

v, abg“b—%:;b+ieAag“b(2¢:b+ieAb ¥)+ied, yg*Y = 0,
and its complex conjugate, and
Pt oo~ YT, o= 1ed T HEP (W o +ied ) = O
The energy-momentum tensor is
Ty = %(¢;J;»+$;a¢;b)+%(—¢- ied, ¥+ ¥, ied ¥
+Yuled Y -9 led ) + FMFMWH”A A Y + Lguy
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Example 4: An isentropic perfect fluid

The technique here is rather different. The fluid is described by &
function p, called the density, and a congruence of timelike curves,
called the flow lines. By a congruence of curves, is meant a family of
curves, one through each point of 4. If 2 isa sufficiently small com-
pact region, one can represent a congruence by a diffeomorphism
v: [a,b] x &/ > 2@ where [a,b] is some closed interval of B! and A is
some three-dimensional manifold with boundary. The curves are said
to be timelike if their tangent vector W = (d/ét),, te[a, b], is timelike
everywhere. The tangent vector Visdefined by V = (—g(W, W))W,
so g(V,V) = — 1, and the fluid current vector is defined by j = pV. It
is required that this is conserved, i.e. j. , = 0. The behaviour of the
fluid is determined by prescribing the elastic potential (or internal
energy) ¢ a8 a function of p. The Lagrangian is taken to be

L =—p(1+¢)

and the action I is required to be stationary when the flow lines are
varied and p is adjusted to keep j¢ conserved. A variation of the flow
lines is a differentiable map y: (-4, 8) x [a,b] x /'~ 2 such that

7(0’ [a') b]r‘/V) = 7([0" b]"/V)
and  y(u,[a,b],4) = v([a,0],#) on H-9D, (ue(-43)).

Then it follows that AW = Lg W where the vector K is K = (2/0u),.
This vector may be thought of asrepresenting the displacement, under
the variation, of a point of the flow line. It follows that

AVe = Ve K- Ko  VP—-VeVb K, Ve
Using the fact that A(je.,) = 0 = (Aj%),,, one has
(Bp); o Ve+0pVe o +p, AV +p(AVE), , = 0.
Substituting for AVe and integrating along the flow lines, one finds
Ap = (pK?), p+pKy,  VOV".

Therefore the variation of the action integral is

o1 - b by7e d(pe)
oo™ Lol o7 (14 S s
Integrating by parts,

o1

Pulymo L{(P(” g,(f—pm) V“+P(df—$l) ;c(g°°+ VcVa))K,,} dv,
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where Ve = Ve, V®. If this is zero for all K, it follows that
(£ +p) Ve = ~p,5(g"+ VOV,
where u = p(1+¢) is the energy density and p = p?(de/dp) is the
pressure. Thus V4, the acceleration of the flow lines, is given by the
pressure gradient orthogonal to the flow lines.
To obtain the energy—momentum tensor one varies the metric. The

calculations may be simplified by noting that the conservation of the
current may be expressed as

a 1 jay —

Given the flow lines, the conservation equations determine j¢ uniquely
at each point on a flow line in terms of its initial value at some given
point on the same flow line. Therefore (,/ — g)j¢ is unchanged when the
metric is varied. But

pt= g‘l((«/ -g)J° (‘\/ = 9)7°) Gabs

80 2p0p = (§%° = §5c9) Ogans
and thus Tab = {p(l +¢e)+p? g—;} VeVt yp gf)g"b
= (u+p) VeV +pgee. (3.8)

We shall call any matter whose energy—-momentum tensor is of the
above form (whether or not it is derived from a Lagrangian) a perfect
Sluid. From the energy and momentum conservation equations (3.1)
applied to (3.8) one finds
Lo Ve+(p+p) Ve, =0, (3.9
(u+p) Ve + (g2 + VeV)p,, = 0. (3.10)
These are the same as the equations derived from the Lagrangian. We
shall call a perfect fluid isentropic if the pressure p is a function of the
energy density # only. In this case one can introduce a conserved
density p and an internal energy ¢ and derive the equations and the
energy—momentum tensor from a Lagrangian.
One may also give the fluid a conserved electric charge e (i.e.
Je, . = 0 where J = ¢ V is the electric current). The Lagrangian for
the cha.rged fluid and the electromagnetic field is

i
L=- 167 For Fea 9™ — p(1 + €) — 3“4,
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The last term gives the interaction between the fluid and the field.
Then varying A, the flow lines and the metric respectively, one finds

Feb, = 4nJe,
(u+2) Ve = —p, (g% + VeV) + Fo, J°,

Teb = () VoV +pg + (Fe, For— g0, Fed).

3.4 The field equations

So far, the metric g¢ has not been specified. In the Special Theory of
Relativity, which does not include gravitational effects, it is taken to
be flat. One might think that one could include gravitation by keeping
the metric flat and by introducing an extra field on space-time. How-
ever, experiments have shown that light rays travelling near the sun
are deflected. Since light rays are null geodesics, this shows that the
space-time metric cannot be flat or even conformal to a flat metric.
One therefore has to give some prescription for the curvature of
space—time. It turns out that this prescription can be chosen so as to
reproduce the results of Newtonian gravitation theory in the limit of
small slowly varying curvature. It is therefore not necessary to intro-
duce an extra field to describe gravitation. This is not to say that there
could not be an additional field that produced part of the gravitational
effects. Such a scalar field has been suggested by Jordan (1955), and
Brans and Dicke (see Dicke (1964)). However, as mentioned before,
such an additional field could be regarded as simply another matter
field and included in the total energy-momentum tensor. We therefore
adopt the view that the gravitational field is represented by the
space-time metric itself. The problem then becomes one of finding
field equations to relate the metric to the distribution of matter.

These equations should be tensor equations involving the matter
only through its energy—momentum tensor, i.e. should not distinguish
between two different matter fields which have the same distribution
of energy and momentum. This can be regarded as a generalization of
the Newtonian principle that the active grovitational mass of a body
(the mass producing a gravitational field) is equal to the passive gravi-
tational mass (the mass acted on by the gravitational field). This has
been verified experimentally by Kreuzer (1968).

To determine what the field equations should be, we shall consider
the Newtonian limit. Since the Newtonian gravitational field equation
does not involve time, the correspondence with Newtonian theory
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should be made in a metric which is static. By a static metric is meant
a metric which admits a timelike Killing vector field K which is
orthogonal to a family of spacelike surfaces. These surfaces may be
regarded as surfaces of constant time and may be labelled by the
parameter {. We define the unit timelike vector V as f-1K, where
f:=—K°K, Then Ve, =—V*V, where Vo= Ve, V= f-I, gob
represents the departure from geodesity of the integral curves of V
(which are of course also integral curves of K). Note that Ve ¥, = 0.

These integral curves define the static frame of reference, that is to
say, the space-time metric seems to be independent of time to a
particle whose history is one of these curves. A particle released from
rest and following a geodesic would appear to have an initial accelera-
tion of —V with respect to the static frame. If f differs only slightly
from unity the initial acceleration of a freely moving particle released
from rest is approximately minus the gradient of f. This suggests that
one should regard f—1 as the quantity analogous to the Newtonian
gravitational potential.

One can derive an equation for this potential by considering the
divergence of Va:

Va:a = (Va:b Vb);a = Vu;b;a o+ Va;b Vb;a

= Ry, VeV +(Ve.,)., Vo +(V,V°)2 = R,, VeV,
But Va;a'_" (f_lf;bgab);a_-' '—f~2f;af;bgab+f_lf;bagab
and f;ab VaVb=_f;aVa:be= —f—lf;af;bgab»
80 one finds [, ap(@®®+ VeV = fR,, VeVP,
The term on the left is the Laplacian of f with respect to the induced
metric in the three-surface {¢ = constant}. If the metric is almost flat,
this will correspond to the Newtonian Laplacian of the potential.
One would therefore obtain agreement with Newtonian theory in the
limit of a weak field (i.e. when f ~ 1) if the term on the right is equal
to 4G times the matter density plus terms which are small in the weak

field limit.
This will be the case if there is a relation of the form

Roy = Koy (3.11)

where K, is a tensorial function of the energy—momentum tensor and
the metric, which is such that (47G)-1K_, VaV? is equal to the matter
density plus terms which are small in the Newtonian limit. We shall
for the moment assume a relation of this form.
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Since R,, satisfies the contracted Bianchi identities R,b., = 1R, ,
(3.11) implies Kb, =1K.,. (3.12)

a

This shows that the apparently natural equation K, = 47G7T,, cannot
be correct, since (3.12) and the conservation equations 7,?,, =0
would imply 7}, = 0. For a perfect fluid, for example, this would mean
that x4 — 3p was constant throughout space-time, which is clearly not
satisfied by a general fluid.

In fact in general, the only first order identities satisfied by the
energy—momentum tensor are the conservation equations. From this
it follows that the only tensorial function K ,, of the energy-momentum
tensor and the metric which obeys the identities (3.12) for all energy-
momentum tensors, is

Ky = K(Tab - *Tgab) + Agaps (3.13)

where « and A are constants. The values of these constants can be
determined from the Newtonian limit. Consider a perfect fluid with
energy density x4 and pressure p whose flow lines are the integral curves
of the Killing vector (i.e. the fluid is at rest in the static frame). The
energy-momentum tensor is given by (3.8). Putting this in (3.13) and
(3.11), one finds

[; anlg® + VoV?) = f(d(p + 3p) — A). (3.14)

In the Newtonian limit the pressure p isnormally very small compared
to the energy density . (We are using units in which the speed of
light is unity. In units in which the speed of light is ¢, the expression
J+ 3p should be replaced by u+ 3p/c?.) One would therefore obtain
approximate agreement with Newtonian theory if « = 87G and if [A|
is very small. We shall use units of mass in which G = 1. In these units,
a mass of 1028gm corresponds to a length of 1cm. Sandage’s (1961,
1968) observations of distant galaxies place limits on |A| of the order
of 10~% ¢cm-2; we shall normally take A to be zero, but shall bear in
mind the possibility of other values.

Onemay then integrate (3.14) over a compact region & of the three-
surface {t = constant} and transform the left-hand side into an integral
of the gradient of f over the bounding two-surface 85 :

[ femturspnac = [ f.ate+verao
F F

= J f;a(gab+ VaVb) d7b»
oF
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where do is the volume element of the three-surface {t = constant} in
the induced metric, and dr, is the surface element of the two-surface
8% in the three-surface. This gives the analogue of the Newtonian
formula for the total mass contained within a two-surface. There are
however two important differences from the Newtonian case:

(i) a factor f appears in the integral on the right-hand side. This
means that matter placed in a region where f is considerably less than
one (a large negative Newtonian potential) makes a smaller contribu-
tion to the total mass than does the same matter in a region where f is
almost one (small negative Newtonian potential);

(ii) the pressure contributes to the total mass. This means that in
some circumstances it can actually assist rather than prevent gravita-
tional collapse.

The equations Rab = 87T(Tab - iTgab) + Agab
are called the Einstein equations and are often written in the equivalent
form (Bap— $Bggp) + Agap = 81T, (3.15)

Since both sides are symmetric, these form a set of ten coupled non-
linear partial differential equations in the metric and its first and
second derivatives. However the covariant divergence of each side
vanishes identically, that is,

(B~ }Rg®+ Ag);, = 0
and T, =0

hold independent of the field equations. Thus the field equations really
provide only six independent differential equations for the metric.
This is in fact the correct number of equations to determine the space—
time, since four of the ten components of the metric can be given
arbitrary values by use of the four degrees of freedom to make co-
ordinate transformations. Another way of looking at this is that two
metrics 8, and g, on a manifold .# define the same space-time if there
is a diffeomorphism @ which takes g, into g,. Therefore the field equa-
tions should define the metric only up to an equivalence class under
diffeomorphisms, and there are four degrees of freedom to make
diffeomorphisms.

We shall consider the Cauchy problem for the Einstein equations
in chapter 7, and shall show that, together with the equations for the
matter fields, they are sufficient to determine the evolution of space—
time given suitable initial conditions, and that they satisfy the
causality postulate (a).
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The Einstein equations can be derived by requiring that the action
I =f (A(R—2A)+ L) dv (3.16)
9

be stationary under variations of g, where L is the matter Lagrangian
and 4 a suitable constant. For

A((R—2A)dv) = ((R—2A) 4g%Ag,, + Ry Ago® +g@AR,y) do.
The last term can be written
gPAR, dv = go((ATCgp), . — (AT%), ;) dv
= (AT%,g% — AT,,g%), , do.

Thus it may be transformed into an integral over the boundary 02,
which vanishes as AI'%,, vanishes on the boundary. Therefore

oI

- L {A((3R—A)g®™ — R™) 4 4T Ag,dv,  (3.17)

and so if &7 [éu vanishes for all Ag,,, one obtains the Einstein equations
on setting 4 = (167)"1.

One might ask whether varying an action derived from some other
scalar combination of the metric and curvature tensors might not give
areasonable alternative setof equations. However the curvature scalar
is the only such scalar linear in second derivatives of the metric tensor;
so only in this case can one transform away a surface integral and be
left with an equation involving only second derivatives of the metric.
If one tried any other scalar such as R, R* or R, ; R*°¢ one would
obtain an equation involving fourth derivatives of the metric tensor.
This would seem objectionable, as all other equations of physics are
first or second order. If the field equations were fourth order, it would
be necessary to specify not only the initial values of the metric and its
first derivatives, but also the second and third derivatives, in order to
determine the evolution of the metric.

We shall assume the field equations do not involve derivatives of
the metric higher than the second. If these field equations are derived
from a Lagrangian, then the action must have the form (3.16). One
could however obtain a system of equations other than the Einstein
equations, if one restricted the form of the variations Ag,, for which
the action was required to be stationary.

For example, one could restrict the metric to be conformal to a flat

metric, i.e. assume - Q2
Gap = abs
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where 7, is a flat metric as in Special Relativity. Then
Agap = 2Q71A0g,,
and the action will be stationary if
{(A(3R— A)ge — Rob) + Ta}}AQg,, = 0
for all AQ, that is if R+ AT = 4A.
From (2.30),
R = —6Q73Q, 7% = —6Q71Q, . g* + 12Q72Q, . Q. 0%,

where | denotes covariant differentiation with respect to the flat
metric 9,,. If the metric is static, Q will be constant along the integral
curves of the Killing vector K (it will be independent of the time ).
The magnitude of K will be proportional to (2. Therefore

f;ab(gab + Va Vb)f_l = Q; ab(gab + VaVb) Q_l
=—-3}R+2Q72Q Q. g% - Q1Q. Ve, V?

= _%R'*'f_zf;af;bgab'

Thus the Laplacian of f will be equal to — 4R plus a term proportional
to the square of the gradient of f. This last term may be neglected in
a weak field. From the field equations, —}R will be equal to
3A-1T —3A. For a perfect fluid, 7 = — 1 + 3p. One will therefore get
agreementwith Newtonian theory if A issmall or zeroand 4A-! = — 247,

This theory in which the metric is restricted to be conformally flat
is known as the Nordstrom theory. It can be reformulated as a theory
in which the metric is the flat metric v} and in which the gravitational
interaction is represented by an additional scalar field ¢. As men-
tioned before, this sort of theory would be inconsistent with the
observed deflection of light by massive objects, and it would not
account for the measured advance of the perihelion of Mercury.

One could in fact obtain the observed deflection of light and the
advance of the perihelion of Mercury if the metric was restricted to be

Of the form Gap = Qg("]ab + Wz m))

where W, is an arbitrary one-form field. This would give the Newtonian
limit in a static metric in which W, was parallel to the timelike Killing
vector. There could however also be other static metrics where W, was
not parallel to the Killing vector and these would not give the
Newtonian limit. Further this restriction on the form of the metric
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seems rather artificial. It appears more natural not to restrict the
metric, apart from requiring that it be Lorentzian.
We therefore adopt as our third postulate,

Postulate (c): Field equations
Einstein’s field equations (3.15) hold on .#.

The predictions of these field equations agree, within the experimen-
tal errors, with the observations that have been made so far on the
deflection of light and the advance of the perihelion of Mercury,
though the question of whether there exists a long range scalar field
which ought to be included in the energy-momentum tensor remains
open at the present time.




4
The physical significance of curvature

In this chapter we consider the effect of space—time curvature on
families of timelike and null curves. These could represent flow lines
of fluids or the histories of photons. In §4.1 and §4.2 we derive the
formulae for the rate of change of vorticity, shear and expansion of
such families of curves; the equation for the rate of change of expan-
sion (Raychaudhuri’s equation) plays a central role in the proofs of
the singularity theorems of chapter 8. In §4.3 we discuss the general
inequalities on the energy-momentum tensor which imply that the
gravitational effect of matter is always to tend to cause convergence of
timelike and of null curves. A consequence of these energy conditions
is, asis seen in §4.4, that conjugate or focal points will occur in families
of non-rotating timelike or null geodesics in general space-times. In
§4.5 it is shown that the existence of conjugate points implies the
existence of variations of curves between two points which take a null
geodesic into a timelike curve, or a timelike geodesic into a longer
timelike curve.

4.1 Timelike curves

In chapter 3 we saw that if the metric was static there was a relation
between the magnitude of the timelike Killing vector and the
Newtonian potential. One was able to tell whether a body was in a
gravitational field by whether, if released fromrest, it would accelerate
with respect to the static frame defined by the Killing vector. However,
in general, space—time will not have any Killing vectors. Thus one will
not have any special frame against which to measure acceleration; the
best one can do is to take two bodies close together and measure their-
relative acceleration. This will enable one to measure the gradient of
the gravitational field. If one thinks of the metric as being analogous
to the Newtonian potential, the gradient of the Newtonian field would
correspond to the second derivatives of the metric. These are described
by the Riemann tensor. Thus one would expect that the relative

(78]
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acceleration of two neighbouring bodies would be related to some
components of the Riemann tensor.

In order to investigate this relation more precisely we shall examine
the behaviour of a congruence of timelike curves with timelike unit
tangent vector V (g(V,V) = —1). These curves could represent the
histories of small test particles, in which case they would be geodesics,
or they might represent the flow lines of a fluid. If this were a perfect

fluid, then by (3.10) (wtp) Ve = —p. oo, (4.1)

where V@ = Ve ,V® is the acceleration of the flow lines and
he, = 82, + VoV, is the tensor which projects a vector X €7} into its
component in the subspace H, of T}, orthogonal to V. One may also
think of &, as the metric in H, (cf. §2.7).

Suppose A(t) is a curve with tangent vector Z = (d/ét),. Then one
may construct a family A(4, s) of curves by moving each point of the
curve A(f) a distance s along the integral curves of V. If one now defines
Z as (0/0t) s, o it follows from the definition of the Lie derivative (see
§2.4) that LyZ = 0 or in other words that

-?s-za = Ve, Z°. (4.2)

One may interpret Z as representing the separation of points equal
distances from some arbitrary initial points along two neighbouring
curves. If one adds a multiple of V to Z then this vector will represent
the separation of points on the same two curves but at different
distances along the curves. It is really only the separation of neigh-
bouring curves that one is interested in, not the separation of particu-
lar points on these curves. One is thus concerned only with Z modulo
a component parallel to V, i.e. only with the projection of Z at each
point ¢ into the space @, consisting of equivalence classes of vectors
which differ only by addition of a multiple of V. This space can be
represented as the subspace H, of 7, consisting of vectors orthogonal
to V. The projection of Z into H, will be denoted by ,Z¢ = ha, Z*. In
the case of a fluid one can regard ,Z as the distance between two
neighbouring particles of the fluid as measured in their rest frame.
From (4.2) it follows that

D
.Lé;(.x.za) = Va;b.x.zb' (4.3)

This gives the rate of change of the separation of two infinitesimally
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neighbouring curves as measured in H,. Operating again with D/ds
and projecting into H,, one finds

Py (B ) = BV, a 2V VP, Ve V2V

+ VO, VeVe, ,Z, Va4 VO, ke, 26, , V9.

Changing the order of the derivatives in the first term and using (4.2),
this reduces to

he —]—)-(h" D Zc) = — ey, ZEVOVe s ke, Vo 24 Vb, 25, (4.4)

b a8 €os €L bed A b H- b1 - .
This equation, known as the deviation or Jacobi equation, gives the
relative acceleration, i.e. the second time derivative of the separation,
of two infinitesimally neighbouring curves as measured in H, We
see that this depends only on the Riemann tensor if the curves are
geodesics.

In Newtonian theory, the acceleration of each particle is given by
the gradient of the potential ® and therefore the relative acceleration
of two particles with separation Z¢ is ®,,,Z% Thus the Riemann
tensor term R,.; V®V¢ is analogous to the Newtonian @, ... The effect
of this ‘tidal force’ term can be seen, for example, by considering a
sphere of particles freely falling towards the earth. Each particle
moves on a straight line through the centre of the earth but those
nearer the earth fall faster than those further away. This means that
the sphere does not remain a sphere but is distorted into an ellipsoid
with the same volume.

In order to investigate the deviation equation further we shall
introduce dual orthonormal bases E,, E,, E,, E; and E1, E2, E3 E* of
T, and T*, at some point ¢ on an integral curve y(s) of V, with E¢ = V.
One would like to propagate them along 7(s) to obtain similar such
bases at each point of y(s). However, if one parallelly propagates them
along y(s) (i.e. so that D/ds of each vector is zero) E; will not remain
equal to V, and E,, E,, E, will not remain orthogonal to V, unless
y(s) 18 a geodesic. We therefore introduce a new derivative along
y(s) called the Ferms derivative Dg[ds. This is defined for a vector
field X along y(s) by:

DyX DX DV
o= (X ) Vg
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It has the properties:
(1) —— = %if y(s) i8 a geodesic;

(iii) if X and Y are vector fields along 7(s) such that

DpX __Dyp¥
s 0s

then g(X, Y) is constant along y(s);
(iv) if X is a vector field along ¥(s) orthogonal to V then
DgX (DX
“os (_aé')
(This last property shows that the Fermi derivative is a natural
generalization of the derivative D/ds.)

Thus, if one propagates an orthonormal basis of 7, along y(s) so that
the Fermi derivative of each basis vector is zero, one obtains an
orthonormal basis at each point of y(s), with E; = V. The vectors
E,, E,, E; may be interpreted as giving a non-rotating set of axes
along y(s). These could be realized physically by small gyroscopes
pointing in the direction of each vector.

The definition of the Fermi derivative along y(s) can be extended
from vector fields to arbitrary tensor fields by the usual rules:

(i) Dg/osis alinear mapping of tensor fields of type (7, s) along (s)
to tensor fields of type (r s), which commutes with contractions;

(i) = el

Dpf df

(i) —= = E where f is a function.

From these rules it follows that the dual basis E1, E%, E3, Ef of T*, is

also Fermi-propagated along 7(s). Using Fermi derivatives, (4.3) and
(4.4) may be written as:

Dy o0 1w
.20 = Ve, 2, (4.5)
];g‘lz = — Ry 26 VOVA+h2, VO, Ze 4 VeV, 2o, (4.6)

One may express these equations in terms of the Fermi-propagated
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dual bases. As 1Z is orthogonal to V it will have components with
respect to E,, E,, E, only. Thus it may be expressed as Z*E_, where we
adopt the convention that Greek indices take the values 1, 2, 3 only.
Then (4.5) and (4.6) can be written in terms of ordinary derivatives:

d
— 7% = Ve, , 2 1
525 = Ve, 2P, (4.7)

d2
322 = (~Rup+ Ve, 5+ VeVy) Z6 (4.8)
where V4, ; are the components of V¢, for whicha = candb = §. As
the components Z= obey the first order linear ordinary differential

equation (4.7), they can be expressed in terms of their values at some
point ¢ by: Ze(s) = Augle) 2, (49)

where 4, 4(s) is a 3 x 3 matrix which is the unit matrix at ¢ and satisfies
d
T Aepl®) = Vs Aygl9). (4.10)

In the case of a fluid the matrix 4,4 can be regarded as representing the
shape and orientation of a small element of fluid which is sphericalatg.
This matrix can be written as

Aaﬂ = Oaasaﬂ (4.11)

where O, is an orthogonal matrix with positive determinant and S,
is a symmetric matrix. These will both be chosen to be the unit matrix
atq. The matrix 0,5 may be thought of as representing therotation that
neighbouring curves have undergone with respect to the Fermi-
propagated basis while S, represents the separation of these curves
from 7(s). The determinant of S, which equals the determinant of
A4 may be thought of as representing the three-volume of the
element of the surface orthogonal to (s) marked out by the neigh-
bouring curves.

At g where A, is the unit matrix, dO,4/ds is antisymmetric and
dS,,/ds is symmetric. Thus the rate of rotation of neighbouring curves
at ¢is given by the antisymmetric part of ¥, ; while the rate of change
of their scparation from y(s) is given by the symmetric part of V.,
and the rato of change of volume is given by tho trace of V., We
therefore define the vorticity tonsor as

Wop = hachbd V[c; db (4.12)
the expansion tensor as
0,,,, = h"chblltl‘” M (4.13)
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and the volume expansion as
6 =0,k =V, b0 = Ve, . (4.14)
We further define the shear tensor as the trace free part of 6,,,
Cap = Oap— $has 6, (4.15)
and the vorticity vector as
w® = 19PN 0y = IRV, (4.16)
The covariant derivative of the vector V may be expressed in terms of
these quantities; Vio = Wapt Cap+ 30— Tu . (4.17)

This decomposition of the gradient of the fluid velocity vector is
directly analogous to that in Newtonian hydrodynamics.

In the Fermi-propagated orthonormal basis the vorticity and
expansion can be expressed in terms of the matrix 4,, and its inverse
A1,

d
waﬂ = —A_I‘Yr“EgAﬂ]‘Y’ (4.18)
6,,=A4"1 d A 4.19
wp = A7 ya g Apy (4.19)
d
6= (detA)"la—s(detA). (4.20)

From the deviation equation (4.8) it follows that

d2
a?Aaﬂ = (_Ra4'y4+Va;7+KV'y)A7ﬁ' (4.21)
This equation enables one to calculate the propagation of the vorticity,
shear and expansion along the integral curves of V if one knows the
Riemann tensor.
Multiplying by 4-4, and taking the antisymmetric part, one
obtains .
d ¥
d——s&)aﬂ = 2(1)7[“0,9174- la; A1 (422)
Thus the propagation of vorticity depends on the antisymmetric
gradient of the acccleration but not the ‘tidal force’. Another form of
tho abovoe equation is

d *
;I—.:J(AY“&)YJAM) = AraVly:alAm- (4.23)
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Therefore Aw“’y&Aﬂﬂ is a constant matrix if the curves are geodesics;
in particular, if the curves are geodesics and the vorticity vanishes at
one point on a curve, it will vanish at all points on the curve. If the
curves are the flow lines of a perfect fluid it follows from (4.1) that

1 dp
Vs 1 = ~ iU ds

If the fluid is isentropic, this implies the conservation law:

WA, 0,44, = constant, (4.24)

where log W = f
8 p+p

This conservation law is the relativistic form of the Newtonian
vorticity conservation law. In the geodesic or pressure-free case, this
takes the usual form that the magnitude of the vorticity vector is
inversely proportional to the area of a cross-section orthogonal to the
vorticity vector of an element of the fluid. When the pressure is non-
zero, there is an extra relativistic effect arising from the fact that
compression of the fluid does work on the fluid and therefore increases
the mass and so the inertia of an element of the fluid (cf. (3.9)). This
means that the vorticity of a fluid increases less under compression
than would otherwise be expected.

Multiplying (4.21) by 4%, and taking the symmetric part, one
finds d

‘a‘;eaﬁ = —R“ﬁ‘—a)a,y&),yﬁ Yﬁ+V ﬂ)+.VaI7ﬂ' (4.25)
(This equation and (4.23) can be expressed in terms of a general, non-
orthonormal, non-Fermi-propagated basis by replacing the ordinary
derivatives with Fermi derivatives and projecting everything into the
subspace orthogonal to V.)
The trace of (4.25) is
d

E 6= —R, VeV®+ 20— 202362+ V2, , (4.26)
where 202 = wgw™ 2 0,

202 = g, 0% 2 0.

This equation, which was discovered by Landau and independently by
Raychaudhuri, will be of great importance later. From it one sees that
vorticity induces expansion as might be expected by analogy with
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centrifugal force while shear induces contraction. By the field equa-
tions, the term R, VeV? = 4n(u+ 3p) for a perfect fluid whose flow
lines have tangent vectors V2. Thus one would expect this term also
to induce contraction. We shall give a general discussion of the sign
of this term in §4.3.

The trace-free part of (4.25) is

Dp
as
— 300 3 + bt B2 Ve, iy — 3o (202 — 202+ VO, + AR 4 h°4), (4.27)

Oap = = Cocpa VOVE+ 3R byl Bog — 0, 0% ~ 04,05,

where C,,,, is the Weyl tensor. Since this tensor is trace-free it does not
enter directly in the expansion equation (4.26). However since the
term — 202 occurs on the right of the expansion equation, the Weyl
tensor produces convergence indirectly by inducing shear. The
Riemann tensor can be expressed in terms of the Weyl tensor and the
Ricei tensor:

Reopea = Capea— GataBiao = JoicRay a— 3RGacfaro-
The Ricci tensor is given by the Einstein equations:
Rab - *gabR + Agab = 871’1701,.
Thus the Weyl tensor is that part of the curvature which is not deter-

mined locally by the matter distribution. However it cannot be
entirely arbitrary as the Riemann tensor must satisfy the Bianchi

identities:
Rabfcd;e] =0
These can be rewritten as
Cobed, , = Jobe, (4.28)
where Jabe = Relaibl 4 3acbRial, (4.29)
These equations are rather similar to Maxwell’s equations in electro-
dynamics: Fab , = Ja,

where Fab is the electromagnetic field tensor and J¢ is the source
current. Thus in a sense one could regard the Bianchi identities (4.28)
asfield equations for the Weyl tensor giving that part of the curvature
at a point that depends on the matter distribution at other points.
(This approach has been used to analyse the behaviour of gravitational
radiation in papers by Newman and Penrose (1962), Newman and
Unti (1962) and Hawking (1966a).)
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4.2 Null curves

The Riemann tensor will affect the rate of change of separation of null
curves as well as that of timelike curves. For simplicity, we shall con-
sider only null geudesics. These could represent the histories of
photons; the effect of the Riemann tensor will be to distort or focus
small bundles of light rays.

To investigate this, we consider the deviation equation for & congru-
ence of null geodesics with tangent vector K (g(K, K) = 0). There are
two important differences between this case and that of the timelike
curves considered in the previous section. First, one could normalize
the tangent vector V to the timelike curves by requiringg(V, V) = — 1.
In effect this means that one parametrized the curves by the arc-
length s. However this is clearly impossible with null curves as they
have zero arc-lengths. The best one can do is to choose an affine
parameter v; then the tangent vector K will obey

D « a b —
3, K = Ko Ko = 0.

However one could multiply » by a function f which was constant
along each curve. Then fv would be another affine parameter and the
corresponding tangent vector would be f—1K. Thus, given the curves as
point sets in the manifold, the tangent vector is only really unique up
to a constant factor along each curve. The second difference is that
Q,» the quotient of 7, by K, isnot now isomorphic to H,, the subspace of
T ,orthogonal to K, since H, includes the vector Kitselfasg(K, K) = 0.
In fact as will be shown below, one is not really interested in the whole
of @, but only in the subspace S, consisting of equivalence classes of
vectors in H, which differ only by a multiple of K. In the case of light
rays, one can regard an element of S, as representing the separation
between two neighbouring light rays which were emitted at the same
time by a source.

As before we introduce dual bases E,, E,, E;, E,, and E1, E2, E3, E¢
of T, and T at some point g on a curve ¥(v). However we will not
choose them to be orthonormal. We take E, equal to K, E4 to be some
other null vector L having unit negative scalar product with E,
(9(Eg, Eg,) = 0, g(Eg, E,) = —1) and E, and E, to be unit spacelike
vectors, orthogonal to each other and to E; and E;

(9(E,, Ey) = g(E, E,) = 1, g(E},E,) = g(E, Eg) = g(E,, E,) = 0, etc.).
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Note that because of the non-orthonormal character of the basis, the
form E2? is in fact equal to the form — Keg_, and E¢ is — L2g,,. It can
be seen that E,, E, and E, constitute a basis for H, while the projec-
tions into Q, of E,, E, and E, form a basis of @,, and the projections of
E, and E, form a basis of S,. We shall normally not distinguish between
a vector Z and its projection into @, or S,. We shall call a basis having
the properties of E,, E,, E,; E,, above, pseudo-orthonormal. By
parallelly transporting them along the geodesic y(v) one obtains a
pseudo-orthonormal basis at each point of y(v).

Wo use this basis to analyse the deviation equation for null gco-
desics. If Z is the vector representing the separation of corresponding
points on neighbouring curves, one has, as before:

LgZ = 0,
80 D Z8 = Ko, 2% (4.30)
dv s
D2
and a;EZ" = ~Re, ,ZcK°K9, (4.31)

In the pseudo-orthonormal basis K2, will be zero as K is geodesic.
Therefore one can express the 1, 2 and 3 components of (4.30) as a
system of ordinary differential equations:

d

$Z“ = K=, ,ZF,

where as before Greek indices take the values 1, 2, 8. This shows that
the projection of Z into the space @, obeys a propagation equation
which involves only this projection, and not the component of Z
parallel to K. Further K3. = 0 since (K°g,, K®)., = 0. This implies
that Z® = — Z°K, is constant along the geodesic ¥(v). This can be
interpreted as saying that light rays emitted from the same source at
different times maintain a constant separation in time. As this is the
case, one is more interested in the behaviour of neighbouring null
geodesics which have purely spatial separations, i.e. one is interested
in vectors Z for which Z® = 0. The projections of such vectors will
then lie in the subspace S, and will obey the equation

d

—m — Km n

dvz K™ .Zn,
where m, n take the values 1, 2 only. This is similar to (4.7) for the
timelike case, except that now one is dealing only with a two-
dimensional space of connecting vectors Z.
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As in the previous section, one can express Z™ in terms of their

values at some point ¢: .
Z”‘(U) = Amn(”) Zﬂlqi

where ﬁmﬂ(v) is a 2 x 2 matrix which satisfies

d ~ ~

@Amn(”) = Km;pApn(”)n (4.32)
dz - ~
mAmn(v) = _Rm4p4Apn(”)' (4.33)

As before we call the antisymmetric part of K,,.,, the vorticity @,,,,
the symmetric part the rate of separation 0,,., and the trace the
expansion 8. We also define the shear &,,, as the trace-free part of 4,,,,.
They obey similar equations to the analogous quantities in the
previous section: 4

@ Ornn == 9017;1; + 2Op(m&nlp! (4-34)
d_dv 0 = — R, KeK®+20° - 26— 30, (4.35)

d A A A A A
= Gmn = = Crana— 9Umn ~OmpOpn— Omp Opp+ 8 (G2 — 0). (4.36)

Equation (4.35) is the analogue of the Raychaudhuri equation for
timelike geodesics. One sees again that vorticity causes expansion
while shear causes contraction. We shall show in the next section that
the Ricci tensor term — R, K2K® will normally be negative, and so
cause focussing. As before the Weyl tensor does not affect the expan-
sion directly but causes distortion which in turn causes contraction
(cf. Penrose (1966)).

4.3 Energy conditions

In the actual universe the energy-momentum tensor will be made up
of contributions from a large number of different matter fields. It
would therefore be impossibly complicated to describe the exact
energy-momentum tensor even if one knew the precise form of the.
contribution of each field and the equations of motion governing it.
In fact, one has little idea of the behaviour of matter under extreme
conditions of density and pressure. Thus it might seem that one has
little hope of predicting the occurrence of singularities in the universe
from the Einstein equations as one does not know the right-hand side
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of the equations. However there are certain inequalities which it is
physically reasonable to assume for the energy-momentum tensor.
These will be discussed in this section. It turns out that in many
circumstances these are sufficient to prove the occurrence of singu-
larities, independent of the exact form of the energy-momentum
tensor.

The first of these inequalities is:

The weak energy condstion

The energy-momentum tensor at each pe.# obeys the inequality
T WeW? > 0 for any timelike vector W e Z,,. By continuity this will
then also be true for any null vector WeT,,.

To an observer whose world-line at p has unit tangent vector V, the
local energy density appears to be T, V2V?. Thus this assumption is
equivalent to saying that the energy density as measured by any
observer is non-negative. This would seem very reasonable physically.
To investigate further the significance of this assumption we use the
fact that one may express the components 7% of the energy-
momentum tensor at p with respect to an orthonormal basis E,, E,,
E,, E,, (E, timelike) in one of four canonical forms.

Type 1. Py
0

ab _ P
e = Ps
0
b
This is the general case in which the energy-momentum tensor has a
timelike eigenvector E,. This eigenvector is unique unless y= —p,
(¢ =1,2,3). The eigenvalue x represents the energy—density as
measured by an observer whose world-line at p has unit tangent
vector E, and the eigenvalues p, (a = 1, 2, 3) represent the principal
pressures in the three spacelike directions E_. This is the form of the
energy-momentum for all observed fields with non-zero rest mass and
also for all zero rest mass fields except in special cases when it is type I1.

Type I1. P O

Tab — 0

0
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This is the special case in which the energy-momentum tensor has
a double null eigenvector (E; + E,). The only observed occurrence of
this form is for zero rest-mass fields when they represent radiation all
of which is travelling in the direction Eg+ E,. In this case p,, p, and x
are zero.

Type 111, p 0 0 0
0 —v 1 1
ab —
T = 0 1 —-v 0
0 1 0 v

This is the special case in which the energy—-momentum tensor has
a triple null eigenvector (E; + E,). There are no observed fields which
have energy-momentum tensors of this form.

Type IV,
ype 2, © .

0
7ot = Pe —x v | E<oi
0

v 0

This is the general case in which the energy~momentum tensor has no
timelike or null eigenvector. There are no observed fields which have
energy—-momentum tensors of this form.

For type I, the weak energy condition will hold if x > 0, u+p, > 0
(¢ =1,2,38). For type Il it willhold if p, > 0, p, 2 0,k > 0, v = + 1.
These inequalities are very reasonable requirements and are satisfied
by all experimentally detected fields. The condition will not hold for
the physically unrealized types III and IV,

The condition will also hold for the scalar field ¢ postulated by Brans
and Dicke and by Dicke (see Dicke (1964)). This field is required to be
positive everywhere. It has an energy—momentum tensor of the form
(3.6) where now m = 0. The energy-tensor of the other fields is ¢ times
what it would have been had the scalar field not existed.

The condition will not hold for the ‘C’-field proposed by Hoyle and -
Narlikar (1963). This again is a scalar field with m zero, only this time
the energy-momentum tensor has the opposite sign and so the energy
density is negative. This allows the simultaneous creation of quanta of
positive energy fields and of the negative energy C-field. This process
occurs in the steady-state model of the universe suggested by Hoyle
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and Narlikar in which, as particles move apart due to the general
expansion of the universe, new matter is continually being created to
keep the average density constant. There is, however, a quantum
mechanical difficulty associated with such a process. For even if the
cross-section for the process were very small, the infinite phase space
available to the positive and negative energy quanta would seem to
result in an infinite number of such pairs being produced in a finite
region of space-time.

Such a catastrophe could not occur if the weak energy condition
held. If a slightly stronger condition holds then creation is impossible
in the sense that space—time must remain empty if it is empty at one
time and no matter comes in from infinity. Conversely, matter present
at one time cannot disappear and so must be present at another time.
The condition is

The dominant energy condition

For every timelike W,, 7®W, W, > 0, and T%W, is a non-spacelike
vector.

This may be interpreted as saying that to any observer the local
energy density appears non-negative and the local energy flow vector
is non-spacelike. An equivalent statement is that in any orthonormal
basis the energy dominates the other components of 7., i.e.

T% > |Te| for each a, b.

This holds for type I if 420, —~p<p, <p(x=1,2,8) and for
type ILif v=+1,k2 0, 0 <p; <k (i=1,2). In other words, the
dominant energy condition is the weak energy condition with the
additional requirement that the pressure should not exceed the energy
density. This holds for all known forms of matter and there is in fact
good reason for believing that this should be the case in all situations.
For the speed of sound waves travelling in the E, direction is dp,[dx
(adiabatic) times the speed of light. Thus dp,/dx must be less than or
equal to one, as by postulate (a) in § 3.2 no signal can propagate faster
than light. It follows that p, < g, since, for every known form of
matter, the pressures are small when the density is small. (Bludman
and Ruderman (1968, 1970) have shown that there might be fields for
which mass renormalization could lead to pressure being greater than
the density. We feel, however, that this probably indicates a failure of
renormalization theory rather than that such a situation would occur.)
Now consider the situation depicted in figure 9 in which there is a C?
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Surfaces {¢ = constant}

/ ¢ increases
/ / (aﬁ\
]

(0%),

t=t -< a;(t')
7 a(t') //

(0%),

FIGURE 9. A compact region % of space-time with past and future non-timelike
boundaries (8%),, (8%), and timelike boundary (8%),. The part of ¥ lying to
the past of the surface J#(t') (defined by ¢ = ) is %(¢').

function ¢ whose gradient is everywhere timelike. (It will be shown in
§ 6.4 that such a function will exist provided space-time is not on the
verge of violating causality.) The boundary 8% of the compact region
% consists of a part (8%),, whose normal form n is non-spacelike and
such that n,t.,g° is positive, a part (%), whose normal form n is non-
spacelike and such that n,t.,g®® is negative, and a remaining part
(8%); (which may be empty). The sign of the normal form n is given by
the requirement that (n, X be positive for all vectors X which point
out of % (cf. §2.8), #°(t') denotes the surface ¢ = ' and %(t’) denotes
the region of % for which t < t’. For later use in § 7.4 we shall establish
an inequality which holds not only for the energy-momentum tensor
T but also for any symmetric tensor 8% which satisfies the dominant
energy condition. Applied to the energy-momentum tensor this
inequality will show that 7'%* vanishes everywhere on % if it vanishes
on (0%), and on the initial surface (8%),.

Lemma 4.3.1

There is some positive constant P such that for any tensor 8o which’
satisfies the dominant energy condition and vanishes on (8%),,

f 89t ,doy, < —-f St . do,
) ny (0%),

'
t t
+P f ( f S""t;ado-b) & + f ( f S"b;ado,,) a.
w()ynx w()yna
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Consider the volume integral
Ity = f (892, )., dv = f 8ot dv+ | Seb .t dv.
xm xm )

By Gauss’ theorem this can be transformed into an integral over the

boundary of #(t):

Ity = j Sobt. . day,.
oat)

The boundary of #(t) will consist of #(t) n % and % n S(t). Since
§ab is zero on (0%),,

1) = f + f + f .
(L) n (09), () n (0%), @ n (L)

By the dominant energy condition, 8§%%,, is a non-spacelike vector
such that 8%%_,¢., > 0. As the normal form to (9%), is non-spacelike
and such that n,t. ,g%° < 0, the second term on the right will be non-
negative. Thus

f S, Ao, < — f St ,dor,
X nor( () n (39), ’

+ f (S0, 1, + 8. ¢ ) dv.
(t)

Since % is compact there will be some upper bound to the components
of ¢, ,, in any orthonormal basis whose timelike vector is in the direc-
tion of ¢, ,. Thus there will be some P > 0 such that on %,

Sebt,,, < PSob, it

for any 8% which obeys the dominant energy condition. The volume
integral over #(t) can be decomposed into a surface integral over
H(t') n % followed by an integral with respect to ¢':

¢

f (PS8, 4t 489 L. ) dv = f ‘f (PSabt,, + 895, dora} dr,
10) o E (G

where do, is the surface element of #°(t'). Thus

f 8ot dor, < — f vt , der,
HOX a0 n ),

t '
+P[([ so.aq)ar+ ([ SAL-
e LG

As an immediate consequence of this result one has:
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The conservation theorem

1f the energy-momentum tensor obeys the dominant energy condition
and is zero on (8%); and on the initial surface (8%),, then it is zero
everywhere on %.

Let z(t) = Tabt, 4ty dv
()

]
- f ( f Tabt_.adab) at > o.
w({)ynd

Then the above lemma gives dz/dt < Pz. But for sufficiently early
values of ¢, #°(t) will not intersect % and so = will vanish. Thus z will
vanish for all # which implies that 7'? is zero on %. O

From the conservation theorem it follows that if the energy-
momentum tensor vanishes on a set .%°, then it also vanishes on the

D¥(#)

R

T srrrs:

N\

kd

F1oure 10. The future Cauchy development D) of a spacelike set &.

future Cauchy development D+(%), which is defined as the set of all
points through which every past-directed non-spacelike curve inter-
sects & (figure 10) (cf. § 6.5). For if ¢ is any point of D*(%), the region
of D+(%) to the past of ¢ is compact (proposition 6.6.6) and may be
taken as %. This result may be interpreted as saying that the
dominant energy condition implies that matter cannot travel faster
than light.

For our consideration of singularities, the importance of the weak
energy condition is that it implies that matter always has a converging
(or more strictly nondiverging) effect on congruences of null geodesics.
If the vorticity vanishes, the expansion & obeys the equation:

d A
5‘9 = —R,, KoKb 2562102




4.3] ENERGY CONDITIONS 95

Thus in this case § will monotonically decrease along the null geodesic
if R, WeW? 2 0 for any null vector W. We shall call this the null
convergence condition. From the Einstein equations,

R, — 39, R+ Agy, = 87T,

it follows that this condition is implied by the weak energy condition,
independent of the value of A.

From (4.26) it can be seen that the expansion 6 of a timelike geodesic
congruence with zero vorticity will monotonically decrease along a
geodesicif R, WeW? > 0 for any timelike vector W. We shall call this
the timelike convergence condition. By the Einstein equation, this condi-
tion will be satisfied if the energy-momentum tensor obeys the
inequality, 1
T, WeWs » Wau{,(gT-grA) .

This will hold for type I if
1
K+ P =0, :u'*'zpa—z;rA =0,
and for type II if
v=+1, k20, 7,20, 2,20 and p1+p2—£-rA 2 0.

We shall say that the energy-momentum tensor satisfies the strong
energy condition if it obeys the above inequality for A = 0. This is a
stricter requirement than the weak energy condition but it is still
physically reasonable for the total energy~momentum tensor. For the
general case, type I, it would be violated only by a negative energy
density or a large negative pressure (e.g. for a perfect fluid with density
1gm cm~2 it can only be violated if p < — 105 atmospheres). It holds
for the electromagnetic field and for the scalar field with m zero (in
particular, it holds for the scalar field of Brans and Dicke). For
m non-zero, the energy-momenturm tensor of a scalar field has the

fi 3.3):
orm (§ ) Tab = ¢;a ¢;b— %gab(¢;c¢;dgm+m2¢2)-
Thus if We is a unit timelike vector
2
Ty WeWo = §W, W = (,, Welt—3 T 6 (4.37)

which may be negative. However by the equation of the scalar field

1m?

37 9" = 1¢.ag™.
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Inserting this in (4.37) and integrating over a region %, one obtains

1] (g"”+2W"W”)¢;a¢:bda—1f . g% dory.
2)a 2 )ox

The first term will be non-negative since g®®+2WeW? is a positive
definite metric and the second term will be small compared to the first
if the region % is large compared to the wavelength k/m. For 7 mesons,
which may be described classically by a scalar field with
m = 6 x 10~ gm, this wavelength is 3 x 10-13 cm. Thus although the
energy-momentum tensor of 7 mesons may not satisfy the strong
energy condition at every point, this should not affect the convergence
of timelike geodesics over distances greater than 10-12 cm. This might
possibly lead to a breakdown of the singularity theorems in chapter 8
when the radius of curvature of space—time becomes less than 10-12 cm
but such a curvature would be so extreme that it might well count as
a singularity (§10.2).

4.4 Conjugate points
In §4.1 we saw that the components of the vector which represented

the separation between a curve y(s) and a neighbouring curve in a
congruence of timelike geodesics, satisfied the Jacobi equation:

2
‘%gza = — uﬂ4Zﬁ (a,f=1,2,38). (4.38)
A solution of this equation will be called a Jacobi field along y(s). Since
a solution may be specified by giving the values of Z* and dZ=/ds at
some point on y(s) there will be six independent Jacobi fields along
v(8). There will be three independent Jacobi fields which vanish at
some point g of y(s). They may be expressed as:

d
25(s) = Aupls) 3. 2l
dz
where a:g—gAap(s) = —RﬂﬂAyﬂ(s)’ (4.39)

and 4,4(s) is a 3 x 3 matrix which vanishes at g. These Jacobi fields
may be thought of as representing the separation of neighbouring
geodesics through g. As before one may define the vorticity, shear and
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expansion of the Jacobi fields along y(s) which vanish at ¢:
d

ﬂ)ap = A—l'y{ﬂ-d}Ad]')" (4.40)
, d
o'aﬁ = A4 1(,,&44,,7—&8‘,‘,0, (441)
d
6 = (det A)—lg(det A). (4.42)

These will obey the equations derived in §4.1, with ¥, = 0. In particular

1 d d
Ayaysdyp = 2 (Aw &Amﬂ — Ay ds A'ya)
will be constant along 7y(s). But it vanishes at ¢ where 4., is zero.
Thus w,, will be zero wherever 4, is non-singular.

We shall say that a point p on y(s) is conjugate to g along y(s) if there
is a Jacobi field along +(s), not identically zero, which vanishes at
g and p. One may think of » as a point where infinitesimally neigh-
bouring geodesics through g intersect. (Note, however, that it may be
only infinitesimally neighbouring geodesics which intersect at p; there
need not be two distinct geodesics from g passing through p.) The
Jacobi fields along y(s) which vanish at g are described by the matrix
4,5 Thusapoint pis conjugate to galong y(s) ifand only if 4,4 issingu-
lar at p. The expansion 6 is defined as (det A)~1d (det A)/ds. Since 4,4
obeys (4.39) where R, is finite, d (det A)/ds will be finite. Thus a point
2 will be conjugate to ¢ along (s) if @ becomes infinite there. The con-
verse will also be true since 6 = d log (det A)/ds and 4,4 can be singular
only at isolated points or else it would be singular everywhere.

Proposition 4.4.1

If at some point y(s;) (s; > 0), the expansion & has a negative value
6, < 0 and if B, VeVb > 0 everywhere then there will be a point
conjugate to g along y(s) between y(s,) and y(s; + (3/~ 6,)), provided
that y(s) can be extended to this parameter value. (This may not be
possible if space-time is geodesically incomplete. In chapter 8 we
shall interpret such incompleteness as evidence of the existence of a
singularity.)

The expansion 6 of the matrix 4,, obeys the Raychaudhuri equation
(4.26): d

—_— = — al/b__ 2 _ 2
350 = — Ban VOV —207— 16
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where we have used the fact that the vorticity is zero. All the terms on
the right-hand side are negative. Thus for s > s,
3
0 < .
s—(81+(3/~64))

So 6 will become infinite and there will be a point conjugate to ¢ for
some value of s between s, and 8,+(3/~6;). O

In other words, if the timelike convergence condition holds and if the
neighbouring geodesics from ¢ start converging on y(s), then some
infinitesimally neighbouring geodesic will intersect y(s) providing that
9(8) can be extended to large enough values of the parameter s.

Proposition 4.4.2

If R, VoVt > 0andif at some point = y(s,) the tidal force R, ; Vo V?
is non zero, there will be values s, and s, such that g = y(s;) and
r = y(sp) will be conjugate along y(s), providing that y(s) can be
extended to these values.

A solution of (4.39) along y(s) is uniquely determined by the values of
4,pand d4,4{dsat p. Consider the set P consisting of all such solutions
for which 44|, = 8,5, (d4,,/ds)], is symmetric with trace 6|, < 0.
For each solution in P there will be some s; > s; for which 4_4(s;) is
singular, since either 6|, < 0, in which case this follows from the
previous result, or 6, = 0, in which case (do,4/ds)|,, is non-zero which
will then cause o2 to be positive and so cause 6 to become negative for
8 > &,. The members of the set P are in one—one correspondence with
the space S of all syrometric 3 x 3 matrices with non-positive trace
(i.e. with the values of dd,,/ds)|,). There is thus a map 7 from S
to y(s) which assigns to each initial value (d4,4/ds)|,, the point on y(s)
where A4, first becomes singular. The map 7 is continuous. Further if
any component of (d4,,/ds)|, is very large, the corresponding point
on y(s) will lie near p, since in the limit the term R, in (4.39) becomes
irrelevant and the solution resembles the flat space case. Thus there is
some C > 0and somes, > s, such that if any component of (d4,,4/ds)|,,
is greater than C, the corresponding point on y(s) will be before y(s,).
However the subspace of S consisting of all matrices all of whose cor-
ponents are less than or equal to C, is compact. This shows that there
is some s; > s, such that %(S) is contained in the segment from y(s;) to
7(85). Consider now a point r = (s,) where s, > 8;. If there is no point
conjugate to r between r and p, the Jacobi fields which are zero at r
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roust have an expansion 8 which is positive at p (otherwise they would
be in the set P which represents all families of Jacobi fields with zero
vorticity which have non-positive expansion at p). It follows from the
previous result that there is then a point g = y(s,) (s; < ;) which is
conjugate to r along y(s). 0O

In a physically realistic solution (though not necessarily in an exact
one with a high degree of symmetry), one would expect every timelike
geodesic to encounter some matter or some gravitational radiation and
80 to contain some point where B, ; V? V¢ was non-zero. Thus it would
be reasonable to assume that in such a solution every timelike geodesic
would contain pairs of conjugate points, provided that it could be
extended sufficiently far in both directions.

We shall also consider the congruence of timelike geodesics normal
to a spacelike three-surface, 3. By a spacelike three-surface, 57, we
mean an irnbedded three-dimensional submanifold defined locally by
f = 0 where fis a C% function and g®f . f,, < 0 when f = 0. We define
N, the unit normal vector to 3#, by N¢ = (—g%f.,f..) 1g°%f., and the
second fundamental tensor y of 3 by x,, = h k2N, where
by = Gop+ N, N, is called the first fundamental tensor (or induced
metric tensor) of 5% (cf. §2.7). It follows from the definition that y is
symmetric. The congruence of timelike geodesics orthogonal to 32 will
consist of the timelike geodesics whose unit tangent vector V equals
the unit normal N at 5# Then one has:

Voo =Xa at 7. (4.43)

The vector Z which represents the separation of a neighbouring
geodesic normal to 3 from a geodesic y(s) normal to 3#°, will obey the
Jacobi equation (4.38). At a point g on y(s) at 5 it will satisfy the
initial condition: d

2% = Xes 2. (4.44)

We shall express the Jacobi fields along y(s) which satisfy the above
condition as Z5(s) = A, 5(5) 29|,

de
where @A,‘g =—R,p4d,p (4.45)
and at g, 4,, is the unit matrix and

d
T Aat = Xay Aop- (4.46)
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We shall say that a point p on y(s) is conjugate to 3#° along y(s) if there
is a Jacobi field along y(s) not identically zero, which satisfies the
initial conditions (4.44) at ¢ and vanishes at p. In other words, p is
conjugate to 3 along y(s) if and only if 4, is singular at p. One may
think of p as being a point where neighbouring geodesics normal to 5#
intersect. As before 4,, will be singular where and only where the
expansion 6 becomes infinite. At g, the initial value of 4,,w,,4 5 will
be zero, therefore v, will be zero on y(s). The initial value of 6 will

be X9

Proposition 4.4.3

If R, VaV? > 0 and x,,9% < 0, there will be a point conjugate to H#
along y(s) within a distance 8/( — x,,9%) from 5#, provided that (s)
can be extended that far.

This may be proved using the Raychaudhuri equation (4.26) as in
proposition 4.4.1. [

We shall call a solution of the equatiori:

dz

'd;,EZm =—R 42" (m,n=1,2)
slong a null geodesic y(v), a Jacobi field along y(v). The components
Z™ could be thought of as the components, with respect to the basis E;
and E,, of a vector in the space S, at each point g. We shall say that
pis conjugate to g along the null geodesic y(v) if there is a Jacobi field
along y(v), not identically zero, which vanishes at ¢ and p. If Z is
a vector connecting neighbouring null geodesics which pass through g,
the component Z2 will be zero everywhere. Thus » can be thought of
as a point where infinitesimally neighbouring geodesics through ¢
intersect. Representing the Jacobi fields along y(v) which vanish at ¢
by the 2 x 2 matrix 4

mns
~ d
Z'"('v) = Amn—vznlq‘

One has as before: 4,8y, Ay, = 0, so the vorticity of the Jacobi fields

which are zero at p vanishes. Also » will be conjugate to ¢ along y(v)’
if and only if . d R
0 = (det Ay 13- (det A)

becomes infinite at ». Analogous to proposition 4.4.1, we have:
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Proposition 4.4.4

If R, KoK > 0 everywhere and if at some point y(v,) the expansion§
has the negative value 8, < 0, then there will be a point conjugate
to ¢ along y(v) between y(v,) and y(v, + (2 - 6,)) provided that y(v)
can be extended that far.

The expansion 8 of the matrix 4,,, obeys (4.35):
d
— = - allb__952 __ 2
d'va R, K°Kb— 252 — 162,
and so the proof proceeds as before. O

Proposition 4.4.5

If B,, K°K® > 0 everywhere and if at p = y(v;), KKK, Ry . Ky is
non-zero, there will be v, and v, such that ¢ = y{v,) and r = y(v,) will
be conjugate along y(v) provided y(v) can be extended to these values.

If KKK, Ry o558 non zero then so is R,,,,. The proof is then
similar to that of proposition 4.4.2. O

As in the timelike case, this condition will be satisfied for a null
geodesic which passes through some matter provided that the matter
is not pure radiation (energy—momentum tensor type II of §4.3) and
moving in the direction of the geodesic tangent vector K. It will be
satisfied in empty space if the null geodesic contains some point where
the Weyl tensor is non-zero and where K does not lie in one of the
directions (there are at most four such directions) at that point for
which K°K4K{,Cycaie K5y = 0. It therefore seems reasonable to assume
that in a physically realistic solution every timelike or null geodesic
will contain a point at which K®K°K( R, K is not zero. We shall
say that a space-time satisfying this condition satisfies the generic
condition.

Similarly we may also consider the null geodesics orthogonal to
a spacelike two-surface . By a spacelike two-surface &, we mean an
imbedded two-dimensional submanifold defined locally by f; = 0,
f» = 0 where f; and f, are C? functions such that when f; = 0, f, = 0
then f,., and f;., are non-vanishing and not parallel and

(fl;a+:u‘f2;a) (fl;b+:uf2;b)gab =0

for two distinct real values u, and p, of . Then any vector lying in the
two-surface is necessarily spacelike. We shall define NV,@ and N2, the
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two null vectors normal to %, as proportional to g®(f;., + &, f..,) and
g°(f1;5 + #2 fo. ) respectively, and normalize them so that

NNt Gy =—1.

One can complete the pseudo-orthonormal basis by introducing two
spacelike unit vectors ¥;¢ and Y;® orthogonal to each other and to Ny®
and N;2. We define the two null second fundamental tensors of & as:

aXab = — Nnc; d(chYIa + Y2CY2a) (Yldylb + deyzb)’

where n takes the values 1, 2. The tensors ;y,, and .y, are symmetric.
There will be two families of null geodesics normal to % corre-

sponding to the two null normals ¥® and N;®. Consider the family
whose tangent vector K equals N, at . We may fix our pseudo-
orthogonal basis E,, E,, E;, E, by takingE, = Y,,E, = Y,, E, = N,,
E, = N, at & and parallelly propagating along the null geodesics.
The projection into the space §, of the vector Z representing the
separation of neighbouring null geodesics from the null geodesic y(v)
will satisfy (4.30) and the initial conditions

Lgmo oy zn (4.47)

d,v mn i
at g on y(v) at &. As before the vorticity of these fields will be zero.
The initial value of the expansion & will be ,y,,g%. Analogous to
proposition 4.4.3 we have:

Proposition 4.4.6

If R, K°K® > 0 everywhere and ,¥,,g% is negative there will be a
point conjugate to & along y(v) within an affine distance 2/( — ,¥,,9%)
from . 0O

From their definition, the existence of conjugate points implies the
existence of self-intersections or caustics in families of geodesics. A
further significance of conjugate points will be discussed in the next
section. ’

4.5 Variation of arc-length

In this section we consider timelike and non-spacelike curves which
are piecewise (® but which may have points at which their tangent
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vector is discontinuous. We shall require that at such points the two
tangent vectors

0 » f‘ = - 1:

o’ o,

and 2 satisfly g(—-—
. t

2
ol_. ot

that is, thcy point into the same half of the null cone.

Proposition 4.5.1

Let % be a convex normal coordinate neighbourhood about ¢. Then the
points which can be reached from g by timelike (respectively non-
spacelike) curves in % are those of the form exp, (X), X €7, where
g(X, X) < O (respectively < 0). (Here, and for the rest of this section,
we consider the map exp to be restricted to the neighbourhood of the
origin in 7, which is diffeomorphic to % under exp,.)

In other words, the null geodesics from g form the boundary of the
region in % which can be reached from ¢ by timelike or non-spacelike
curves in %. This is fairly obvious intuitively but because it is funda-
mental to the concept of causality we shall prove it rigorously. We
first establish the following lemma:

Lemma 4.5.2

In % the timelike geodesics through ¢ are orthogonal to the three-
surfaces of constant ¢ (o < 0) where the value of o at p € % is defined
© to be g{cxp,~1p, exp, 1 p).

The f)roof is based on the fact that the vector representing the separa-
tion of points equal distances along neighbouring geodesics remains
orthogonal to the geodesics if it is so initially. More precisely, let X(t)
denotc a curve in 7}, where g(X(t), X(t)) = — 1. One must show that
the corresponding eurves A(f) = exp,(s,X(t)) (s, constant) in %, where
defined, are orthogonal to the timelike geodesics y(s) = exp,(sX(t,))
(to constant). Thus in terms of the two-surface a defined by
x(s,1) = exp,(sX(()), one must prove that

g t/
(), (8))=°
(see figure 11). Now

& (8 6 (Do 2 2 Da
w\eal~N\swa)ti\e wa)
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Geodesic

Surface ¢ = constant
(¢ =—s5?)

Null Null cone

cone

expg (sX(8))

FiGure 11. In a normal neighbourhood, surfaces at constant distance from g
are orthogonal to the geodesics through g.

The first term on the right is zero as 9/ds is the unit tangent vector to
the timelike geodesics from g. In the second term one has from the
definition of the Lie derivative that

st olos

t  20(%2)=0(2. D) -4 20(2 2) -0
us 389(38’ a) " \es das) " 2aI\ae )T

Therefore g(0/2s, /at) is independent of s. But at s = 0, (8/ét), = 0.
Thus g(2/2s, 8[ét) is identically zero. 0

Proof of proposition 4.5.1. Let C, denote the set of all timelike vectors
at g. These constitute the interior of a solid cone in 7, with vertex at
the origin. Let y(t) be a timelike curve in % ffom g to p and let () be
the piecewise C® curve in 7, defined by ¥(t) = exp,~!(y(t)). Then
identifying the tangent space to 7, with 7}, itself, one has

(of¢), I = (9ft)5],.
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Therefore at g, (8/2t); will be timelike. This shows that the curve ¥(t)
will enter the region C,. But exp, (C,) is the region of % on which o is
negative and in which by the previous lemma the surfaces of constant
o are spacelike. Thus ¢ must monotonically decrease along y(t) since
(8/t), being timelike can never be tangent to the surfaces of constant o
and since at any non-differentiable point of y(t) the two tangent
vectors point into the same half of the null cone. Therefore p € exp,(C,)
which completes the proof for timelike curves. To prove that a non-
spacelike curve y(t) remains in exp, (C,), one performs a small varia-
tion of y(t) which makes it into a timelike curve. Let Y be a vector
field on 7, such that in % the induced vector field exp,(Y) is every-
where timelike and such that g(Y, (9/2t),|,) < 0. For each € > 0 let
B(r,€) be the curve T, starting at the origin such that the tangent
vector (8[or), equals (2[2t););~, +€Y |, o- Then B(r,€) depends differ-
entiably on r and €. For each € > 0, exp, (8(r,¢€)) is a timelike curve
in % and so is contained in exp, (C;). Thus the non-spacelike curve

exp, (B(r,0)) = y(r) is contained in exp, (C;) = exp, (C’q). O
Corollary

If p e % can be reached from ¢ by a non-spacelike curve but not by a
timelike curve, then p lies on a null geodesic from g. O

The length of a non-spacelike curve y(t) from g to p is

tran = [T-o(3 )] e

where the integral is taken over the differentiable sections of the curve.

In a positive definite metric one may seek the shortest curve between
two points but in & Lorentz metric there will not be any shortest curve
as any curve can be deformed into a null curve which has zero length.
However, in certain cases there will be a longest non-spacelike curve
between two points or between a point and a spacelike three-surface.
We deal first with the situation when the two points are close together.
We shall then derive necessary conditions in the general case when the
two points are not close. The sufficient condition in this case will be
dealt with in §6.7.

Proposition 4.5.3

Let ¢ and p lie in a convex normal neighbourhood %. Then, if g and p
can be joined by a non-spacelike curve in %, the longest such curve
is the unique non-spacelike geodesic curve in % from q to p. Moreover,
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defining p(g, p) as the length of this curve if it exists, and as zero
otherwise, p(g, p) is a continuous function on % x #%.

By the definition of convex normal neighbourhoods (§2.5), there is
a unique geodesic y(t) in % with y(0) = g, y(1) = p. Since this geodesic
depends differentiably on its endpoints, the function

en=[0((a), (@),

will be differentiable on % x %. (This function ¢ is the same as that
in lemma 4.5.2.) Thus p(g,p) will be continuous on % x % since it
equals [—o(g, p)P if o < 0 and is zero otherwise. It now remains to
show that if g and p can be joined by a timelike curve in % then the
timelike geodesic y between them is the longest such curve. Let a(s, t)
be exp, (sX(t)) as before where g(X(t), X(t)) = — 1. If A(?) is a time-
like curve in % from q to p, it can be represented as A(t) = a(f(t),?).

Then (_9_) o 2 a)

aly as), i),
Since the two vectors on the right are mutually orthogonal by lemma
4.5.2. and since g((2/2s),, (8/2s),) = — 1, this gives

o((&), (&)) = -ver+e((3), (7)) > v

the equality holding if and only if (¢/2f), = 0 and hence if and only if
Ais a geodesic curve. Thus

LA, g,p) < f:f ‘(t)dt = plg, p),

the equality holding if and only if A is the unique geodesic curve in %
from g to p. a

We shall now consider the case where ¢ and p are not necessarily
contained in a convex normal neighbourhood %. By considering small
variations we shall derive necessary conditions for a timelike curve
() from g to p to be the longest such curve from ¢ to p. A variationa
of y(t) is a C*~ map a: (—¢,€) x[0,£,]> .4 such that

(1) (0,8) = y);

(2) thereis a subdivision0 = ¢, < ¢,... <t, =, of [0,,] such that
a is C? on each (—¢,€) % [t;,t;,,];

(3) a(u,0) = g, o(u, tp) =9

(4) for each constant u, a(u,t) is a timelike curve.
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The vector (8/du),|,~¢ Will be called the wvariation vector Z. Con-
versely, given a continuous, piecewise C? vector field Z along (¢)
vanishing at ¢ and p, we may define a variation a for which Z will
be the variation vector by:

a(u’ t) = exp, (uz|r)’
where u € (—¢, €) for some € > 0 and r = y({).

Lemma 4.5.4
The variation of the length from g to p under « is

o 2], el R e @)a) o Ze e [l

where f2 = g(8[ét, 2[ét) is the magnitude of the tangent vector and
[f-18/et] is the discontinuity at one of the singular points of y(t).

We have: .
(e )

~2[o(m 5 7)/

3fofB4 e

-3 [5(6(Z 2)) -0 (2 B2

Integrating the first term by parts one has the required formula. 0O

oL
du

One may simplify the formula by choosing the parameter ¢ to be the
arc-length s. Then g(d/ét, 8]ot) = — 1. We shall denote by V the unit
tangent vector 2/2s. One has:

L n—1 fli4y n=1
% > f 9(Z,V)ds+ ¥ g(Z,[V])
u=0 i=1JY i=2

where V = DV/as is the acceleration. From this one sees again that a
necessary condition for y(t) to be the longest curve from g to p is that
it should be an unbroken geodesic curve as otherwise one could choose
a variation which would yield a longer curve.

One may also consider a timelike curve y(t) from a spacelike three-
surface 5# to a point p. A variation « of this curve is defined as before
except that condition (3) is replaced by:

(3) a(x,0) lieson 3, a(u,t,) = p
Thus at 3# the variation vector Z = 8/ou lies in 3.
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Lemma 4.5.5
aL n—1
| = " (v, 2)ds+ Z g(Z (VD) +9(Z, V)|smo-
u=0 i=1
The proof is as for lemma, 4.5.4. a

From this one sees that a necessary condition for (t) to be the longest
curve from 5% to p is that it is an unbroken geodesic curve orthogonal
to .

We have seen that, under a variation «, the first derivative of the
length of a timelike geodesic curve is zero. To proceed further we shall
calculate the second derivative. We define a two-parameter variation
a of a geodesic curve y(t) from ¢ to p as a C* map:

o (—€,6) % (—€p6)x[0,8,] > A
such that

(1) (0,0,t) = y(1);

(2) there is a subdivision 0 =¢; < ¢, < ... < t, =1, of [0,£,] such
that « is C° on each

(—€1,61) X (—€p€) x [ty 2,415

(3) alug, up,0) =g, (uy, Up, b)) = P;
(4) for all constant w,, u,, a(u,, Uy, t) is a timelike curve.
Uy =0y

We define
2
Z,=|—
! (3“1) alty=0

Z:= (%)I:.:S

as the two variation vectors. Conversely given two continuous, piece-
wise C? vector fields Z, and Z, along y(t) one may define a variation
for which they will be the variation vectors, by:

a(ull Us, t) = exp, (ulzl + u2Z2)’
= ().
Lemma 4.5.6
Under the two-parameter variation of the geodesic curve (), the
second derivative of the length will be:

2L n=1 fPliy, z z y
augaul:z:ﬁ?l]; 9( "{aﬂ‘ 2 +9(V,25) V) —R(Y, Z”V})ds

T ?.329 (Zv [5; (Z:+9(V,Zy) V)]).
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By lemma 4.5.4, one has:

sy~ =[Gl g G)al) e (o [))
Therefore
2L

o= 2o a oz a1 (8)3)
zfg(au {f (af)g; flalz,;?:t
-+ () @) g+ (o) v (B) )

e 3 +2o aal5))
+ s 1_ + 1
% (g [13]) + 2
The first and third terms vanish as y(t) is an unbroken geodesic curve.

In the second term one can write:

DDoe (aaaDDa

Btz Oty

7 3uy) @ 5 B, 6

_ _r(2 2y2, D22
- 8t’3u)3t o du,

&f 0 Do 2
and au,at”"it(f g(au, a at))

-2l bl ) o(es 34)
In the fourth term:

?a%[f aJ [f_latau 9(3322»;})5]

Then taking t to be the arc-length s, one obtains the required result. O

Although it is not immediately obvious from the appearance of the
expression, one knows from its definition that it is symmetric in the
two variation vector fields Z, and Z,. One sees that it only depends on
the projections of Z, and Z, into the space orthogonal to V. Thus we
can confine our attention to variations & whose variation vectors are
orthogonal to V. We shall define 7, to be the (infinite-dimensional)
vector space consisting of all continuous, piecewise C? vector fields
along y(t) orthogonal to V and vanishing at ¢ and p. Then 82L[ou,du
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will be a symmetric map of 7, x 7, to R!. One may think of it as
a symmetric tensor on 7, and write it as:

2L

L(Z,2,) = -0, Z4,Z,eT,.
(1 2)331:2_8 1y L2 C 4,y

One may also calculate the second derivative of the length from 5#
to p of a geodesic curve y(f) normal to 3. One proceeds as before
except that one endpoint of y(t) is allowed to vary over 5# instead of
being fixed.

Lemma 4.5.7
The second derivative of the length of y(t) from 3 to p is:

2L n—1 ptiy,
w0 = Z,, Z -R(\V,Z2,)V )
Oy 0y 120 ¢§1 fu ( ! (V. Z,) }

n—1 D D
+ ‘2_:29 (Zn [3—8 Zz]) +g (Zv 5;22) x—X(Zb Zz)Lr,

where Z, and Z, have been taken orthogonal to V and y(Z,, Z,) is the
second fundamental tensor of 5.

The first two terms are as for lemma 4.5.6. The extra terms are:

D (2 .,8\ _ D 2 a)
W(a‘«z'f 'a't)l U g(auzau;atl

Do @ o 0 2 D @
-3, g —1,( 9. =2 °.
0z 23) o A 0 e B
The second term vanishes as 8[du, is orthogonal to 8/ét. If one takes
t to be the arc-length s, then 8/2t will be equal to the unit normal N

at 3. Since the endpoint of (f) is restricted to varying over 5, 8[ou,
will always be orthogonal to N. Thus

D @0 0 0 ¢ Db 2 0
g(iu:'a‘u:'N)='5u:9(w;N)‘g(m5u:N)=—X(a—w5@)- =

We shall say that a timelike geodesic curve y(t) from g to p is maximal
if L(Z,,Z,) is negative semi-definite. In other words, if y(t) is not
maximal there is a small variation & which yields a longer curve from
 to g. Similarly we shall say that a timelike geodesic curve from 3¢
to p normal to 3 is maximal if L(Z,,Z,) is negative semi-definite,
soif y(t) is not maximal there is a small variation which yields a longer
curve from 5% to p.
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Proposition 4.5.8
A timelike geodesic curve y(t) from ¢ to p is maximal if and only if
there is no point conjugate to g along ¥(f) in (g, p).

Suppose there is no conjugate point in (g, ). Then introduce a Fermi-
propagated orthonormal basis along y(t). The Jacobi fields along (f)
which vanish at g will be represented by a matrix 4,,(¢) which will be
non-singular in (g, ), but which will be singular at g and possibly at p.
Since conjugate points are isolated, d(log det A)/ds will be infinite
where 4, is singular. Thus a C° piecewise C* vector field ZeZ,
can be expressed in {g, p] as

Z==A,,W*,
where W# is C°, piecewise C! on [g, p]. Then,

LZ,Z) = zf:'Aa, Wﬂ‘dsz(Aa, W)+ Bogyad,s Wa}d.s
+54,, W [d—s (4., W")]
= lim 2 [’ Aa,Wﬂ{2d Aa,d W+ Aa,d;W‘}d.s
+XA4,, W4, [(% W’]

% d d
= Qs Ly Wi

d

Aaﬂd

) Wa}d.s

(We take the limit because the second derivative of W? may not be
defined at g.) But

(dA A AaﬂdA) —24, 40, 4, = 0.

Therefore L(Z,Z) < 0.

Conversely, suppose there is a point r €(g, p) conjugate to g along
v(t). Let W be the Jacobi field along y which vanishes at ¢ and r.
Let K € T, be such that

K"gab;—zm =—1 at 7.
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Extend W to p by putting it zero in [r, p]. Let Z be ¢K +¢~1W, where
¢ is some constant. Then

L(Z,Z) = eL(K,K) +2L(K, W) + 2¢2L(W, W) = ¢2L(K,K) + 2.
Thus by taking € small enough, L(Z, Z) may be made positive. ]

One may obtain similar results for the case of a timelike geodesic
curve y(t) orthogonal to 5#, from 5 to p.

Proposition 4.5.9
A timelike geodesic curve y(f) from 5 to p is maximal if and only if
there is no point in (J#, ¢) conjugate to 5# along v. O

We shall also consider variations of a non-spacelike curve y(t) from ¢
to p. We shall be interested in the circumstances under which it is
possible to find a variation a of y(f) which makes g(2/2t, 8/2t) negative
everywhere, or in other words, yields a timelike curve from ¢ to p.
Under a variation a:

L(2.)- (25 - (B2
a\I\a z)) = “Nawava) =9 5;%"5:)

() w550 e

In order to obtain a timelike curve from q to p, one requires this to be
less than or equal to zero everywhere on y(t).

Proposition 4.5.10
If p and g are joined by a non-spacelike curve y(t) which is not a null
geodesic they can also be joined by a timelike curve.

If y(t) is not a null geodesic curve from p to g, there must be some point
at which the tangent vector is discontinuous, or there must be some
open interval on which the acceleration vector (D/ét) (¢/ét) is non-zero
and not parallel to 2fét. Consider first the case where there are no
discontinuities. One has

(22.2)-12(s(3.2)) =0
Nazwa) za\l\aa)) ="

This shows that (D/ét) (8/et) is a spacelike vector where it is non-zero
and not parallel to 9/2t. Let W be a C? timelike vector field along y(t)
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such that g(W, d/at) < 0. Then one will obtain a timelike curve from
p to ¢ under the variation whose variation vector is

Do
t
with x=cle f eb(1 — bya?)dt,
iy
here a? = I—)ﬁ D-é
v =9N\aa 3 a)

2
Cc= —g(W,gt),

t Do
- —1
b= J;’ c g(W, = 8t)dt’

and y is a C% non-negative function on [p, ¢] such thaty,, = y, = 0Oand

f " eb(1—}ya?)dt = 0.
te

Suppose now there is some subdivision ¢, < #;, < #, < ... < t, such that
the tangent vector &/t is continuous on each segment [,,,,]. If
a segment [1;, ¢, ,] is not a null geodesic curve, it can be varied to give
a timelike curve between its endpoints. Thus one has only to show
that one can obtain a timelike curve from a non-spacelike curve y(¢)
made up of null geodesic segments whose tangent vectors are not
parallel at points of discontinuity y(¢;). The parameter ¢ can be taken
to be an affine parameter on each segment [#,, ¢,,,]. The discontinuity
[a/a:]|t.. will be a spacelike vector, as it is the difference between two
non-parallel null vectors in the same half of the null cone. Thus one
can find a C? vector field W along [t,_,,¢,,,] such that g(W, 9/ét) < Oon
[t;_1,t;] and g(W,2/ét) > O on [¢;,t,,,]. Then a timelike curve between
v(t,_,) and y(t;,,) will be obtained from the variation with variation
vector field Z =2W, where x = ¢ Yt,,,— ;) (t—¢,_,) for ¢, , <t <,
andx = cYt;—t; ) (8;,,—t)foré; < ¢ < ¢y, wherec = —g(W, dfat). O
Thus if y(t) is not a geodesic curve, it can be varied to give a timelike
curve. If it is a geodesic curve, the parameter ¢ may be taken to be an
affine parameter. One then sees that a necessary, but not sufficient,
condition for a variation to yield a timelike curve is that the variation
vector 8/du should be orthogonal to the tangent vector /2t everywhere
on y(t), since otherwise (9/2t) g(9/du, 8/2t) would be positive somewhere
on y(t). For such a variation the first derivative (8/du)g(2/et, d/at) will
be zero and so one will have to examine the second derivative.
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We shall therefore consider a two-parameter variation a of a null
geodesic y(t) from g to p. The variation o will be defined as before
except that, for the reason given above, we shall restrict ourselves to
variations whose variation vectors

2 2
malzy 2 Epls
are orthogonal to the tangent vector 8/ét on y(t).

It is not convenient to study the behaviour of L under such a varia-
tion since (—g(/at, a/at))} is not differentiable when g(d/t, 8/at) = 0.
Instead we shall consider the variation in:

n=1 e (9
A‘“Elﬁ, (at at)d‘

Clearly a necessary but not sufficient condition that a variation « of
v(t) should yield a timelike curve from g to p is that A should become
positive.

One has

12 (aa B aﬂ((ia _a((_@_Dg
23u,3u1(g &'&))‘auzat g aul’&)) 2u,\I\ 70, & at))
28 ((a E (a {Dﬂ 3
2u o\’ W;at))“" 2u,” | 988 B
2 a\2
“R(55,)3)
and so

1 o2A e o\
35 aullz-o zf( atﬂauz R(&'aT,)a"t})d‘

(i 2] e

This formula is very similar to that for the variation of the length of
a timelike curve. It can be seen that the variation of A is zero for a
variation vector proportional to the tangent vector /ot since a/at is
null and R(3/at,dfat)(9/ot) =0 as the Riemann tensor is anti-
symmetric. Such a variation would be equivalent to simply repara-
metrizing y(t). Thus if one wants a variation which will give a timelike
curve one need consider only the projection of the variation vector into
the space S, at each point g of y(t). In other words, introducing a
pseudo-orthonormal basis E,, E,, E;, E, along y(t) with E, = 9/at, the
variation of A will depend only on the components Z™ of the variation
vector (m = 1,2).
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Proposition 4.5.11

If there is no point in [g, 7] conjugate to ¢ along y(t) then d?A[du?|, .,
will be negative for any variation a of y(t) whose variation vector
d/oul,, .o is orthogonal to the tangent vector /2 on ¥(t) and is not every-
where zero or proportional to 3/ét. In other words, if there is no point
in {g, p] conjugate to g then there is no small variation of y(¢) which
gives a timelike curve from g to p.

The proof is similar to that for proposition 4.5.8, using instead the
2x 2 matrix 4,,, of §4.2. o

Proposition 4.5.12
If there is a point r in (g, p) conjugate to ¢ along ¥(t) then there will be
a variation of y(t) which will give a timelike curve from ¢ to p.

The proof is a bit finicky since one has to show that the tangent vector
becomes timelike everywhere. Let W™ be the components in the space
S (see §4.2) of the Jacobi field which vanishes at g and . It obeys

d2

Et_é W = m4n¢ wn,
where for convenience ¢ has been taken to be an affine parameter.
Since W™ will be at least C* and since dW™/d¢ is not zero at g and ,
one can write W™ = f| J#™ where I/ is a unit vector and fand Ware C2.
Then

I =0,
~ d A A
where h=Wm d—’W + Ry WTW™

Let z [, p) be such that W™isnot zero in [r, ]. Let %, be the minimum
value of %2 in [r,z]. Let a > 0 be such that a2+ 4%, > 0 and let
b = {—f(e** —1)~'}|,. Then the field

Zm = (et~ 1) +f} m

will vanish at ¢ and = and will satisfy

zm (:zz +BpinaZ") >0 in (g.2).

We shall choose a variation a(u,t) of y(t) from ¢ to x such that the
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components in § of its variation vector 8/du|,.., equals Z™ and such

g(%%’at =0
satisfies
b —et for O0<t< i,
Do @ d /]
= = —_— - — £ . <L <%,
(mm o) to(mam)|, = {ee-t) for H<i<i

e(tz_t) for 2tz Sty

where t, is the value of ¢ at z, and € > 0 but less than the least value of
Zm (d2Z™[de2 + R0 Z™) in the range 3, <t < §t,. Then by (4.49)
(2*/u) g(d[et, 2[at) will be negative everywhere in [g,x] and so for
sufficiently small u, « will give a timelike curve from ¢ to z. If one joins
this curve to the section of  from x to p, one will obtain a non-spacelike
curve from g to  which is not a null geodesic curve. Thus there will
be a variation of this curve which gives a timelike curve from g to p. O

By similar methods one can prove:

Proposition 4.5.13

If (t) is a null geodesic curve orthogonal to a spacelike two-surface &
from & to p and if there is no point in [%, »] conjugate to & along ¥,
then no small variation of  can give a timelike curve from & to p . O

Proposition 4.5.14
If there is a point in (&, p) conjugate to & along p, then there is a
variation of v which gives a timelike curve from & to 2. O

These results on variations of timelike and non-spacelike curves will
be used in chapter 8 to show the non-existence of longest geodesics.




5
Exact solutions

Any space-time metric can in a sense be regarded as satisfying
Einstein’s field equations

Rap = 4Rgay+ Agap = 81Ty, (6.1)

(where we use the units of chapter 3), because, having determined the
left-hand side of (5.1) from the metric tensor of the space-time
(A#,8), one can define T, as the right-hand side of (5.1). The matter
tensor so defined will in general have unreasonable physical properties;
the solution will be reasonable only if the matter content is reasonable.

‘We shall mean by an ezact solution of Einstein’s equations, a space—
time (4,8) in which the field equations are satisfied with 7, the
energy-momentum tensor of some specified form of matter which
obeys postulate (a) (‘local causality’) of chapter 3, and one of the
energy conditions of §4.3. In particular, one may look for exact
solutions for empty space (T, = 0), for an electromagnetic field (7,
has the form (3.7)), for a perfect fluid (7}, has the form (3.8)), or for
a space containing an electromagnetic field and a perfect fluid.
Because of the complexity of the field equations, one cannot find
exact solutions except in spaces of rather high symmetry. Exact
solutions are also idealized in that any region of space-time is likely to
contain many forms of matter, while one can obtain exact solutions
only for rather simple matter content. Nevertheless, exact solutions
give an idea of the qualitative features that can arise in General
Relativity, and so of possible properties of realistic solutions of the field
equations. The examples we give will show many types of behaviour
which will be of interest in later chapters. We shall discuss solutions
with particular reference to their global properties. Many of these
global properties have only recently been discovered, although the
solutions have heen known in a local form for some time.

In §5.1 and §5.2 we consider the simplest Lorentz metrics: those of
constant curvature. The spatially isotropic and homogeneous cosmo-
logical models are described in §5.3, and their simplest anisotropic

[117]
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generalizations are discussed in § 5.4. It is shown that all such simple
models will have a singular origin provided that A does not take large
positive values. The spherically symmetric metrics which describe
the field outside a massive charged or neutral body are examined in
§5.5, and the axially symmetric metrics describing the field outside
a special class of massive rotating bodies are described in §5.6. It is
shown that some of the apparent singularities are simply due to a bad
choice of coordinates. In §5.7 we describe the G&del universe and in
§ 5.8 the Taub-NUT solutions. These probably do not represent the
actual universe but they are of interest because of their pathological
global properties. Finally some other exact solutions of interest are
mentioned in §5.9.

5.1 Minkowski space-time

Minkowski space-time (.#,7) is the simplest empty space-time in
General Relativity, and is in fact the space—time of Special Relativity.
Mathematically, it is the manifold R* with a flat Lorentz metric v,.
In terms of the natural coordinates (!, 2% 23, 2%) on R4, the metric
can be expressed in the form

ds? = — (dx%)2+ (dx?)? + (dz?)% + (dx?)2 (5.2)

If one uses spherical polar coordinates (f,7,0,¢) where a4 =1,
2% =rcosf, 22 = rsinfcos ¢, 2! = rsinfsin¢, the metric takes the

form ds? = —dt2+dr2+ 72 (d62 +sin? 6 dg3). (5.3)

This metric is apparently singular for r = 0 and sin @ = 0; however
this is because the coordinates used are not admissible coordinates at
these points. To obtain regular coordinate neighbourhoods one has to
restrict the coordinates, e.g. to the ranges 0 <7 <00, 0 < 8 < 7,
0 < ¢ < 271. One needs two such coordinate neighbourhoods to cover
the whole of Minkowski space.

An alternative coordinate system is given by choosing advanced
and retarded null coordinates », w defined by v = t+7, w=1¢—7
(= v 2 w). The metric becomes

ds? = — dvdw+ }{v—w)? (d62 +sin26 d¢?), (5.4)

where —o0 < v < 00, —00 < w < c0. The absence in the metric of
terms in dv?, dw? corresponds to the fact that the surfaces {w = con-
stant}, {v = constant} are null (ie. w;,w;,g® = 0 = v,,v,,¢°); see
figure 12.
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W = constant

w == constant

= constant

v == constant

v = constant

/

r = constant

<30

(i) (ii)
Fi1curkg 12. Minkowski space. The null coordinate »(w) may be thought of as
incoming (outgoing) spherical waves travelling at the speed of light; they are
advanced (retarded) time coordinates. The intersection of a surface
{v = constant} with a surface {w = constant} is a two-sphere.
(i) The v, w coordinate surfaces (one coordinate is suppressed).
(ii) The (¢, r) plane; each point represents a two-sphere of radius 7.

In a coordinate system in which the metric takes the form (5.2), the
geodesics have the form z2(v) = b% + ¢ where b% and ¢® are constants.
Thus the exponential map exp,: 7,,—.# is given by

xz° (expp X) = Xa + xa(p),
where X are the components of X with respect to the coordinate basis
{9/2x=} of T,,. Since exp is one—one and onto, it is a diffeomorphism
between 7}, and .#. Thus any two points of .# can be joined by a
unique geodesic curve. As exp is defined everywhere on 7, for all p,
{#,n) is geodesically complete.

For a spacelike three-surface &, the future (past) Cauchy develop-
ment DHF) (D—(S)) is defined as the set of all points g€ .4 such that
each past-directed (future-directed) inextendible non-spacelike curve
through ¢ intersects &, cf. §6.5. If DH(&) U D-(¥) = A, i.e. if every
inextendible non-spacelike curve in .# intersects &, then & is said
to be a Cauchy surface. In Minkowski space-time, the surfaces
{x* = constant} are a family of Cauchy surfaces which cover the whole
of A . One can however find inextendible spacelike surfaces which are
not Cauchy surfaces; for example the surfaces

&: {— (2%)2+ (@)% + (2?)2 + (2®)? = o = constant},
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where o < 0, 2% < 0, are spacelike surfaces which lie entirely inside the
past null cone of the origin 0, and so are not Cauchy surfaces (see
figure 13). In fact the future Cauchy development of %, is the region
bounded by &, and the past light cone of the origin. By lemma 4.5.2,
the timelike geodesics through the origin O are orthogonal to the
surfaces &,. If reDHS)uD-(¥,) then the timelike geodesic
through r and O is the longest timelike curve between r and &,. If

Null
geodesic

Future null

cone of O Uniformly

accelerating
timelike
curve

Surface
{x* = constant}

Past null o
cone of O

Ficurg 13. A Cauchy surface {z* = constant} in Minkowski space-time, and
spacelike surfaces &, %, which are not Cauchy surfaces. The normal geodesics
to the surfaces ¥, %, all intersect at O.

however r does not lie in D*+(%,) U D-(%,) there is no longest timelike
curve between 7 and %, : either r lies in the region ¢ > 0, in which case
there is no timelike geodesic through r orthogonal to &%, or 7 lies in
the region o < 0, x* > 0, in which case there is a timelike geodesic
through r orthogonal to &%, but this geodesic is not the longest curve:
between r and %, as it contains a conjugate point to %, at O (cf.
figure 13). '

To study the structure of infinity in Minkowski space-time, we shall
use the interesting representation of this space—time given by Penrose.
From the null coordinates v, w, we define new null coordinates in
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which the infinities of v, w have been transformed to finite values;
thus we define p, ¢ by tanp = v, tang = w where —m < p < i,
—34n < g < 47 (and p 2> ¢). Then the metric of (.#,%) takes the form

ds? = sec®psec? g( —dpdg+ }sin2(p—¢) (d62 +sin2 6 dg?)).
The physical metric v) is therefore conformal to the metric g given by
ds? = — 4dpdg +sin? (p— ¢) (d6% + sin26 d¢p?). (5.5)
This metric can be reduced to a more usual form by defining
t'=p+q, =p-g¢
where —a<t+r<n, —a<t-r<a rz0 (5.8)
(5.5) is then
ds? = — (dt')?+ (dr')? + sin?r’(d6% + sin2 6 dg?). (5.7)
Thus the whole of Minkowski space—~time is given by the region (5.6) of
the metric ds? = }sec? (§(t' +7')) sec? (3(¢' —r’)) d52

where ds? is determined by (5.7); the coordinates ¢, r of (5.3) are
related to ¢, 7’ by

2t = tan (3(t' +7')) + tan (3(¢' — 7)),
27 = tan (3(' +7)) —tan (3(¢' —1")).

Now the metric (5.7) is locally identical to that of the Einstein static
universe (see §5.3), which is a completely homogeneous space—-time.
One can analytically extend (5.7) to the whole of the Einstein static
universe, that is one can extend the coordinates to cover the manifold
R1x 83 where —o0 < t' < o0 and 7', 6, ¢ are regarded as coordinates
on S? (with coordinate singularities at ¥’ = 0,7 =7and 6 =0,0 =7
similar to the coordinate singularities in (5.3); these singularities can
be removed by transforming to other local coordinates in a neighbour-
hood of points where (5.7) is singular). On suppressing two dimensions,
one can represent the Einstein static universe as the cylinder
22 +y2% = 1 imbedded in a three-dimensional Minkowski space with
metric ds? = — d¢?+ dz?+ dy? (the full Einstein static universe can be
imbedded as the cylinder 22+ y2+422+w? =1 in a five-dimensional
Euclidean space with metric ds? = —di2+dz?+dy?+dz2+dw?, cf.
Robertson (1933)).

One therefore has the situation: the whole of Minkowski space-time
is conformal to the region (5.6) of the Einstein static universe, that is,
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to the shaded area in figure 14. The boundary of this region may there-
fore be thought of as representing the conformal structure of infinity
of Minkowski space-time. It consists of the null surfaces z = »
(labelled £+) and ¢ = — } (labelled .£~) together with points p = 3,
g = }n (labelled i+), p = 4n, ¢ = —4n (labelled °) and p = —}n,

= —}n (labelled i~). Any future-directed timelike geodesic in

\D
NH—-—[' =7
i+ /
£+
i
v t'=0
——
Pk—t' ="
s~ v
o
N\ r
—
Y =n
r =0

FIcure 14. The Einstein static universe represented by an imbedded cylinder;
the coordinates 6, ¢ have been suppressed. Each point represents vne half
of a two-sphere of area 47sin*r’. The shaded region is conformal to the whole of
Minkowski space—time; its boundary (part of the null cones of ¢+, 2° and ¢~)may
be regarded as the conformal infinity of Minkowski space—time.

Minkowski space approaches i+ (i~) for indefinitely large positive
(negative) values of its affine parameter, 80 one can regard any time-
like geodesic as originating at ¢~ and finishing at ¢+ (cf. figure 15(3)).
Similarly one can regard null geodesics as originating at #—and ending
at #+, while spacelike geodesics both originate and end at ¢°. Thus one
may regard i+ and i~ as representing future and past timelike infinity,
J+ and - as representing future and past null infinity, and ° as
representing spacelike infinity. (However non-geodesic curves do not




5.1] MINKOWSKI SPACE-TIME 123

obey these rules; e.g. non-geodesic timelike curves may start on Sf—
and end on £+.) Since any Cauchy surface intersects all timelike and
null geodesics, it is clear that it will appear as a cross-section of the
space everywhere reaching the boundary at °.

r=0
it SHr =oo,
i*(g = }n) t =+00)

FHp = in)

Surface {g = constant}

1° (regard as

{g = constant}

Surfaces
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Figure 16

(1) The shaded region of figure 14, with only one coordinate suppressed,
representing Minkowski space-time and its conformal infinity.

(ii) The Penrose diagram of Minkowski space-time; each point represents
a two-sphere, except for i+, 2° and ¢, each of which is a single point, and points
on the line = 0 (where the polar coordinates are singular).

One can also represent the conformal structure of infinity by
drawing a diagram of the (’,7') plane, see figure 15 (ii). As in figure
12 (ii), each point of this diagram represents a sphere S2, and radial
null geodesics are represented by straight lines at + 45°. In fact, the
structure of infinity in any spherically symmetric space—time can be
represented by a diagram of this sort, which we shall call a Penrose
diagram. On such diagrams we shall represent infinity by single lines,
the origin of polar coordinates by dotted lines, and irremovable singu-
larities of the metric by double lines.

The conformal structure of Minkowski space we have described is
what one would regard as the ‘normal’ behaviour of a space-time at
infinity; we shall encounter different types of behaviour in later
sections.

Finally, we mention that one can obtain spaces locally identical to
(#,%) but with different (large scale) topological properties by identi-
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fying points in .# which are equivalent under a discrete isometry
without a fixed point (e.g. identifying the point (x?, 2, 23, 2%) with the
point (x%, 22,23, 2% + ¢), where c is a constant, changes the topological
structure from R? to R? x §%, and introduces closed timelike lines into
the space-time). Clearly, (#, %) is the universal covering space for
all such derived spaces, which have been studied in detail by Auslander
and Markus (1958).

5.2 De Sitter and anti-de Sitter space-times

The space—time metrics of constant curvature are locally characterized
by the condition R,,.; = fR(ga.9pa — aaTsc)- This equation is equiva-
lenttoC,,.; = 0 = R,, — }Rg,,; thus the Riemann tensor is determined
by the Ricci scalar R alone. It follows at once from the contracted
Bianchi identities that R is constant throughout space-time; in fact
these space—times are homogeneous. The Einstein tensor is

R,,—1Rg,, = —}Rg,.

One can therefore regard these spaces as solutions of the field
equations for an empty space with A = }R, or for a perfect fluid with
a constant density R[327 and a constant pressure — R[32n. However
the latter choice does not seem reasonable, as in this case one cannot
have both the density and the pressure positive; in addition, the
equation of motion (3.10) is indeterminate for such a fluid.

The space of constant curvature with R = 0 is Minkowski space—
time. The space for R > 0 is de Sitter space-time, which has the
topology R x S3 (see Schridinger (1956) for an interesting account of
this space). It is easiest visualized as the hyperboloid

_v2+w2+xﬂ+y2+zﬂ - aﬂ
in flat five-dimensional space R® with metric
—dv? + dw? + da? + dy? 4+ d22 = ds?

(see figure 16). One can introduce coordinates (¢, x, 6, ¢) on the hyper-
boloid by the relations

asinh (a~%) = v, acosh (e )cosy = w,
a cosh (~')sin y cos @ = x, o cosh (¢~*)sin ysinfcos¢ = y,

acosh (a~) sin ¥sinfsin ¢ = z.
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Fi1cure 16. De Sitter space-time represented by a hyperboloid imbedded in
a five-dimensional flat space (two dimensions are suppressed in the figure).
(i) Coordinates(t, ¥, 6, $) cover the whole hyperboloid; the sections {t = con-
stant} are surfaces of curvature k = + 1.
(ii) Coordinates (£, 2, §,2) cover half the hyperboloid; the surfaces
{f = constant} are flat three-spaces, their geodesic normals diverging from a
pcint in the infinite past.

In these coordinates, the metric has the form
ds? = —di® + a?. cosh? (a~1t) . {dx® +sin® y(d6® + sin? 6 d¢%)}.

The singularities in the metricat y=0, y=nandat 6 =0, 6 = =,
are simply those that occur with polar coordinates. Apart from these
trivial singularities, the coordinates cover the whole space for
—0<t<0,0gy<m0<60<7,0< ¢ < 27 The spatial sections
of constant ¢ are spheres S® of constant positive curvature and are
Cauchy surfaces. Their geodesic normals are lines which contract
monotonically to a minimum spatial separation and then re-expand
to infinity (see figure 16 (i)).
One can also introduce coordinates

w+v ox oy oz
’ i'— ’
o w+v

§ Sw+v T wav

{=oalog

on the hyperboloid. In these coordinates, the metric takes the form
ds? = — df2+exp (2a-1f) (d22 + df2 + d%2).
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However these coordinates cover only half the hyperboloid as { is not
defined for w+v < 0 (see figure 186 (ii)).

The region of de Sitter space for which v +w > 0 forms the space—
time for the steady state model of the universe proposed by Bondi and
Gold (1948) and Hoyle (1948). In this model, the matter is supposed
to move along the geodesic normals to the surfaces {f = constant}. As
the matter moves further apart, it is assumed that more matter is
continuously created to maintain the density at a constant value.
Bondi and Gold did not seek to provide field equations for this model,
but Pirani (1955), and Hoyle and Narlikar (1964) have pointed out
that the metric can be considered as a solution of the Einstein equa-
tions (with A = 0) if in addition to the ordinary matter one introduces
a scalar field of negative energy density. This ‘C’-field would also be
responsible for the continual creation of matter.

The steady state theory has the advantage of making simple and
definite predictions. However from our point of view there are two
unsatisfactory features. The first is the existence of negative energy,
which was discussed in § 4.3. The other is the fact that the space-time
is extendible, being only half of de Sitter space. Despite these aesthetic
objections, the real test of the steady state theory is whether its pre-
dictions agree with observations or not. At the moment it seems that
they do not, though the observations are not yet quite conclusive.

de Sitter space is geodesically complete; however, there are points
in the space which cannot be joined to each other by any geodesic.
This is in contrast to spaces with a positive definite metric, when
geodesic completeness guarantees that any two points of a space can
be joined by at least one geodesic. The half of de Sitter space which
represents the steady state universe is not complete in the past (there
are geodesics which are complete in the full space, and cross the
boundary of the steady state region; they are therefore incomplete in

that region).

To study infinity in de Sitter space—time, we define a time coordinate
¢’ by t' = 2arctan (expa~1t)— i,
where —dm <t < i, (6.8).
Then ds? = a? cosh? (a~1t’) . d5?,

where ds? is given by (5.7) on identifying #* = y. Thus the de Sitter
space is conformal to that part of the Einstein static universe defined
by (5.8) (see figure 17 (i)). The Penrose diagram of de Sitter space is
accordingly as in figure 17 (ii). One half of this figure gives the Penrose
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(i) De Sitter space—time is conformal to the region — 47 < t’ < 47 of the
Einstein static universe. The steady state universe is conformal to the shaded
region.

(i) The Penrose diagram of de Sitter space—time.

(iii) The Penrose diagram of the steady state universe.

In (ii), (iii) each point represents a two-sphere of area 27 sin? x; null lines are
at 45°. x = 0 and y = 7 are identifled.

diagram of the half of de Sitter space-time which constitutes the
steady state universe (figure 17 (iii)).

One sees that de Sitter space has, in contrast to Minkowski space,
a spacelike infinity for timelike and null lines, both in the future and
the past. This difference corresponds to the existence in de Sitter
space—time of both particle and event horizons for geodesic families
of observers.

In de Sitter space, consider a family of particles whose histories are
timelike geodesics; these must originate at the spacelike infinity #-
and end at the spacelike infinity #+. Let p be some event on the world-
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FiGUre 18
(i) The particle horizon defined by a congruence of geodesic curves when
past null infinity S~ is spacelike.
(i) Lack of suoh a horizon if £~ is null.

line of a particle O in this family, i.e. some time in its history (proper
time measured along O’s world-line). The past null cone of p is the set
of events in space-time which can be observed by O at that time. The
world-lines of some other particles may intersect this null cone; these
particles are visible to O. However, there can exist particles whose
world-lines do not intersect this null cone, and so are not yet visible
to O. At a later time O can observe more particles, but there still exist -
particles not visible to O at that time. We say that the division of
particles into those seen by O at p and those not seen by O at p, is the
purticle horizon for the observer O at the event p; it represents the
history of those particles lying at the limits of O’s vision. Note that it
is determined only when the world-lines of all the particles in the




5.2] DE SITTER SPACE-TIME 129

family are known. If some particle lies on the horizon, then the event
is the event at which the particle’s creation light cone intersects O’s
world-line. In Minkowski space, on the other hand, all the other
particles are visible at any event p on O’s world-line if they move on
timelike geodesics. As long as one considers only families of geodesic
observers, one may think of the existence of the particle horizon as a
consequence of past null infinity being spacelike (see figure 18).

All events outside the past null cone of p are events which are not,
and never have been, observable by O up to the time represented by
the event p. There is a limit to O’s world-line on £+, In de Sitter space—
time, the past null cone of this point (obtained by a limiting process
in the actual space-time, or directly from the conformal space-time)
is & boundary between events which will at some time be observable
by O, and those that will never be observable by O. We call this surface
the future event horizon of the world-line. It is the boundary of the past
of the world-line. In Minkowski space-time, on the other hand, the
limiting null cone of any geodesic observer includes the whole of
space-time, so there are no events which a geodesic observer will never
be able to see. However if an observer moves with uniform acceleration
his world-line may have a future event horizon. One may think of the
existence of a future event horizon for a geodesic observer as being
a consequence of £+ being spacelike (see figure 19).

Consider the event horizon for the observer Oin de Sitter space—time
and suppose that at some proper time (event p) on his world-line, his
light cone intersects the world-line of the particle Q. Then @ is always
visible to O at times after p. However there is on @’s world-line an
event r which lies on O’s future event horizon; O can never see later
events on ’s world-line than r. Moreover an infinite proper time
elapses on O’s world-line from any given paint till he observes 7, but
a finite proper time elapses along ©’s world-line from any given event
to r, which is a perfectly ordinary event on his world-line. Thus O sees
a finite part of @’s history in an infinite time; expressed more physi-
cally, as O observes @ he sees a redshift which approaches infinity as
O observes points on @’s world-line which approach r. Correspondingly,
Q never sees beyond some point on O’s world-line, and sees nearby
points on O’s world-line only with a very large redshift.

At any point on O’s world-line, the future null cone is the boundary
of the set of events in space-time which O can influence at and after
that time. To obtain the maximal set of events in space-time that O
could at any time influence, we take the future light cone of the limit
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FiGure 19
(i) The future event horizon for a particle O which exists when futurc infinity
F+ is spacelike; also the past event horizon which exists when past infinity S~
is spacelike.
(ii} If future infinity consists of & null £+ and 4°, there is no future event
horizon for a geodesic observer 0. However an accelerating observer R may
have a future event horizon.

point of O’s world-line on past infinity #—; that is, we take the
boundary of the future of the world-line (which can be regarded as
O’s creation light cone). This has a non-trivial existence for a geodesic
observer only if the past infinity #— is spacelike (and is in fact then
O’s past event horizon). It is clear from the above discussion that
in the steady state universe, which has a null past infinity for timelike
and null geodesics and a spacelike future infinity, any fundamental
observer has a future event horizon but no past particle horizon.

One can obtain other spaces which are locally equivalent to the de
Sitter space, by identifying points in de Sitter space. The simplest such
identification is to identify antipodal points p, »’ (see figure 16) on the
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hyperboloid. The resulting space is not time orientable; if timeincreases
in the direction of the arrow at p, the antipodal identification implics
it must increase in the direction of the arrow at p’, but one cannot
continuously extend this identification of future and past half null
cones over the whole hyperboloid. Calabi and Markus (1862) have
studied in detail the spaces resulting from such identifications; they
show in particular that an arbitrary point in the resulting space can
be joined to any other point by a geodesic if and only if it is not time
orientable.

The space of constant curvature with R < 0 is called anti-de Sitter
space. It has the topology S!x R3, and can be represented as the
hyperboloid Y S S S S
in the flat five-dimensional space R?® with metric

ds? = — (du)?— (dv)? + (dx)? + (dy)2 + (dz)2.

There are closed timelike lines in this space; however it is not simply
connected, and if one unwraps the circle S* (to obtain its covering
space R!) one obtains the universal covering space of anti-de Sitter
space which does not contain any closed timelike lines. This has the
topology of R%. We shall in future mean by ‘anti-de Sitter space’, this
universal covering space.

It can be represented by the metric

ds? = —dt®+cos?t {dy® + sinh®x(d6® +sin20d¢?)}.  (5.9)

This coordinate system covers only part of the space, and has apparent
singularities at ¢ = + 4n. The whole space can be covered by coordi-
nates {’, 7, 6, ¢} for which the metric has the static form

ds? = —cosh®r de'2 + dr? + sinh27(d6? + sin? 6 d¢2).

In this form, the space is covered by the surfaces {t' = constant} which
have non-geodesic normals.
To study the structure at infinity, define the coordinate #' by

v’ = 2arctan (expr)—47, 0< ¢ < in.

Then one finds ds® = cosh?r ds?, where d32 is given by (5.7); that is,
the whole of anti-de Sitter space is conformalto theregion 0 € 7' < 3
of the Einstein static cylinder. The Penrose diagram is shown in
figure 20; null and spacelike infinity can be thought of as a timelike
surface in this case. This surface has the topology R! x 82,
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(i) Universal anti-de Sitter space is conformal to one half of the Einstein
static universe. While coordinates (t’, 7, 8§, ¢) cover the whole space, coordinates
(¢, x» 0, ¢) cover only one diamond-shaped region as shown..The geodesics
orthogonal to the surfaces {t = constant} all co'nverge at p and g, and then
diverge out into similar diamond-shaped regions.

(ii) The Penrose diagram of universal anti-de Sitter space. Infinity consists of
the timelike surface .# and the disjoint points i+, i-. The projection of some
timelike and null geodesics is shown.
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One cannot find a conformal transformation which makes timelike
infinity finite without pinching off the Einstein static universe to a
point (if a conformal transformation makes the time coordinate finite
it also scales the space sections by an infinite factor), so we represent
timelike infinity by the disjoint points ¢+, :~.

The lines {x,6,¢ constant} are the geodesics orthogonal to the
surfaces {t = constant}; they all converge to points ¢ (respectively, p)
in the future (respectively, past) of the surface, and this convergence
is the reason for the apparent (coordinate) singularities in the original
metric form. The region covered by these coordinates is the region
between the surface ¢t = 0 and the null surfaces on which these normals
become degenerate.

The space has two further interesting properties. First, as a con-
sequence of the timelike infinity, there exists no Cauchy surface
whatever in the space. While one can find families of spacelike
surfaces (such as the surfaces {' = constant}) which cover the space
completely, each surface being a complete cross-section of the space~
time, one can find null geodesics which never intersect any given
surface in the family. Given initial data on any such surface, one
cannot predict beyond the Cauchy development of the surface; thus
from the surface {t = 0}, one can predict only in the region covered by
the coordinatest, ¥, 6, ¢. Any attempt to predict beyond this region is
prevented by fresh information coming in from the timelike infinity.

Secondly, corresponding to the fact that the geodesic normals from
t = 0 all converge at p and g, all the past timelike geodesics from p
expand out (normal to the surfaces {t = constant}) and reconverge
at ¢. In fact, all the timelike geodesics from any point in this space
(to either the past or future) reconverge to an image point, diverging
again from this image point to refocus at a second image point, and
so on. The future timelike geodesics from p therefore never reach £, in
contrast to the future null geodesics which go to £ from p and form the
boundary of the future of p. This separation of timelike and null
geodesics results in the existence of regions in the future of  (i.e. which
can be reached from p by a future-directed timelike line) which cannot
be reached from p by any geodesic. The set of points which can be
reached by future-directed timelike lines from p is the set of points
lying beyond the future null cone of p; the set of points which can be
reached from p by future-directed timelike geodesics is the interior of
the infinite chain of diamond-shaped regions similar to that covered
by coordinates (¢, x,0, ¢). One notes that all points in the Cauchy
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development of the surface ¢ = 0 can be reached from this surface by
a unique geodesic normal to this surface, but that a general point
outside this Cauchy development cannot be reached by any geodesic
normal to the surface.

5.3 Robertson-Walker spaces

So far, we have not considered the relation of exact solutions to the
physical universe. Following Einstein, we can ask: can one find space—
times which are exact solutions for some suitable form of matter and
which give a good representation of the large scale properties of the
observable universe? If so, we can claim to have a reasonable ‘cosmo-
logical model’ or model of the physical universe.

However we are not able to make cosmological models without some
admixture of ideology. In the earliest cosmologies, man placed himself
in a commanding position at the centre of the universe. Since the time
of Copernicus we have been steadily demoted to a medium sized planet
going round a medium sized star on the outer edge of a fairly average
galaxy, which is itself simply one of a local group of galaxies. Indeed
we are now so democratic that we would not claim that our position in
space is specially distinguished in any way. We shall, following Bondi
(1960), call this assumption the Copernican principle.

A reasonable interpretation of this somewhat vague principle is to
understand it as implying that, when viewed on a suitable scale, the
universe is approximately spatially homogeneous.

By spatially homogeneous, we mean there is a group of isometries
which acts freely on 4, and whose surfaces of transitivity are space-
like three-surfaces; in other words, any point on one of these surfaces
is equivalent to any other point on the same surface. Of course, the
universe is not exactly spatially homogeneous; there are local irregu-
larities, such as stars and galaxies. Nevertheless it might seem reason-
able to suppose that the universe is spatially homogeneous on a large
enough scale.

While one can build mathematical models fulfilling this requirement
of homogeneity (see next section), it is difficult to test homogeneity
directly by observation, as there is no smlple way of measuring the
separation between us and distant objects. This difficulty is eased by
the fact that we can, in principle, fairly easily observe isotropies in
extragalactic observations (i.e. we can see if these observations are the
same in different directions, or not), and isotropies are closely con-
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nected with homogeneity. Those observational investigations of iso-
tropy which have been carried out so far support the conclusion that
the universe is approximately spherically symmetric about us.

In particular, it has been shown that extragalactic radio sources are
distributed approximately isotropically, and that the recently ob-
served microwave background radiation, where it has been examined,
is very highly isotropic (see chapter 10 for further discussion).

It is possible to write down and examine the metrics of all space—
times which are spherically symmetric; particular examples are the
Schwarzschild and Reissner-Nordstrom solutions (see § 5.5); however
theseare asymptotically flat spaces. In general, there can exist at most
two pointsin a spherically symmetric space from which the space looks
spherically symmetric. While these may serve as models of space—time
near a massive body, they can only be models of the universe consistent
with the isotropy of our observations if we are located near a very
special position. The exceptional cases are those in which the universe
is isotropic about every point in space time; so we shall interpret the
Copernican principle as stating that the universe is approximately
spherically symmetric about every point (since it is approximately
spherically symmetric about us).

As has been shown by Walker (1944), exact spherical symmetry
about every point would imply that the universe is spatially homo-
geneous and admits a six-parameter group of isometries whose surfaces
of transitivity are spacelike three-surfaces of constant curvature. Such
a space is called a Robertson—Walker (or Friedmann) space (Minkowski
space, de Sitter space and anti-de Sitter space are all special cases of
the general Robertson—Walker spaces). Our conclusion, then, is that
these spaces are a good approximation to the large scale geometry of
space—time in the region that we can observe.

In the Robertson—-Walker spaces, one can choose coordinates so that
the metric has the form

‘ds® = —de2+S2(t) do?,

where do? is the metric of a three-space of constant curvature and is
independent of time. The geometry of these three-spaces is qualita-
tively different according to whether they are three-spaces of constant
positive, negative or zero curvature; by rescaling the function S, one
can normalize this curvature K to be + 1 or — 1 in the first two cases.
Then the metric do® can be written

do?® = dy®+f2(y) (d6®+sin*6 dg?),
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where siny if K=+1,
f(X) =1{X if K=0,
sinhy if K=-1.

The coordinate ¥ runs from 0 to o0 if K = 0 or — 1, but runs from 0 to
2nif K = + 1. Whon K = 0 or — 1, the three-spaces are diffoomorphic
to X% and so are ‘infinite’, but when K = + 1 they are diffeomorphic
to a three-sphere S8 and so are compact (“closed’ or ‘finite’). One could
identify suitable points in these three-spaces to obtain other global
topologies; it is even possible to do this, in the case of negative or zero
curvature, in such a way that the resulting three-space is compact
(Lobell (1931)). However such a compact surface of constant negative
curvature would have no continuous groups of isometries (Yano and
Bochner (1953))—although Killing vectors exist at each point, they
would not determine any global Killing vector fields and the local
groups of isometries they generate would not link up to form global
groups. In the case of zero curvature, a compact space could only have
a three-parameter group of isometries. In neither case would the
resulting space-time be isotropic. We shall not make such identifica-
tions, as our original reason for considering these spaces was that they
were isotropic (and so had a six-parameter group of isometries). In
fact the only identifications which would not result in an anisotropic
space would be toidentify antipodal points on S?in the case of constant
positive curvature.

The symmetry of the Robertson—Walker solutions requires that the
energy-momentum tensor has the form of a perfect fluid whose
density x4 and pressure p are functions of the time coordinate ¢ only,
and whose flow lines are the curves (y, 6, ¢) constant (so the coordinates
are comoving coordinates). This fluid can be thought of as a smoothed
out approximation to the matter in the universe; then the function
S(t) represents the separation of neighbouring flow lines, that is, of
‘nearby’ galaxies.

The equation of conservation of energy (3.9) in these spaces takes
the form

s=—-3(n+p)S[S. (5.10)
The Raychaudhuri equation (4.26) takes the form
dm(u+3p)—A = ~38"'/S. (5.11)

The remaining field equation (which is essentially (2.35)) can be written
38°2 = 87(uS%)/S+ AS?-3K. (5.12)
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Whenever §° # 0, (5.12) can in fact be derived, with an arbitrary value
of the constant K, as a first integral of (5.10), (5.11); so the real effect
of this field equation is to identify the integration constant as the
curvature of the metric do? of the three-spaces {¢ = constant}.

It is reasonable to assume (cf. the energy conditions, §4.3) that u is
positive and p is non-negative. (In fact, present estimates are
10 Wgmom ? 2 pg 2 10 gmem=d, ug » py 2 0). Then, if A is zero,
(5.11) shows that S cannot be constant; in other words the field equa-
tions then imply the universe is either expanding or contracting.
Observations of other galaxies show, as first found by Slipher and
Hubble, that they are moving away from us, and so indicate that the
matter in the universe is expanding at the present time. Current
observations give the value of S°/S at the present time as

H = (8°[8S)|, = 10 year?,

believed correct to within a factor 2. From this, (5.11) shows that if
A is zero, S must have been zero a finite time ¢, ago (that is, a time ¢,
measured along the world-line of our galaxy) where

t, < H-1 =~ 10" years.

From (5.10) it follows that the density decreases as the universe
expands, and conversely that the density was higher in the past,
increasing without bound as S§->0. This is therefore not merely a
coordinate singularity (as for example, in anti-de Sitter universe
expressed in coordinates (5.9)); the fact that the density isinfinite there
ghows that some scalar defined by the curvature tensor is also infinite.
It is this that makes the singularity so much worse than in the corre-
sponding Newtonian situation; in both cases the world-lines of all the
particles intersect in a point and the density becomes infinite, but here
space—time itself becomes singular at the point S = 0. We must there-
fore exclude this point from the space-time manifold, as no known
physical laws could be valid there.

This singularity is the most striking feature of the Robertson—
Walker solutions. It occurs in all models in which x+ 3p is positive
and A is negative, zero, or with not too large a positive value. It would
imply that the universe (or at least that part of which we can have any
physical knowledge) had a beginning a finite time ago. However this
result has here been deduced from the assumptions of exact spatial
homogeneity and spherical symmetry. While these may be reasonable
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approximations on a large enough scale at the present time, they
certainly do not hold locally. One might think that, as one traced the
evolution of the universe back in time, the local irregularities would
grow and could prevent the occurrence of a singularity, causing the
universe to ‘bounce’ instead. Whether this could happen, and whether
physically realistic solutions with inhomogeneities would contain
singularities, is a central question of cosmology and constitutes the
principal problem dealt with in this book; it will turn out that there is
good evidence to believe that the physical universe does in fact become
singular in the past.

If some suijtable relation between p and y is specified, (5.10) can be
integrated to give 4 as a function of S. In fact the pressure is very
small at the present epoch. If one takes it and A to be zero, one finds
from (5.10) 4 M

El
where J} is a constant, and (5.12) becomes

382 6M/S = — 3K = E|M. (5.13)

The first equation expresses the conservation of mass when the pres-
sure is zero, while the second (the Friedmann eguation) is an energy
conservation equation for a comoving volume of matter; the constant
E represents the sum of the kinetic and potential energies. If ¥ is
negative (i.e. K is positive), S will increase to some maximum value
and then decrease to zero; if ¥ is positive or zero (i.e. K is negative or
zero), S will increase indefinitely.

The explicit solutions of (5.13) have a simple form if given in terms
of a rescaled time parameter 7(t), defined by

dr/dt = S-(t); (5.14)
they take the form
S = (E[3)(coshr—1), ¢=(E[3)(sinhr—7), if K=-1;
S=r t =373, if K=0;

S =(—E[8)(1-cos7), t=(—E[3)(r—sinT), if K=1.
(The case K = 0 is the Einstein—de Sitter universe; clearly S oc tt.)

Ifpis non-zero but positive, the qualitative behaviour is the same.
In particularif p = (y — 1) # where y is a constant, 1 < v < 2, one finds
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47 = M|[S®, and the solution of (5.12) near the singularity takes the

form
S oc 23y,

If A is negative, the solution expands from an initial singularity,
reaches a maximum and then recollapses to a second singularity. If
A is positive, then for K = 0 or — 1 the solution expands forever and
asymptotically approaches the steady state model. For K = + 1 there
are several possibilities. If A is greater than some value Ay,
(Aceye =(—E[3M)3[(3M)? if p = 0) the solution will start from an
initial singularity and will expand forever asymptotically approaching
the steady state model. If A = Ay, there is a static solution, the
Einstein static universe. (The metric form (5.7) is that of the particular
Einstein static solution for which g+ = (47)-, A = 1+ 87p.) There
is also a solution which starts from an initial singularity and asympto-
tically approaches the Einstein universe, and one which starts from the
Einstein universe in the infinite past and expands forever. If A < Ay,
there are two solutions—one expands from an initial singularity and
then recollapses to a second singularity; the other contracts from an
infinite radius in the infinite past, reaches a minimum radius, and then
re-expands. This and the universe asymptotic to the static universe
in the infinite past are the only solutions which could represent the
observed universe and which do not have a singularity. In these
models, S*° is always positive, and this seems to be in conflict with
observations of redshifts of distant galaxies (Sandage (1961, 1968)).
Also, the maximum density in these models would not have been very
much larger than the present density. This would make it difficult to
understand phenomena such as the microwave background radiation
and the cosmic abundance of helium, which seem to point to a very
hot dense phase in the history of the universe.

Just as in the previous cases we have studied, one can find conformal
mappings of the Robertson—-Walker spaces into the Einstein static
space. We use the coordinate 7 defined by (5.14) as a time coordinate;
then the metric takes the form

de® = 8(r) {— dr®+dx?+f(x) (462 +sin20dg?)}.  (5.15)

In the case K =+ 1, this is already conformal to the Einstein static
space (put 7 = ¢, ¥ = 7’ to agree with the notation of (5.7)). Thus these
spaces are mapped into precisely that part of the Einstein static space
determined by the values taken by 7. When p = A = 0, 7 lies in the
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range 0 < 7 < 77, so the whole space is mapped into this region in the
Einstein static universe while its boundary is mapped into the three-
spheres 7 = 0, 7 = 7. (If p > 0, it is mapped into a region for which
T takes values 0 < 7 < a < 7, for some number a.) In the case K = 0,
the same coordinates represent the space as conformal to flat space
(see (5.15)), so on using the conformal transformations of §5.1, one
obtains these spaces mapped into some part of the diamond repre-
senting Minkowski space-time in the Einstein static universe (see
figure 14); the actual region is again determined by the values taken
by 7. When A = 0, 0 < 7 < o0, so this space (which is the Einstein—
de Sitter space when p = 0) is conformal to the half ¢’ > 0 of the
diamond which represents Minkowski space-time.In the case K = — 1,
one obtains the metric conformal to part of the region of the Einstein
static space for which dm > t'+¢' 2 3o, Ir2t'—2 2 —37, on
defining
i’ = arctan (tanh 4(7 + y)) +arcten (tanh }(7 — x)),

7' = arctan (tanh }(7 + y)) — arctan (tanh (7 — x)).

The part of this diamond-shaped region covered depends on the range
of 7; when A = 0, the space is mapped into the upper half.

One thus obtains these spaces and their boundaries conformal to
some (generally finite) region of the Einstein static space, see figure
21 (i). However there is an important difference from the previous
cases: part of the boundary is not “infinity’ in the sense it was previ-
ously, but represents the singularity when S = 0. (The conformal
factor can be thought of as making infinity finite by giving an infinite
compression, but making the singular point S = 0 finite by an infinite
expansion.) In fact this makes little difference to the conformal dia-
grams; one can give the Penrose diagrams as before (see figures 21 (ii)
and 21 (iii}). In each case when p > 0 the singularity at ¢ = 0 is repre-
sented by a spacelike surface; this corresponds to the existence of
particle horizons (defined precisely as in §5.2) in these spaces. Also
when K = + 1 the future boundary is spacelike, implying the existence
of event horizons for the fundamental observers; when K = 0 or —1
and A = 0, future infinity isnull and there are no future event horizons
for the fundamental observers in these spaces.

At this stage, one should examine the following question: anti-
de Sitter space could be expressed in the Robertson—-Walker form (5.9)
and then expressed conformally as part of the Einstein static universe.
When one did so, one found that the Robertson-Walker coordinates
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(i) The Robertson—-Walker spaces (p = A = 0) are conformal to the regions
of the Einstein static universe shown, in the three cases K = + 1, 0 and - 1.

(ii) Penrose diagram of a Robertson—-Walker space with K = +1 and
p=A=0.

(iii) Penrose diagram of a Robertson—Walker space with K = 0 or —1 and
p= A=0. .

covered only a small part of the full space-time. That is to say, the
space-time described by the Robertson-Walker coordinates could be
extended. One should therefore show that the Robertson-Walker
universes in which there is matter are in fact inextendible. This
follows because one can show that if £ > 0, p > 0 and X is any vector
at any point g, the geodesic y(v) through ¢ = (0) in the direction of X
is such that either
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(i) y(») can be extended to arbitrary positive values of v, or
(ii) there is some v, > 0 such that the scalar invariant
(By;—}Rgy) (RY —}Rg¥) = (u+ A)*+3(p—A)®
is unbounded on ([0, v,)).

It is now clear that the surfaces {¢ = constant} are Cauchy surfaces
in these spaces. Further one sees that the singularity is universal in the
following sense: all timelike and null geodesics through any point in
the space approach it for some finite value of their affine parameter.

5.4 Spatially homogeneous cosmological models

We have seen that there are singularities in any Robertson-Walker
space—time in which g > 0, p > 0and A is not too large. However one
could not conclude from this that there would be singularities in
more realistic world models which allow for the fact that the universe
is not homogeneous and isotropic. In fact, one does not expect to find
that the universe can be very accurately described by any attainable
exact solution. However one can find exact solutions, less restricted
than the Robertson—-Walker solutions, which may be reasonable
models of the universe, and see if singularities occur in them or not;
the fact that singularities do occur in such models gives an indication
that the existence of singularities may be a general property of all
space-times which can be regarded as reasonable models of the
universe.

A simple class of such solutions are those in which the requirement
of isotropy is dropped but the requirement of spatial homogeneity (the
strict Copernican principle) is retained (although the universe seems
approximately isotropic at the present time, there might have been
large anisotropies at an earlier epoch). Thus in these models one
assumes there exists a group of isometries G, whose orbits in some part
of the model are spacelike hypersurfaces. (The orbit of a point » under
the group G, is the set of points into which p is moved by the action of
all elements of the group.) These models may be constructed locally by
well-known methods; see Heckmann and Schiicking (1962) for the
case 7 = 3, and Kantowski and Sachs (1967) for the case r = 4 (if
r > 4, the space-time is necessarily a Robertson—Walker space).

The simplest spatially homogeneous space-times are those in which
the group of isometries is Abelian; the group is then of type I in the
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classification given by Bianchi (1918), so we call these Bianchi I spaces.
We discuss Bianchi I spaces in some detail, and then give a theorem
showing singularities will occur in all non-empty spatially homogene-
ous models in which the timelike convergence condition (§4.3) is
satisfied.

Suppose the spatially homogeneous space-time has an Abelian
isometry group; for simplicity we assume A = 0 and that the matter
content is a pressure-free perfect fluid (‘dust’). Then there exist
comoving coordinates (¢, z, y, z) such that the metric takes the form

ds? = —de? + X3(t) da? + Y3(t) dy® + Z3(t) d=2. (5.16)
Defining the function S(t) by S? = XY Z, the conservation equations
show that the density of matter is given by $mu = M/[S3, where M is
a suitably chosen constant. The general solution of the field equations
can be written

X = S(}|8)2eina, ¥ = S(t}/S)ein atim,

Z = S(t}[S)zein atim,
where 8 is given by S? = S Mt +Z);
=2 ;

X (> 0)is a constant determining the magnitude of the anisotropy (we
exclude the isotropic case (£ = 0), which is the Einstein—de Sitter
universe (§5.3)), and a(—37 < « < 47) is a constant determining the
direction in which the most rapid expansion takes place. The average
rate of expansion is given by

S _2t+22
S 3 t+X’

the expansion in the z-direction is
X' 2t4+Z(1+2sina)/2

X 3t t+X ’

and the expansions Y'[Y, Z'|Z in the y, z directions are given by
similar expressionsin which o is replaced by a + §, a + 47 respectively.
The solution expands from a highly anisotropic singular state at
t = 0, reaching a nearly isotropic phase for large ¢ when it is nearly the
same as the Einstein—de Sitter universe. The average length Sincreases
monotonically as ¢ increases, its initial high rate of change (S cc 8 for
small t) decreasing steadily (S cc t# for large ). Thus the universe
evolves more rapidly, at early times, than its isotropic equivalent.
Suppose one considers the time-reverse of the model, and follows
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this forward in time towards the singularity. The initially almost
isotropic contraction will become very anisotropic at late times. For
general values of &, i.e. @ # s, the term 1 + 2sin (a + %) will be nega-
tive. Thus the collapse in the 2-direction would halt, and, for suffi-
ciently early times, be replaced by an expansion, the rate of expansion
becoming indefinitely large for early enough times. In the z- and
y-directions, on the other hand, the collapse would continue mono-
tonically towards the singnlarity. Thus if one considers the forward
direction of time in the original model, one has a ‘cigar’ singularity:
matter collapses in along the z-axis from infinity, halts, and then
starts re-expanding, while in the z- and y-directions the matter
expands monotonically at all times. If one could receive signals from
early enough times in such a model, one would see a maximum red-
shift in the z-direction, at earlier times matter in this direction being
observed with progressively smaller redshifts and then with in-
definitely increasing blue-shifts.

The behaviour in the exceptional case a = 47 is rather different. In
this case, the terms 1+ 2sin (a +47) and 1+ 2sin (« + $7) both vanish.
Thus the expansions in the axis directions are

X' 2t43%)2 Y _Z 2 1

X % t+x ' Y Z 3
If one follows the time-reversed model, the rate of collapse in the
y- and z-directions slows asymptotically down to zero, while the r;
of collapse in the z-direction increases indefinitely. In the original
model, one hasa ‘pancake’ singularity : matter expands monotonically
in all directions, starting from an indefinitely high expansion rate.in
the z-direction but from zero expansion rates in the y- and z-directions:
Indefinitely high redshifts would be seen in the z-direction, but there
would be limiting redshifts in the y- and z-directions.

Further examination shows that in the general (‘cigar’) case, there
is a particle horizon in every direction despite the anisotropic expan-
sion. However in the exceptional (‘pancake’) case, no horizon occurs
in the z-direction; in fact the particles that can be seen by an observer
at the origin at time ¢, are characterized by coordinate values (z, y, 2)
lying within the infinite cylinder

x2+y2 < pz

where p= :—;-127 { (?-g—{ (to+ E))* - (%_H E)i} .
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While we have here considered these models for vanishing pressure
and A term only, properties of these spaces with more realistic matter
contents can easily be obtained; for example if one has either a perfect
fluid with p = (y—1)g, v a constant (1 <y < 2), or a mixture of
a photon gas and matter with pressure » < 3x, the behaviour near the
singularity is the same as in the dust case.

An interesting consequence of the non-existence of a particle
horizon in the 2-direction in the exceptional (‘pancake’) case, is that
one can extend the solution continuously across the singularity. We
shall show this explicitly in the case of the dust solution.

The metric takes the form (5.16) where now

X(t) = t@ME+ )3, Y(t)=2Z(¢t) = (§ME+ZNt.  (5.17)
We now choose new coordinates 7, 7 which satisfy the equations
tanh (22/9MZ) = p[7, ex (——4— ti) = 72— 9?2
an =T eXPp 9Mf.,X(t) =TT

One then finds that the space with metric (5.16), (5.17) is given in the
new coordinates by

ds® = A%(t) (—dr2+dp?) + B(t) (dy? + dz=?) (5.18)
where

A(t) = exp(—%g) GM@E+EN Y, Bty = @M+ D), (5.19)

the whole space (for ¢ > 0) being mapped into the region ¥~ defined by
7> 0, 72— 92 > 0. The function {(7, %) is now defined implicitly as the
solution of the equation

72— 9% = $Mt2exp 2“;2’ (5.20)
for which ¢ > 0. The (7, ) plane is given in conformally flat coordinates.
The region " in this plane, bounded by the surface ¢t = 0, is shown in
figure 22. In this diagram, the world-lines of the particles are straight
lines diverging from the origin.

The functions A(t), B(t) are continuous as { - 0 from above. One can
therefore extend the solution continuously to the whole (7,%) plane
by specifying that (5.19) holds everywhere, (5.20) holds inside ¥”, and

that 4r,7) = 0

holds outside #". Then (5.18) is a C° metric which is a solution of the
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(ii) A half-section of the space in (7, 9, y) coordinates (the z-coordinate is
suppressed), showing the past light cone of the point p = (7,, 0, 0). There is a

particle horizon in the y-direction but not in the z- (i.e. ) direction.

field equations equivalent to (5.16), (5.17) inside ¥, and is a
space-time outside ¥". However the solution is not ! across

ﬂa.t'{
the

boundary of ¥, and in fact the density of matter becomes infinite on

this boundary (as S— 0 there). Since the first derivatives are

not

square integrable, the Einstein field equations cannot be interpreted

on the boundary even in a distributional sense (see §8.4). While

the




5.4] HOMOGENEOUS COSMOLOGIES 147

extension onto the boundary is unique, it is in no way unique beyond
the boundary. We have carried out the extension in the case of dust;
a similar extension could be carried out if one had a mixture of matter
and radiation.

Let us now return to considering general non-empty spatially homo-
geneous models. The existence of a singularity in these models will
follow directly from Raychaudhuri’s equation if the motion of the
matter is geodesic and without rotation (as must be the case, for
example, if the world-lines are orthogonal to the surfaces of homo-
geneity) and the timelike convergence condition is satisfied; however
there exist such spaces in which the matter accelerates and rotates,
and either of these factors could possibly prevent the existence of a
singularity. The following result, which is an improved version of a
theorem of Hawking and Ellis (1965), shows that in fact neither
acceleration nor rotation can prevent the existence of singularities in
these models.

Theorem
(-#, g) cannot be timelike geodesically complete if:

(1) R, K°K® > 0 for all timelike and null vectors K (this is true
if the energy-momentum tensor is type I (§4.3) and x+p;> 0,
p+§pi—47rA > 0);

(2) there exist equations of motion for the matter fields such that
the Cauchy problem has a unique solution (see chapter 7);

(3) the Cauchy data on some spacelike three-surface 5 is invariant
under a group of diffeomorphisms of 3 which is transitive on 5.

Since the intrinsic geometry of 5 is invariant under a transitive
group of diffeomorphisms, these are isometries and 3# is complete,
i.e. cannot have any boundary. It can be shown (see § 6.5) that if there
is anon-spacelike curve which intersects S more than once, then there
exists a covering manifold A of A in which each connected component
of the image of 3# will not intersect any non- spacelike curve more than
once. We shall assume that .# is timelike geodesically complete, and
show tha.t this is inconsistent with conditions (1), (2) and (3).

Let # be a connected component of the image of 3 in .. By (3),
the Cauchy data on His homogeneous. Therefore by condition (2),
the Cauchy development of any region of #i isi isometric to the Cauchy
development of any other similar region of . This implies that the
surfaces {8 = constant} are homogeneous if they lie within the Cauchy
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development of #, where 8 is the distance from # measured along
the geodesic normals to . These surfaces must lie either entirely
within or entirely outside the Cauchy development of /#, as otherwise
there would be equivalent regions in # which had inequivalent
Cauchy evolutions. The surfaces {s = constant} will lie in the Cauchy
development of # as long as they remain spacelike, because the
boundary of the Cauchy development of # (if it exists) must be null
(§6.5).

The geodesics orthogonal to A will be orthogonal to the surfaces
{s = constant}, as a vector representing the separation of points equal
distances along neighbouring geodesics will remain orthogonal to the
geodesics if it is so initially. Asin §4.1, one can represent the spatial
separation of neighbouring geodesxcs orthogonal to H by a matrix A
which is the unit matrix on 57", By homogeneity, it will be constant on
the surfaces {s = constant} while these lie in the Cauchy development
of #. While A is non-degenerate, the map from # to a surface
{s = constant} defined by the normal geodesics will be of rank three
and so the surfaces will be spacelike three-surfaces contained within
the Cauchy development of . The expansion

= (det A)~1d (det A)/ds

of these geodesics obeys Raychaudhuri’s equation (4.26) with the
vorticity and acceleration zero. By condition (1), E,, V2V is positive
for all timelike vectors V2. Thus 6 will become infinite and A will be
degenerate for some finite positive or negative value s, of 8. The map
from # to the surface s = 8, can have at most rank two; there will
therefore be at least one vector field Z on # such that AZ = 0. The
integral curves of this vector field are curvesin A which are mapped by
the geodesic normals to one point in the surface s = s, Thus this
surface will be at most two-dimensional. As the geodesics lie in the
Cauchy development of # for |s] < [8,], the surface s = s, will lie in
the Ca.uchy development or on the boundary of the Cauchy develop-
ment of . By condition (1), the energy~momentum tensor has a
unique timelike eigenvector at each point. These eigenvectors will
form a C? timelike vector field whose integral curves may be thought-
of as representing the flow lines of the matter. As the surface s = s, lies
in the Cauchy development of # or on its bounda.ry, all the flow lines
that pass through it must intersect Ji" But then as #is homogeneous,
all the flow lineS\that pass through # must pass through s = s,. Thus
the flow lines define a diffeomorphism between 5 and the surface
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= 5p. This is impossible, as # is three-dimensional and s = 8y is
two-dimensional. 0O

In fact, if all the flow lines were to pass through a two-dimensional
surface, one would expect the matter density to become infinite. We
have now seen that a large scale rotation or acceleration cannot, by
itself, prevent the occurrence of singularities in a universe model
obeying the strict Copernican principle. In later theorems we shall see
that irregularities are in general also unable to prevent the occurrence
of singularities in world models.

5.5 The Schwarzschild and Reissner~-Nordstrém solutions

While the spatially homogeneous solutions may be good models for the
large scale distribution of matter in the universe, they are inadequate
for describing, for example, the local geometry of space-time in the
solar system. One can describe this geometry to a good approximation
by the Schwarzschild solution, which represents the spherically sym-
metric empty space-time outside a spherically symmetric massive
body. In fact, all the experiments which have so far been carried out
to test the difference between the General Theory of Relativity and
Newtonian theory are based on predictions by this solution.
The metric can be given in the form

de? = — (1 —?‘-?) e+ (1 -3?) ' drt 4 12(d62 + sin20dg?), (5.21)
where r > 2m. It can be seen that this space-time is static, i.e. 9/t is
a timelike Killing vector which is a gradient, and is spherically sym-
metric, i.e. is invariant under the group of isometries SO(3) operating
on the spacelike two-spheres {t,r constant} (cf. appendix B). The
coordinate r in this metric form is intrinsically defined by the require-
ment that 4772 is the area of these surfaces of transitivity. The solution
is asymptotically flat as the metric has the form g, = 7., + O(1/r) for
large r. Comparison with Newtonian theory (cf. § 3.4) shows that m
should be regarded as the gravitational mass, as measured from
infinity, of the body producing the field. It should be emphasized that
this solution is unique: if any solution of the vacuum field equations
is spherically symmetric, it is locally isometric to the Schwarzschild
solution (although it may of course look totally different if it is given
in some other coordinate system; see appendix B and Bergmann,
Cahen and Komar (1965)).
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Normally one would regard the Schwarzschild metric for r greater
than some value 7y > 2m as being the solution outside some spherical
body, the metric inside the body (» < 7,) having a different form
determined by the energy—-momentum tensor of the matter in the
body. However it is interesting to see what happens when the metric
is regarded as an empty space solution for all values of 7.

The metric is then singular when 7 = 0 and when r = 2m (there are
also the trivial singularities of polar coordinates when 6 = 0 and
6 = 7). One must therefore cut » = 0 and » = 2m out of the manifold
defined by the coordinates (¢, 7, 8, ¢), since in § 3.1 we took space—time
to be represented by a manifold with a Lorentz metric. Cutting out the
surfacer = 2m divides the manifold into two disconnected components
for which 0 < 7 < 2m and 2m < r < co. Since we took the space—time
manifold to be connected, we must consider only one of these com-
ponents and the obvious one to choose is the one for » > 2m, which
represents the external field. One must then ask whether this manifold
M with the Schwarzschild metric ¢ is extendible, i.e. whether there
is a larger manifold .#’ into which .# can be imbedded and a suitably
differentiable Lorentz metric ¢’ on .4 which coincides with g on the
image of .#. The obvious place where .# might be extended is where
r tends to 2m. A calculation shows that although the metric is singular
at r = 2m in the Schwarzschild coordinates (¢, 7, 8, ¢), no scalar poly-
nomials of the curvature tensor and the metric diverge asr —> 2m. This
suggests that the singularity at » = 2m isnot areal physical singularity,
but rather one which is a result of a bad choice of coordinates.

To confirm this, and to show that (#, g) can be extended, define

7 Efitdé%q% = r+2mlog (r — 2m).
Then V=L4r¥
is an advanced null coordinate, and
w=t—r*

is a retarded null coordinate. Using coordinates (v,7, 6, ¢) the metric_
takes the Eddington-Finkelstein form g’ given by

ds? = — (1 —:"‘-r’-’f) dv?+ 2dvdr +72(d02 +sin26dg?).  (5.22)

The manifold 4 is the region 2m < r < oo, but the metric (5.22) is
non-singular and indeed analytic on the larger manifold .#” for which
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0 < » < 0. The region of (4, 8’} for which 0 < < 2m is in fact
isometric to the region of the Schwarzschild metric for which
0 < » < 2m. Thus by using different coordinates, i.e. by taking a
different manifold, we have extended the Schwarzschild metric so that
it is no longer singular at » = 2m. In the manifold .#’ the surface
r = 2m is a null surface, as can be seen from the Finkelstein diagram
(figure 23). This is a section (0, ¢ constant) of the space-time; each
point represents a two-sphere of area 4772. Some null cones and radial
null geodesics are indicated on this diagram. Surfaces {t = constant}
are indicated; one sees that ¢ becomes infinite on the surface » = 2m.

This representation of the Schwarzschild solution has the odd
feature that it is not time symmetric. One might expect this from the
cross term (dv dr) in (6.22); it is qualitatively clear from the Finkelstein
diagram. The most obvious asymmetry is that the surface » = 2m acts
as a one-way membrane, letting future-directed timelike and null
curves cross only from the outside (» > 2m) to the inside (» < 2m). Any
past-directed timelike or null curve in the outside region cannot cross
into the inside region. No past-directed timelike or null curve within
7 = 2m can approach » = 0. However any future-directed timelike or
null curve which crosses the surface » = 2m approaches » = 0 within
a finite affine distance. As 7 — 0, the scalar R**IR, , , diverges as m2/rS.
Therefore » = 0 is a real singularity; the pair (", g¢') cannot be
extended in a C? manner or in fact even in a C° manner across r = 0.

If one uses the coordinate w instead of v, the metric takes the form

g’ given by
de? = — (1 _2—:”) dw? — 2 dw dr + r¥(d6% +sin? 0 dg?).

This is analytic on the manifold .#” defined by the coordinates
(w, 7, 0, ¢) for 0 < r < co. Again the manifold # is the region
2m < r < co and the new region 0 < 7 < 2m is isometric to the region
0 < 7 < 2m of the Schwarzschild metric, but the isometry reverses
the direction of time. In the manifold .#”, the surface » = 2m is again
a null surface which acts as a one-way membrane. However this time
it acts in the other direction of time, letting only past-directed time-
like or null curves cross from the outside (r > 2m) to the inside
(r < 2m).

One can in fact make both extensions (A', 8') and (A", ¢”) simul-
taneously; that is to say, there is a still larger manifold #* with
metric g* into which both (4, 8') and (£”", £”) can be isometrically
imbedded, so that they coincide on the region r > 2m which is
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7 = 2m

v = constant

r=0—_4

Py
t = constant

(i)

Accelerating
observer
at constant r-value

Radially falling
particle hits
singularity
atr=0

v = constant

Fiaure 23. Section (8, ¢) constant of the Schwarzschild solution.

(i) Apparent singularity at » = 2m when coordinates (¢,7) are used.

(ii) Finkelstein diagram obtained by using coordinates (v, r} (lines at 46° are
lines of constant v). Surface r = 2m is & null surfacé on which ¢ = co.
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isometric to (A4, ). A construction of this larger manifold has been
given by Kruskal (1960). To obtain it, consider (.#, g) in the coordi-
nates (v, w, 6, ¢); then the metric takes the form

ds? = — ( 1 -9;:”) do dw+ r¥(A62 + sin? 6 dg?),

where r is determined by
Hv—w) = r+ 2mlog (r— 2m).

This presents the two-space (6, ¢ constant) in null conformally flat
coordinates, as the space with metric ds? = —dvdw is flat. The most
general coordinate transformation which leaves this two-space
expressed in such conformally flat double null coordinates is v’ = v'(v),
w’ = w'(w) where v" and w’ are arbitrary C! functions. The resulting
metric is

2m dv dw
2 . e —dv’ ’ 2 2 22
ds? = (l ) v 3 - dv’ dw’ + 73(d 0% + sin® 0 d¢?).

To reduce this to a form corresponding to that obtained earlier for
Minkowski space—time, define

=40 —-w), t'=3}0+v)
The metric takes the final form
de? = F2(t’,2") (— dt'2 + dz'?) + »3(t’, 2') (A6 +sin2 O dg?).  (5.23)

The choice of the functions +', w’ determines the precise form of the

metric. Kruskal’s choice was v’ = exp (v/4m), w' = —exp (—w[dm).
Then 7 is determined implicitly by the equation
(' — (') = — (r— 2m)exp (r[2m) (5.24)
and F is given by
F? = exp (—7[2m). 16m?[r. (5.25)

On the manifold #* defined by the coordinates (t',z’,6,¢) for
()2~ (2')® < 2m, the functions » and F (defined by (5.24), (5.25)) are
positive and analytic. Defining the metric g* by (5.23), the region I of
(A*, g*) defined by =’ > |t’| is isometric to (#,8), the region of the
Schwarzschild solution for which r > 2m. The region defined by
x' > —t' (regions I and II in figure 24) is isometric to the advanced
Finkelstein extension (', g’). Similarly the region defined by =’ > ¢’
(regions I and IT' in figure 24) is isometric to the retarded Finkelstein
extension (", 8"). There is also a region I', defined by z’ < —|t'],
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(singularity) T =2m
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r=0 l
/ > 2m
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r = constant
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‘71"

> 2m > \\
t = 0—7
I’
= constant=— =
/ 7 >
t=co r=
‘ 0 - -
= U (singularity) <y = 2m
(i) r = constant
< 2m
0 vuw” = {n
7 = P\ future singularity r = constant < 2m
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* q S+ r = constant
r = constant > 2m P > 2m
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0 |4 : Cauchy
1
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t=10
. ‘ e
v =—§1I S
. ¢ = constant
11
. re . l=o
t = constant v/ !
t=c . .
past singularity
t = constant r=0 VY pw” =}

(ii)
F16URE 24. The maximal analytic Schwarzschild extension. The 8, ¢ coordinates
aresuppressed ; null lines are at + 456°. Surfaces {r = constant} are homogeneous.
(i} The Kruskal diagram, showing asymptotically flat regions I and I’ and
regions II, IT’ for which r < 2m.
(ii)) Penrose diagram, showing conformal infinity as well as the two
singularities. ’

which turns out t gain isometric with the exterior Schwarzschild
solution (., g)/ This can be regarded as another asymptotically flat
universe on the other side of the Schwarzschild ‘throat’. (Consider the
section ¢ = 0. The two-spheres {r = constant} behave as in Euclidean
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space, for large r; however for small r, they have an area which
decreases to the minimum value 167m?and then increases again, as the
two spheres expand into the other asymptotically flat three-space.)
The regions I’ and II are isometric with the advanced Finkelstein
extension of region I', and similarly I' and II' are isometric with the
retarded Finkelstein extension of I', as can be seen from figure 24.
There are no timelike or null curves which go from region I to region I".
All future-directed timelike or null curves which cross the part of the
surface 7 = 2m represented here by ' = |2’| approach the singularity
at t' = (2m+ (z')?)}, where r = 0. Similarly past-directed timelike or
null curves which cross ¢’ = — |2’| approach another singularity at
t' = —(2m+ (2')*)}, where againr = 0.

The Kruskal extension (.#*, g*) is the unique analytic and locally
inextendible extension of the Schwarzschild solution. One can con-
struct the Penrose diagram of the Kruskal extension by defining new
advanced and retarded null coordinates

v” = arctan (v'(2m)~t), w” = arctan (w'(2m)})
for —7m<v"+w" <7 and —ja < <im ~Ir<w <inm

(see figure 24 (ii)). This may be compared with the Penrose diagram
for Minkowski space (figure 15 (ii)). One now has future, past and null
infinities for each of the asymptotically flat regions I and I'. Unlike
Minkowski space, the conformal metric is continuous but not differ-
entiable at the points ¢°.

If we consider the future light cone of any point outside » = 2m,
the radial outwards geodesic reaches infinity but the inwards one
reaches the future singularity; if the point lies inside # = 2m, both these
geodesics hit the singularity, and the entire future of the point is ended
by the singularity. Thus the singularity may be avoided by any
particle outsider = 2m (soitis not ‘universal’ asitisin the Robertson—
Walker spaces), but once a particle has fallen inside r = 2m (in region
II) it cannot evade the singularity. This fact will turn out to be closely
related to the following property: each point inside region Il represents
a two-sphere that is a closed trapped surface. This means the following:
consider any two-sphere p (represented by a point in figure 24) and
two two-spheres ¢, s. formed by photons emitted radially outwards,
inwards at one instant from p. The area of ¢ (which is given by 4zr?)
will be greater than the area of p, but the area of s will be less than the
area of p, if all three lie in a region » > 2m. However if they all lie in
the region II where 7 < 2m, then the areas of both ¢ and s will be less
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than the area of p (in the figure,  decreases as one moves from the
bottom to the top of region II). In that case, we say that p is a closed
trapped surface. Each point inside region II' represents a time-
reversed closed trapped surface (the existence of trapped surfaces is
a necessary consequence of the fact that the surfaces » = constant are
spacelike), and correspondingly all particles in region II' must have
come from the singularity in the past. We shall see in chapter 8 that
the existence of the singularities is closely related to the existence of
the closed trapped surfaces.

The Reissner—Nordstrém solution represents the space—time outside
a spherically symmetric charged body carrying an electric charge (but
with no spin or magnetic dipole, so this is not a good representation of
the field outside an electron). The energy—momentum tensor is there-
fore that of the electromagnetic field in the space-time which results
from the charge on the body. It is the unique spherically symmetric
asymptotically flat solution of the Einstein—-Maxwell equations and is
locally rather similar to the Schwarzschild solution; there exist
coordinates in which the metric has the form

2 2\ —1
ds==—(1—?’—”+f§)dzz+(1-2ﬂ+%) dr® +12(d6? +sin?0 dg?),
r r r 7
(5.26)

where m represents the gravitational mass and e the electric charge of
the body. This asymptotically flat solution would normally be
regarded as the solution outside the body only, the interior being
filled in with some other suitable metric; but it is again interesting to
see what happens if we regard it as a solution for all 7.

If ¢ > m? the metric is non-singular everywhere except for the
irremovable singularity at » = 0; this may be thought of as the point
charge which produces the field. If e? < m?, the metric also has singu-
larities at 7, and r_, where r, = m+ (m2—e?)}; it is regular in the
regions defined byco > r>r,,r, > r>r_andr_> r > 0 (if e2 = m?,
only the first and third regions exist). As in the Schwarzschild case,
these singularities may be removed by introducing suitable coordinates
and extending the manifold to obtain & maximal analytic extension
{Graves and Brill (1960), Carter (1966)). The major differences that
arise are due to the existence of two zeros in the factor in front of dz2,
rather than one as in the Schwarzschild case. In particular this implies
that the first and third regions are both static, whereas the second
region (when it exists) is spatially homogeneous but is not static.
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To obtain the maximally extended manifold, we proceed in steps
analogous to those in the Schwarzschild case. Defining the coordinate

r* by 2
r* —fdr/(l—gln+e ),

then forr > r,,

2

r_
(ry—72)

r*=r4 log(r—r,)— log(r—r_) if e?<m?

7,2
(7'+ —7)

if e2=m?

r—m

r* = r4+mlog (r?— 2mr +e2) + e=—2m= arctan (;—:Lmn—z) if e2> m?.
Defining advanced and retarded coordinates v, w by

v=_¢t+r*, w=_t—1r*
the metric (5.26) takes the double null form

de? = ( 2m e

1———+ )d'vdw-f-r2 (d6? + sin2 6 d¢?). (5.27)

In the case €2 < m?, define new coordinates v”, w” by

re— —
v" = arctan (exp( ;r :_v)), w" = arctan (—-exp (-—;*‘;i;:w))
+ +

Then the metric (5.27) takes the form

2 4
ds2 = (1 __27_n +— ¢ ) 64 _7'+__2 cosec 2v” cosec 2w” dv” dw”
r (ryo—1_)
+72(d62+5in?0dg?), (5.28)
where 7 is defined implicitly by

tanv” tanw” = —exp ( (r;;- :‘) r) (r—r ) (r—r_)=2
+

and a = (r,)2(r_)%. The maximal extension is obtained by taking
(5.28) as the metric g*, and #* as the maximal manifold on which
this metric is C2

The Penrose diagram of the maximal extension is shown in figure 25.
There are an infinite number of asymptotically flat regions, where
r > r,; these are denoted by I. These are connected by intermediate
regions II and IIT where r. > >r_ and r_ > r > 0 respectively.
There is still an irremovable singularity at r = 0 in each region III,
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= 0 N\ Yoo 7 = 0
(slngularity) \ y /, = s_ [[ (slugulurity)
\
/
11 . >'\. m | —Cauchy hotizon
_/ Ly =17 /fOl'y

surfaces
{t = constant}

FicurkE 26. Penrose diagram for the maximally extended Reissner—-Nordstrém
solution (e* < m?®. An infinite chain of asymptotically flat regions I
(0 > r > r,) are connected by regions II (r, > r > r_) and III (r_ > r > 0);
each region III is bounded by a timelike singularity at » = 0.

but unlike in the Schwarzschild solution, it is timelike and so can be
avoided by a future-directed timelike curve from a region I which
crosses 7 = 7. Such a curve can pass through regions II, III and II
and re-emerge into another asymptotically flat region I. This raises
the intriguing possibility that one might be able to travel to other
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univorses by passing through the ‘wormholes’ made by charges.
Unfortunately it seems that one would not be able to get back again
to our universe to report what one had seen on the other side.

The metric (5.28) is analytic everywhere except at r = r_ where it is
degenerate but one can define different coordinates v” and w"” by

U/ Z _r-
»” = are tan (“"‘p (2 nr_% v)) '

—r 7
w" = aretan (—exp (—27-:17;—2- w)) ,

where 7 is an integer > 2(r,)%(r_)"% In these coordinates, the metric
is analytic everywhere except at r = r, whers it ir degenerate. The
coordinates v” and w" are analytic functions of v" and w” for r # r,
or r_. Thus the manifold .#* can be covered by an analytic atlas, con-
sisting of local coordinate neighbourhoods defined by coordinates v”
and w” for r & r_ and by local coordinate neighbourhoods defined by
v” and w” for r # r,. The metric is analytic in this atlas.

The case €2 = m? can be extended similarly; the case e2 > m? is
already inextendible in the original coordinates. The Penrose diagrams
of these two cases are given in figure 26.

In all these cases, the singularity is timelike. This means that, unlike
in the Schwarzschild solution, timelike and null curves can always
avoid hitting the singularities. In fact the singularities appear to be
repulsive: no timelike geodesic hits them, though non-geodesic time-
like curves and radial null geodesics can. The spaces are thus timelike
(though not null) geodesically complete. The timelike character of the
singularity also means that there are no Cauchy surfaces in these
spaces: given any spacelike surface, one can find timelike or null curves
which run into the singularity and do not cross the surface. For
example in the case e? < m2, one can find a spacelike surface & which
crosses two asymptotically flat regions I (figure 25). This is a Cauchy
surface for the two regions I and the two neighbouring regions II.
However in the neighbouring regions III to the future there are past-
directed inextendible timelike and null curves which approach the
singularity and do not cross the surface r = r_. This surface is there-
fore said to be the future Cauchy horizon for &. The continuation of
the solution beyond r = r_ is not determined by the Cauchy data on &.
The continuation we have given is the only locally inextendible
analytic one, but there will be other non-analytic C* continuations
which satisfy the Einstein-Maxwell equations.
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o I
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(singularity)
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(singularity)
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r=0
(singularity) r=o
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¢ = constant
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F1GurE 26. Penrose diagrams for the maximally extended Reissner-Nordstrém
solutions: (i) e =md, (ii) &> m.

In the first case there is an infinite chain or regions I (co > r > m) connected by
regions III (m > r > 0). The points p are not part of the singularity at r = 0, but
are really exceptional points at infinity.
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A particle P crossing the surface r = r, would appear to have
infinite redshift to an observer O whose world-line remains outside
r = r, and approaches the future infinity i+ (figure 25). In the region I1
between r = r, and r = r_, the surfaces of constant r are spacelike and
so each point of the figure represents a two-sphere which is a closed
trapped surface. An observer P crossing the surface r = r_ would see
the whole of the history of one of the asymptotically flat regions I in
a finite time. Objects in this region would therefore appear to be
infinitely blue-shifted as they approached ¢*. This suggests that the
surface 7 = 7_ would be unstable against small perturbations in the
initial date on the spacelike surface &, and that such perturbations
would in general lead to singularities on r = r_.

5.6 The Kerr solution

In genersal, astronomical bodies are rotating and so one would not
expect the solution outside them to be exactly spherically symmetric.
The Kerr solutions are the only known family of exact solutions which
could represent the stationary axisymmetric asymptotically flat field
outside a rotating massive object. They will be the exterior solutions
only for massive rotating bodies with a particular combination of
multipole moments; bodies with different combinations of moments
will have other exterior solutions. The Kerr solutions do however
appear to be the only possible exterior solutions for black holes (see
§9.2 and §9.3).

The solutions can be given in Boyer and Lindquist coordinates
(,0,¢,t) in which the metric takes the form

2
ds? = p? (dTr + dﬁ”) + (r2+a?)sin?0d¢p2—de2 + % (asin?0d¢ — dt)2,
(5.29)
where  pX(r,0) =r2+a%cos®0 and A(r) = r*~2mr+a®

m and a are constants, m representing the mass and ma the angular
momentum as measured from infinity (Boyer and Price (1965)); when
a = 0 the solution reduces to the Schwarzschild solution. This metric
form is clearly invariant under simultaneous inversion of ¢t and ¢,
i.e. under the transformation t—»>—t, ¢-—>—¢, although it is not
invariant under inversion of ¢ alone (except when a = 0). This is what
one would expect, since time inversion of a rotating object produces
an object rotating in the opposite direction.
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When a2 > m2, A > 0 and the above metric is singular only when
r = 0. The singularity at » = 0 is not in fact a point but a ring, as can
be seen by transforming to Kerr-Schild coordinates (z,y,2,t), where

x+iy = (r+ia)sin Bexpif(dgb.;.aA—l dr),
= = r cos6, f=f(dt+(r=+a=m—1dr)—r.

In these coordinates, the metric takes the form
ds? = dx? + dy? 4+ dz2—di®

2mr®  (r(xdx+ydy)—a(xdy — ydx) zdz
r‘+a’z=( 72+ ot

=+ dt) (5.30)

where 7 is determined implicitly, up to a sign, in terms of , y, z by
ri— (224 y2+22—a®)r—a? = 0.

For r % 0, the surfaces {r = constant} are confocal ellipsoids in the
(2, y, z) plane, which degenerate for 7 = 0 to the disc 22+ %% < a?%,z = 0.
The ring 22+ y* = a?, z = 0 which is the boundary of this disc, is a real
curvature singularity as the scalar polynomial R, ,Re¢ diverges
there. However no scalar polynomial diverges on the disc except at
the boundary ring. The function r can in fact be analytically con-
tinued from positive to negative values through the interior of the disc
224+y? < a? z =0, to obtain a maximal analytic extension of the
solution.

To do this, one attaches another plane defined by coordinates
(z’,y',2') where & point on the top side of the disc 22+ 42 < a?,2=10
in the (z,y,z) plane is identified with a point with the same x and y
coordinates on the bottom side of the corresponding disc in the
(%', ', 2') plane. Similarly a point on the bottom side of the disc in the
(7, y, 2) plane is identified with a point on the top side of the disc in the
(%', ", 2’) plane (see figure 27). The metric (5.30) extends in the obvious
way to this larger manifold. The metric on the (2, ¥, 2') region is again
of the form (5.29), but with negative rather than positive values of 7.
At large negative values of 7, the space is again asymptotically flat
but this time with negative mass. For small negative values of  near
the ring singularity, the vector 8/d¢ is timelike, so the circles
(t = constant, r = constant, § = constant) are closed timelike curves.
These closed timelike curves can be deformed to pass through any
point of the extended space (Carter (1968a)). This solution is geodesic-
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ally incomplete at the ring singularity. However the only timelike and
null geodesics which reach this singularity are those in the equatorial
plane on the positive r side (Carter (1968a)).

Symmetry
Symmetry axis
axis § = constant  p _ conetang 0=0
6=0 ’

Identify

Figure 27. The maximal extension of the Kerr solution for a® > m? is obtained
by identifying the top of the disc 22 4 y* < a?,z = 0 in the (z, ¥, 2) plane with the
bottom of the corresponding dise in the (z', %', z’) plane, and vice versa. The
figure shows the sections y = 0, ' = 0 of these planes. On circling twice round
the singularity at 224 y* = at, z = 0 one passes from the (z, ¥, z) plane to the
(z’, ¥’, 2’) plane (where 7 is negative) and back to the (z, ¥, 2) plane (where r is
positive).

The extension in the case a? < m? is rather more complicated,
because of the existence of the two values r, = m+ (m2—a?)?} and
r_ = m~—(m2—a?)t of r at which A(r) vanishes. These surfaces are
similar to the surfaces r =7, r =r_ in the Reissner-Nordstrom
solution. To extend the metric across these surfaces, one transforms
to the Kerr coordinates (7,0, ¢,, u,), where

du, = dt+ (r*+a?)A-1dr, d¢, =dd+aA-1dr.
The metric then takes the form
ds? = p2d02—2asin?0drdg, + 2drdu,
+ 72 (72 4 a?)? — Aa?sin?0)sin20 d¢,2
—dap~?mrsin?6d¢, du, — (1 -2mrp~2)du,? (5.31)
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on the manifold defined by these coordinates, and is analytic at
7 = r, and r = r_, One again has a singularity at = 0, which has the
same ring form and geodesic structure as that described above. The
metric can also be extended on the manifold defined by the coordinates
(r,0,¢_,u_) where

du_=dt—(r2+a?)A-1dr, d¢_=d¢—aA~1dr;

the metric again takes the form (5.31), with ¢, %, replaced by —¢_,
—u_. The maximalanalytic extension can be built up by a combination
of these extensions, as in the Reissner-Nordstrom case (Boyer and
Lindquist (1967), Carter (1968a)). The global structure is very similar
to that of the Reissner—-Nordstrém solution except that one can now
continue through the ring to negative values of 7. Figure 28 (i) shows
the conformal structure of the solution along the symmetry axis. The
regions 1 represent the asymptotically flat regions in which r > 7.
The regions II (r_ < 7 < r,) contain closed trapped surfaces. The
regions IIT (—oo < r < r_) contain the ring singularity; there are
closed timelike curves through every point in a region 111, bul. no
cnurnlity violntion ocours in tho other two regiona.

In the case a® = m3, r, and r_ coincide and there is no region 11. The
maximal extension is similar to that of the Reissner-Nordstrém solu-
tion when e = m3. The conformal structure along the symmetry axis
In this vase ts shown in flgure 28 (li).

The Kerr solutions, being stationary and axisymmetric, have a
two-parameter group of isometries. This group is necessarily Abelian
(Carter (1970)). There are thus two independent Killing vector fields
which commute. There is a unique linear combination K¢ of these
Killing vector fields which is timelike at arbitrarily large positive and
negative values of 7. There is another unique linear combination K@
of the Killing vector fields which is zero on the axis of symmetry. The
orbits of the Killing vector K¢ define the stationary frame, that is, an
object moving along one of these orbits appears to be stationary with
respect toinfinity. The orbits of the Killing vector K¢ are closed curves,
and correspond to the rotational symmetry of the solution.

In the Schwarzschild and Reissner-Nordstrém solutions, the
Killing vector K¢ which is timelike at large values of 7 is timelike
everywhere in the region I, becoming null on the surfaces r = 2m and
r = r, respectively. These surfaces are null. This means that a particle
which crosses one of these surfaces in the future direction cannot
return again to the same region. They are the boundary of the region
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r=1y, r=r,

Fiqure 28. The conformal structure of the Kerr solutions along the axis of
symmetry, (i) in the case 0 < at < m?, (ii) in the case a® = m?2. The dotted lines
ure Hues ol constant r; the rogions 1, 11 and 111 case (1) are divided by » = 7
and r = r_, and the regions I and III in case (ii) by » = m. In both cases, the
structure of the space near the ring singularity is as in figure 27.

of the solution from which particles can escape to the infinity S+ of
a particular region I, and are called the event horizons of that £+. (They
are in fact the event horizon in the sense of § 5.2 for an observer moving
on any of the orbits of the Killing vector K in the region I.)

In the Kerr solution on the other hand, the Killing vector K¢ is
spacelike in a region outside r = r,, called the ergosphere (figure 29).
The outer boundary of thisregion is the surface r = m + (m? — a2 cos?2 6)¢
on which K@ is null. This is called the stationary limit surface since it is
the boundary of the region in which particles travelling on a timelike
curve can travel on an orbit of the Killing vector K¢, and so remain at
rest with respect to infinity. The stationary limit surface is a timelike
surface except at the two points on the axis, where it is null (at these
points it coincides with the surface » = 7). Where it is timelike it can
be crossed by particles in either the ingoing or the outgoing direction.
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Symmetry axis
- (6 =0)

Equatorial
plane
(0 = §m)

Stationary
limit
surface
Ergosphere

Event horizon
=7y

Ring

singularity
F1gUure 29. In the Kerr solution with 0 < a® < m?, the ergosphere lies between
the stationary limit surface and the horizon at r = r,. Particles can escape to
infinity from region I (outside the event horizon r = r.) but not from region II
(between r = r, and r = r_) and region III (r <r_; this region contains the

ring singularity).

C]

Ergospherc

Stationary

Jimit surface
FigUure 30. The equatorial plane of a Kerr solution with m?® > a® The circles
represent the position a short time later of flashes of light emitted by the points
represented by heavy dots.
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It is therefore not the event horizon for #£+. In fact the event horizon
is the surface » = r, = m + (m2—a?)}. Figure 30 shows why this is. It
shows the equatorial plane @ = }; each point in this figure represents
an orbit of the Killing vector K¢, i.e. it is stationary with respect
to #+. The small circles represent the position a short time later of
flashes of light emitted from the points represented by the heavy
black dots. Outside the stationary limit the Killing vector K¢ is time-
like and so lies within the light cone. This means that the point in
figure 30 representing the orbit of emission lies within the wavefront
of the light.

On the stationary limit surface, K¢ is null and so the point repre-
senting the orbit of emission lies on the wavefront. However the wave-
front lies partly within and partly outside the stationary limit surface;
it is therefore possible for a particle travelling along a timelike curve
to escape to infinity from this surface. In the ergosphere between the
stationary limit surface and 7 = r_, the Killing vector K@ is spacelike
and so the point representing the orbit of emission lies outside the
wavefront. In this region it is impossible for a particle moving on a
timelike or null curve to travel along an orbit of the Killing vector and
s0 to remain at rest with respect to infinity. However the positions of
the wavefronts are such that the particles can still escape across the
stationary limit surface and so out to infinity. On the surface r = r_,
the Killing vector K@ is still spacelike. However the wavefront corre-
sponding to a point on this surface lies entirely within the surface.
This means that a particle travelling on a timelike curve from a point
on or inside the surface cannot get outside the surface and so cannot
get out to infinity. The surface » = r_ is therefore the event horizon
for £+ and is a null surface.

Although the Killing vector K¢ is spacelike in the ergosphere, the
magnitude KeK°K, K,, of the Killing bivector KK, is negative every-
where outside r=r,, except on the axis K = 0 where it vanishes.
Therefore K¢ and K¢ span a timelike two-surface and so at each point
outside r = 7, off the axis there is a linear combination of K¢ and K¢
which is timelike. In a sense, therefore, the solution in the ergosphere
is locally stationary, although it is not stationary with respect to
infinity. In fact there is no one linear combination of K* and K¢ which
is timelike everywhere outside 7 = r,. The magnitude of the Killing
bivector vanishes on r = 7, and is positive just inside this surface.
Onr = r,, both K@and K* are spacelike but there is a linear combina-
tion which is null everywhere on r = r, (Carter (1969)).
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The behaviour of the ergosphere and the horizon we have discussed
will play an important part in our discussion of black holes in §9.2
and §9.3.

Just as the Reissner~Nordstrém solution can be thought of as
a charged version of the Schwarzschild solution, so there is a family of
charged Kerr solutions (Carter (1968a)). Their global properties are
very similar to those of the uncharged Kerr solutions.

5.7 Godel’s universe

In 1949, Kurt Gddel published a paper (Godel (1949)) which provided
a considerable stimulus to investigation of exact solutions more com-
plex than those examined so far. He gave an exact solution of
Einstein’s field equations in which the matter takes the form of a
pressure-free perfect fluid (7}, = pu,u, where p is the matter density
and u, the normalized four-velocity vector). The manifold is B¢ and
the metric can be given in the form

ds? = — d2+da® — }exp (2(y/2) wz) dy? + dz2 — 2 exp ((»/2) wz) dt dy,
where w > 0is a constant; the field equations are satisfied if u = 8/2x°
(i.e. u® = 8%) and dmp = w2 = —A.

The constant  is in fact the magnitude of the vorticity of the flow
vector u®.

This space-time has a five-dimensional group of isometries which
is transitive, i.e. it is a completely homogeneous space-time. (An
action of a group is transitive on .# if it can map any point of .# into
any other point of .#.) The metric is the direct sum of the metric g,
given by

ds,? = —dt? 4+ da?— } exp (2(,/2) wz) dy? — 2exp ((4/2) wx) dtdy
on the manifold #; = E® defined by the coordinates (t, z,y), and the
metric g, given by ds,? = dz?
on the manifold .#, = R? defined by the coordinate z. In order to
describe the properties of the solution it is sufficient to consider only

(A, 81)-
Defining new coordinates (', 7, ¢) on .#, by

exp ((/2) wx) = cosh 27 + cos ¢ sinh 2r,
wyexp ((4/2) wx) = sin ¢ sinh 27,
tan }(¢ + wt — (,/2)t') = exp (— 2r) tan 3¢,
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the metric g, takes the form
ds,® = 2w~%(~dt'24 dr?— (sinh?r —sinh?7) d¢? + 2(,/2) sinh®r d¢ dt),

where —c0 <t < 00,0 < 7 < 00,and 0 € ¢ < 27, ¢ = 0 being identified
with ¢ = 27; the flow vector in these coordinates is u = (w/ (,/2)) 8/t
This form exhibits the rotational symmetry of the solution about the
axisr = 0. By a different choice of coordinates the axis could be chosen
to lie on any flow line of the matter.

r=0

(coordinate axis)
__Matter world-line
“~ (r, ¢ constant)

p"’s future null cone
(refocusses at p”)

Null cone
Null cone  tangent to
includes circle

circle\

2 ’s null cone refocusses at 2’

Caustic on p's
future null cone

r > log (1+:/2)
(closed timelike ¢ = Jog (1 4 /2
curve) H

S

(closed null curve) @

p’s future \t' =0

r < log (1+42) A null cone
(closed spacelike
curve)

v
4

r

Figure 31. Gédel’s universe with the irrelevant coordinate z suppressed. The
space is rotationally symmetric about any point; the diagram represents cor-
rectly the rotational symmetry about the axis » = 0, and the time invariance.
The light cone opens out and tips over as r increases (see line 7,) resulting in
closed timelike curves. The diagram does not correctly represent the fact that
all points are in fact equivalent.

The behaviour of (4, 8,) is illustrated in figure 31. The light cones
on the axis 7 = 0 contain the direction 8/é’ (the vertical direction on
the diagram) but not the horizontal directions 8/dr and 8/d¢. As one
moves away from the axis, the light cones open out and tilt in the
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¢-direction so that at a radius r = log (1+,/2), 8/8¢ is a null vector
and the circle of this radius about the origin is a closed null curve.
At greater values of 7, 8/d¢ is a timelike vector and circles of constant
r, t' are closed timelike curves. As (.4, 8,) has a four-dimensional
group of isometries which is transitive, there are closed timelike curves
through every point of {.#), 8,), and hence through every point of the
Godel solution (A, 8). o

This suggests that the solution is not very physical. The existence
of closed timelike curves in this solution implies that there are no
imbedded three-dimensional surfaces without boundary in .# which
are spacelike everywhere. For a closed timelike curve which crossed
such a surface would cross it an odd number of times. This would mean
that the curve could not be continuously deformed to zero, since a
continuous deformation can change the number of crossings only by
an even number. This would contradict the fact that . is simply
connected, being homeomorphic to R*. The existence of closed time-
like lines also shows that there can be no cosmic time coordinate t in .4
which increases along every future-directed timelike or null curve.

The Godel solution is geodesically complete. The behaviour of the
geodesics can be described in terms of the decomposition into {4}, &)
and (4, 8,). Since the metric g, of .#, is flat, the component of the
geodesic tangent vector in ., is constant, i.e. the z-coordinate varies
linearly with the affine parameter on the geodesic. It is sufficient there-
fore to describe the behaviour of geodesics in {4, 8,). The null
geodesics from a point p on the axis of coordinates (figure 31) diverge
from the axis initially, reach a caustic at 7 = log (1 +(4/2)), and then
reconverge to a point p” on the axis. The behaviour of timelike geo-
desics is similar: they reach some maximum value of 7 less than
log (14 (4/2)) and then reconverge to p’. A point q at a radius » greater
than log (1+ (4/2)) can be joined to p by a timelike curve but not by
a timelike or null geodesic.

Further details of Godel’s solution can be found in Godel (1949),
Kundt (1956).

5.8 Taub-NUT space

In 1951, Taub discovered a spatially homogeneous empty space solu-
tion of Einstein’s equations with topology R x 8% and metric given by

ds? = — U-1de2+ (21)2 U(dy + cos 0 dgh)?
+ (124 12) (dO2 +-sin20 d¢p?), (5.32)
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where
2(mt +12)

Ul =—1+=5-3

m and l are positive constants.

Here 8, ¢, {r are Euler coordinateson 8%, 50 0 < ¥y < 47, 0< O < 7,
0 < ¢ < 27. This metric is singular at t =t, =m + (m2+[2)}, where
U = 0. It can in fact be extended across these surfaces to give a space
found 1, Newman, Tamburino and Unti (1963), but before discussing
the extension we shall consider a simple two-dimensional example
given by Misner (1967) which has many similar properties.

This space has the topology S! x R! and the metric g given by

ds? = —t-1di2 4 tdy?

where 0 < { < 27. This metric is singular when ¢ = 0. However if one
takes the manifold # defined by ¢ and by 0 < ¢ < o0, (A, 8) can
be extended by defining ¥’ = iy —logt. The metric then takes the

form g' given by ds’ =+ 2d¢'l dt+t(d¢")z.

This is analytic on the manifold .’ with topology S! x R defined by
¥’ and by — oo < ¢t < co. The region ¢ > 0 of (A”,8") is isometric with
(A, 8). The behaviour of (', §’) is shown in figure 32. There are
closed timelike lines in the region t < 0, but there are none when
t > 0. One family of null geodesics is represented by the vertical lines
in figure 32; these cross the surface £ = 0. The other family spiral
round and round as they approach ¢ = 0, but never actually cross this
surface, and these geodesics have only finite affine length. Thus the
extension (', §') is not symmetric between the two families of null
geodesics, although the original space (#, 8) was. However one can
define another extension (#”, 8”) in which the behaviour of the two
families of null geodesics is interchanged. To do so define " by
Y” = ¢ +logt. The metric takes the form g” given by

ds? = — 2dy” de+ t(dy)®.

This is analytic on the manifold .#" with topology S x R! defined
by " and —co <t < co. The region t > 0 of (#",8") is isometric
with (4, 8). In a sense, what we have done by defining " is to untwist
the second family of null geodesics so that they become vertical lines,
and can be continued beyond ¢t = 0, However this twisting winds up
the first family of null geodesics so that they spiral around and cannot
be continued beyond t = 0. One has therefore two inequivalent locally
inextendible analytic extensions of (#, g), both of which are geodesic-
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Froure 32. Misner's two-dimensional example.

(i} Extension of region I across the boundary ¢ = 0 into II. The vertical null
geodesics are complete, but the twisted null geodesics are incomplete.

(ii) The universal covering space is two-dimensional Minkowski space. Under
the discrete subgroup @ of the Lorentz group, points 8 are equivalent; similarly
points r, ¢ and ¢ are equivalent. (i) is obtained by identifying equivalent points
in regions I and IT.
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ally incomplete. The relation between these two extensions can be
seen clearly by going to the covering space of (A, g).

This is in fact the region I of two-dimensional Minkowski space
(-#, #) contained within the future null cone of a point p (figure 32(ii)).
The isometries of (.#,#) which leave p fixed form a one-dimensional
group (the Lorentz group of %) whose orbits are the hyperbolae
{o = constant} where o =12—2% and I, ¥ are the usual Minkowski
coordinates. The space (#, g) is the quotient of (I, #j) by the discrete
subgroup G of the Lorentz group consisting of A" (n integer) where
A maps (2, %) to

(¢! cosh 7 + Z sinh 71,  cosh 7 + I sinh 77),
i.e. one identifies the points
(¢ cosh nar + & sinh nar, % cosh nar 4 £ sinh nar)
for all integer values of n, and these correspond to the point
t=}(I?—-3%, ¢ =2arctanh(Zfl) in .

The action of the isometry group & in the region I is properly dis-
continuous. The action of a group H on a manifold A is said to be
properly discontinuous if:

(1) eachpointge A hasaneighbourhood % such that A()n U = &
for each 4 € H which is not the identity element, and

(2) if g, 7 e A aresuch that thereisno 4 € H with 4¢q = 7, then there
are neighbourhoods % and %’ of ¢ and r respectively such that there
isno BeHwith B@a)n%' + .

Condition (1) implies that the quotient AJH is n manifold, and
condition (2) implies that it is Hausdorff. Thus the quotient (I,#)/@ is
the Hausdorff space (A, g). The action of @ is also properly discon-
tinuous in the regions I+II (! > —&). Thus (I+1IL#)/G is also a
Hausdorff space; in fact it is (4", g'). Similarly (I +III, /)/@ is the
Hausdorff space (4", g”) where I +1III is the region I > #. From this
it can be seen how it is that one family of null geodesics can be com-
Pleted in the extension (.#', g') while the other family can be com-
pleted in the extension (4", g”). This suggests that one might perform
both extensions at the same time. However the action of the group on
the region (I+II+1III) (i.e.Z > — ||) satisfies condition (1) but condi-
tion (2) is not satisfied for points ¢ on the boundary between I and IT
and points 7 on the boundary between I and ITI. Therefore the quotient
(I+1II+1III, #)/G is not Hausdorff although it is still a manifold.
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This kind of non-Hausdorff behaviour is different from that in the
example given in §2.1. In that example, one could have continuous
curves which bifurcate, one branch going into one region and another
branch going into another region. Such behaviour of an observer’s
world-line would be very uncomforteble. However the manifold
(I +1II 4 III)/G does not have any such bifurcating curves; curves inI
can be extended into IT or ITI but not into both simultaneously. Thus
one might be prepared to relax the Hausdorff requirement on a space-
time model to allow this sort of situation but not the sort in which one
gets bifurcating curves. Further work on non-Hausdorff space-times
can be found in the papers of Hajicek (1971).

Condition (1) is in fact satisfied by the action of G on # —{p}. Thus
the space (4 —{p}, #)/@ is in some sense the maximal non-Hausdorff
extension of (A, g). However it is still not geodesically complete
because there are geodesics which pass through the point p which has
been left out. If p is included the action of the group does not satisfy
condition (1), and so the quotient M /@ is not even a non-Hausdorff
manifold. However consider the bundle of linear frames L(.#), i.e. the
collection of all pairs (X, Y), X, Y €7, of linearly independent vectors
at all points ge.#. The action of an element 4 of the isometry group
@ on .# induces an action 4, on L(.# ) which takes the frame (X,Y)
at g to the frame (4,.X,4,Y) at 4(q). This action satisfies condi-
tion (1) because even for (X,Y)eZ),, 4,X + X and 4,Y #+ Y unless
A = identity, and satisfies condition (2) even if X and Y lie on the null
cone of p. Thus the quotient L(.#)/@ is & Hausdorff manifold. It is
a fibre bundle over the non-Hausdorff non-manifold .# /G. One could
in a sense regard it as the bundle of linear frames for this space. The
fact that the bundle of frames can be well behaved even though the
space is not, suggests that it is useful to look at singularities by using
the bundle of linear frames. A general procedure for doing this will
be given in §8.3.

We shall now return to the four-dimensional Taub space (4, g)
where . is R x 8% and g is given by (5.32). As . is simply connected,
one cannot take a covering space as we did in the two-dimensional
example. However one can achieve a similar result by considering .4
as a fibre bundle over §2 with fibre R!x S; the bundle projection
m: M —>S? is defined by (t, ¢, 0, ) (0, $). This is in fact the pro-
duct with the t-axis of the Hopf fibering §3-> 82 (Steenrod (1951))
which has fibre S%, The space (A, g) admits a four-dimensional group
of isometries whose surfaces of transitivity are the three-spheres
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{t = constant}. This group of isometries maps fibres of the bundle
7. M — S?into fibres, and s0 the pairs (¥, 8) are all isometric, where
& is a fibre (¥ ~ R!x S8!) and g is the metric induced on the fibre
by the four-dimensional metric ¢ on . The fibre & can be regarded
as the (t,9) plane, and the metric § on & is obtained from (5.32) by
dropping the terms in df and d¢; thus g is given by

ds? = — U-1ae2+ 42U (dy)2. (5.33)

The tangent space 7, at the point ge .# can be decomposed into
a vertical subspace ¥, which is tangent to the fibre and is spanned by
the vectors é/ot and 8/éy, and a horizontal subspace H, which is
spanned by the vectors /80 and 8/d¢ — cos 6 &/éyy. Any vector XeT,
can be split into & part X;, lying in ¥, and a part X lying in H,. The
metric g on 7, can then be expressed as

9(X,Y) = gp(Xp,, Yy ) + (3 + ) g7 o X, 74 Y1) (6.34)

where g, = § and g is the standard metric on the two-sphere given
by ds? = d@? +s8in26 d¢p2. Thus although the metric g is not the direct
sum of g, and (12 +1%) g, (because R! x 82 is not the direct product of
B! x St with 8%) it can nevertheless be regarded as such a sum locally.

The interesting part of the metric g is contained in g;, and we shall
therefore consider analytic extensions of the pair (&, g;;). When com-
bined with the metric g5 of the two-sphere as in {5.34), these give
analytic extensions of (., g).

The metric g, given by (5.33), has singularities at ¢ = ¢, where
U = 0. However if one takes the manifold &, defined by y and by
t.<t<t,, (%,8y) can be extended by defining

, 1 dt
Y= ‘/f+'.zl —U_(t-j

The metric then takes the form g, given by
ds® = 4ldy’'(IU(t) dy' — dt).

This is analytic on the manifold #” with topology S* x R defined by
Y'andby —co < t < co. Theregiont. <t <t, of (F', g,’) isisometric
with (%, g8-). There are no closed timelike curves in the region
t. <t <t buttherearefort < ¢t_andfort¢ > ¢,. The behaviouris very
much as for the space (#', 8') we considered before, except that there
are now two horizons (at t = t_and ¢ = ¢,) instead of the one horizon
(att = 0). One family of null geodesics crosses both horizons ¢ = ¢_and
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t = t, but the other family spirals round near these surfaces and is

incomplete.
As before, one can make another extension by defining the
coordinate 1 at

Vi=V-a)Te

The metric then takes the form g,,” given by
ds? = 4 dy"(U(t) dy" + dt)

which is analytic on the manifold &” defined by y¥” and by
—00 < t < o0, and is again isometric to (%, gy)ont_ <t < t,.

Once again one can show the relation between the different exten-
sions by going to the covering space. The covering space of & is the
manifold &, defined by the coordinates —oo < i <0 and by
ti_ <t <t,.OnZ the metricg, can be written in the double null form

ds? = 4RU{t)dy’ dy”, (5.35)

where —c0 < ¥' < 0, —00 < " < 0. One can extend thisin a manner
similar to that used in the Reissner~Nordstréom solution. Define new
coordinates (u,,v,) and {(¥_,v_) on & by

u, = arctan (expy’/a,), v, = arctan(—(exp—y"/a.)),

b, —t b, —t
Ll S N T Sl
where “ = Gmi+m "% T Ldimis By

n is some integer greater than (mt, + 2)/(mi_+ 12). Then the motric g,
obtained by applying this transformation to (5.35) is analytic on the
manifold # shown in figure 33, where the coordinates (u,,v,) are
analytic coordinates except att = {_ where they are atleast C3, and the
coordinates (u_,v.) are analytic coordinates except at ¢ = {, where
they are at least C3. This is rather similar to the extension of the {¢,7)
plane of the Reissner-Nordstrém solution.

The space (&, 8;) has a one-dimensional group of isometries, the
orbits of which are shown in figure 33. Near the points p,, p_ the
action of this group is similar to that of the Lorentz group in two-
dimensional Minkowski space (figure 32 (ii)). Let G be the discrete
subgroup of the isometry group generated by a non-trivial element 4
of the isometry group. The space (%, g;) is the quotient of one of
the regions (II,, 8,) by @. The space (¥',8;') is the quotient
(I_+1IL, +1IL_, §,)/G, and (¥, 8,,") is the quotient

(L, +IL, +111,, §,.)/Q.
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F1GURE 33. Penrose diagram of the maximally extended covering space of a
two-dimensional section of Taub-NUT space, showing orbits of the isometry
group. Taub-NUT space and its extensions are obtained from part of this space
hy identification of points under o disereto subgroap of the isomotry group.

One would also obtain a Hausdorff manifold by taking the quotient of
(I, +II,+1_): this corresponds to extending like (%', g,') at the
surface t = ¢, but extending like (#”, 8,,”) at the surface ¢t = ¢_. By
taking the quotient of the whole space & minus the points p, and p_
one obtains a non-Hausdorff manifold; and taking the quotient of &
one obtains a non-Hausdorff non-manifold in a way analogous to that
in the example above. As in that example, one can take the quotient
of the bundle of linear frames over % and obtain a Hausdorf{f manifold.

By combining these extensions of the (¢, i) plane with the coordi-
nates {6,¢$) one can obtain corresponding extensions of the four-
dimensional space (/#, g). In particular, the two extensions (¥',8,)
and (#”, 8,") give rise to two different locally inextendible analytic
extensions of (., g), and both are geodesically incomplete.

Consider one of these extensions, say (', 8'). Tho throe-spheres
which are the surfneon of Lrannitivity of Lhe isomotry group are spuce-
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like surfaces in the region t_ < ¢t < ¢, and are timelike for ¢t > ¢, and
t <t_. The two surfaces of transitivity ¢ =¢_ and ¢t =1, are null
surfaces and they form the Cauchy horizon of any spacelike surface
contained in the region ¢ < t < t,, because there are timelike curves
in the regions ¢t <¢_ and ¢ > ¢, which donot cross t =¢_and t =1,
regpectively (for example, closed timelike curves exist in the regions
t <t_and? > t,). The region of space-time {_ < ¢ < £, is compact yet
there are timelike and null geodesics which remain within it and are
incomplete. This kind of behaviour will be considered further in
chapter 8.

Further details of Taub-NUT space may be found in Misner and
Taub (1969), Misner (1063).

5.9 Further exact solutions

We have examined in this chapter a number of exact solutions and
ugsed them to give examples of the various global properties which we
shall wish to discuss more generally later. Although a large number of
exact solutions are known locally, relatively few have been examined
globally. To complete this chapter, we shall mention briefly two other
interesting families of exact solutions whose global properties are
known.

The first of these are the plane wave solutions of the empty space
field equations. These are homeomorphic to R4, and global coordinates
(y, z, w, v), which range from —oo to + oo, can be chosen so that the
metric takes the form

ds? = 2dudv +dy?+dz?+ H(y, z, w) du?,
where H = (y*—2?) f(u) — 2yzg(v);

f(u) and g(u) are arbitrary C? functions determining the amplitude
and polarization of the wave. These spaces are invariant under a five-
parameter group of isometries multiply transitive on the null surfaces
{u = constant}; a special subclass, in which f(u) = cos 2u, g(u) = sin 2u,
admit an extra Killing vector field, and are homogeneous space—times
invariant under a six-parameter group of isometries. These spaces
do not contain any closed timelike or null curves; however they
admit no Cauchy surfaces (Penrose (1965a)). Local properties
of these spaces have been studied in detail by Bondi, Pirani and
Robinson (1959), and global properties by Penrose (1965a); Oszvéth
and Schiicking (1962) have studied global properties of the higher
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symmetry space. The way in which two impulsive plane waves scatter
each other and give rise to a singularity has been studied by Khan and
Penrose (1971).

The other is the five-parameter family of exact solutions of the
source-free Einstein-Maxwell equations found by Carter (1968b) (see
also Demianski and Newman (1966)). These include the Schwarzschild,
Reissner—Nordstrém, Kerr, charged Kerr, Taub-NUT, de Sitter and
anti-de Sitter solutions as special cases. A description of some of their
global properties is given in Carter (1967). Some cases closely related
to this family have been examined by Ehlers and Kundt (1962) and
Kinnersley and Walker (1970).




6
Causal structure

By postulate (a) of § 3.2, a signal can be sent between two points of A4
only if they can be joined by a non-spacelike curve. In this chapter we
shall investigate further the properties of such causal relationships,
establishing a number of results which will be used in chapter 8 to
prove the existence of singularities.

By §3.2, the study of causal relationships is equivalent to that of the
conformal geometry of .#, i.e. of the set of all metrics § conformal to
the physical metric ¢ (g = Q2g, where Q) is a non-zero, C* function).
Under such a conformal transformation of the metric a geodesic curve
will not, in general, remain a geodesic curve unless it is null, and even
in this case an affine parameter along the curve will not remain an
affine parameter. Thus in most cases geodesic completeness (i.e.
whether all geodesics can be extended to arbitrary values of their
affine parameters) will depend on the particular conformal factor and
so will not (except in certain special cases described in §6.4) be a
property of the conformal geometry. In fact Clarke (1971) and Siefert
{1968) have shown that, provided a physically reasonable causality
condition holds, any Lorentz metric is conformal to one in which all
null geodesics and all future-directed timelike geodesics are complete.
Geodesic completeness will be discussed further in chapter 8 where it
forms the basis of a definition of a singularity.

§6.1 deals with the question of the orientability of timelike and
spacelike bases. In §6.2 basic causal relations are defined and the
definition of a non-spacelike curve is extended from piecewise dif-
ferentiable to continuous. The properties of the boundary of the future
of a set are derived in §6.3. In § 6.4 a number of conditions which rule
out violations or near violations of causality are discussed. The closely
related concepts of Cauchy developments and global hyperbolicity
are introduced in §6.5 and §6.6, and are used in §6.7 to prove the
existence of non-spacelike geodesics of maximum length between
certain pairs of points.

In §6.8 we describe the construction of Geroch, Kronheimer and

[180]
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Penrose for attaching a causal boundary to space-time. A particular
example of such a boundary is provided by a class of asymptotically
flat space-times which are studied in §6.9.

6.1 Orientability

In our neighbourhood of space-time there is a well-defined arrow of
time given by the direction of increase of entropy in quasi-isolated
thermodynamic systems. It is not quite clear what the relationship
is between this arrow and the other arrows defined by the expansion
of the universe and by the direction of electrodynamic radiation; the
reader who is interested will find further discussion in Gold (1967),
Hogarth (1962), Hoyle and Narlikar (1963) and Ellis and Sciama
(1972). Physically it would seem reasonable to suppose that there is
a local thermodynamic arrow of time defined continuously at every
point of space—time, but we shall only require that it should be possible
to define continuously a division of non-spacelike vectors into two
classes, which we arbitrarily label future- and past-directed. If this is
the case, we shall say that space-time is time-orientable. In some
space~times it is not possible to define such a time-orientation. An
example is the space-time obtained from de Sitter space (§5.2) in
which points are identified by reflection through the origin of the five-
dimensional imbedding space. In this space there are closed curves,
non-homotopic to zero, on going round which the orientation of time
isreversed. However this difficulty could clearly be resolved by simply
unidentifying the points again, and in fact this is always the case: if
a space-time (., g) is not time-orientable, then it has a double
covering space (, g) which is. # may be defined as the set of all
pairs (p, o) where pe A and a is one of the two orientations of time
at p. Then with the natural structure and the projection 7: (p,a)—> p,
A is a double covering of . If A consists of two disconnected com-
ponents then (., g) is time-orientable. If .4 is connected, then (., g)
is not time-orientable but (., g) is. In the following sections we shall
assume that either (4, g) is time-orientable or we are dealing with the
time-orientable covering space. If one can prove the existence of
singularities in this space-time then there must also be singularities
in (.4, g).

One may also ask whether space-time is space-orientable, that is
whether it is possible to divide bases of three spacelike axes into right
_handed and left handed bases in a continuous manner. Geroch (1967a)
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has pointed out that there is an interesting connection between this
and time-orientability which follows because some experiments
on elementary particles are not invariant under charge or parity
reversals, either singly or together. On the other hand there are theo-
retical reasons for believing that all interactions are invariant under
the combination of charge, parity and time reversals (CPT theorem;
see Streater and Wightman (1964)). If one believes that the non-
invariance of weak interactions under charge and parity reversals is
not merely a local effect but exists at all points of space-time, then it
follows that going round any closed curve either the sign of a charge,
the orientation of a basis of spacelike axes, and the orientation of time
must all reverse, or none of them does. (The ordinary Maxwell theory,
in which the electromagnetic field has a definite sign at every point,
does not allow the sign of a charge to change on going around a closed
curve non-homotopic to zero unless the orientation of time changes.
However one could have a theory in which the field was double-valued
and changed sign on going round such a curve. This theory would agree
with all existing experimental evidence.) In particular if one assumes
that space-time is time-orientable then it must also be space-
orientable. (This in fact follows on using the experimental evidence
alone without appealing to the CPT theorem.)

Geroch (1968c) has also shown that if it is possible to define two-
component spinor fields at every point then space-time must be
parallelizable, that is it must be possible to introduce & continuous
system of bases of the tangent space at every point. (Further conse-
quences of the existence of spinor structures are obtained in Geroch
(1970a).)

6.2 Causal curves

Taking space-time to be time-orientable as explained in the previous
section, one can divide the non-spacelike vectors at each point into
future- and past-directed. For sets % and %, the ckronological future
IS, U) of & relative to U can then be defined as the set of all points
in % which can be reached from & by a future-directed timelike curve
in %. (By a curve we mean always one of non-zero extent, not just a
single point. Thus I+(%, %) may not contain &.) I*(S, #) will be
denoted by I+(%), and is an open set, since if p € 4 can be reached by
a future-directed timelike curve from & then there is a small neigh-
bourhood of » which can be so reached.
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This definition has a dual in which ‘future’ is replaced by ‘past’,
and the + by a — ; to avoid repetition, we shall regard dual definitions
and results as self-evident.

The causal future of & relative to % is denoted by JHF, ¥); it is
defined as the union of & n % with the set of all points in % which can
be reached from & by a future-directed non-spacelike curve in %. We
saw in § 4.5 that a non-spacelike curve between two points which was
not a null geodesic curve could be deformed into a timelike curve
between the two points. Thus if % is an open set and p, ¢, e %, then

either qeJ*(p, %), relt(q, U)
or qeI*(p, %), reJ g, %)
From this it follows that I+(p, %) = JH{p, %) and 1*(p, %) = J+(p, %)
where for any set X", ) denotes the closure of & and
H=n(A-H)
denotes the boundary of .

} imply relt(p,%).

Chronological
future I*(5) Null geodesic in J+(5”)
which does not intersect
J+(&) and has no past
endpoint in A

Point removed
from A&

through & generating
past of J+(&)

F1eure 34. When a point has been removed from Minkowski space, the causal
future J+(5) of a closed set & is not necessarily closed. Further parts of the
boundary of the future of & may be generated by null geodesic segments
which have no past endpoints in .

As before, J*H(S, A) will be written simply as J*+(5). It is the region
of space-time which can be causally affected by events in &. It is not
necessarily a closed set even when % is a single point, as figure 34
shows. This example, incidentally, illustrates a useful technique for
constructing space-times with given causal properties: one starts
with some simple space-time (unless otherwise indicated this will be
Minkowski space), cuts out any closed set and, if desired, pastes it
together in an appropriate way (i.e. one makes identifications of points
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of ). The result is still a manifold with a Lorentz metric and there-
fore still a space-time even though it may look rather incomplete
where points have been cut out. As mentioned above, however, this
incompleteness can be cured by an appropriate conformal trans-
formation which sends the cut out points to infinity.

The future horismos of & relative to %, denoted by E+(S, %), is
defined as J*(¥, %)~ IS, %); we write E+(S) for B+, A). (In
some papers the relations p e I*(g), p € J+{(q) and p € E+(q) are denoted
by ¢ € p, ¢ < p and g->p respectively.) If % is an open set, points of
EHS, %) must lie on future-directed null geodesics from & by
proposition 4.5.10, and if % is & convex normal neighbourhood about p
then it follows from proposition 4.5.1 that E+(p, %) consists of the
future-directed null geodesics in % from p, and forms the boundary in
% of both I*(p, %) and J+(p, %). Thus in Minkowski space, the null
cone of p forms the boundary of the causal and chronological futures
of p. However in more complicated space—times this is not necessarily
the case (e.g. see figure 34).

For the purposes of what follows it will be convenient to extend the
definition of timelike and non-spacelike curves from piecewise dif-
ferentiable to continuous curves. Although such a curve may not have
a tangent vector we can still say that it is non-spacelike if locally
every two points of the curve can be joined by a piecewise differenti-
able non-spacelike curve. More precisely, we shall say that a con-
tinuous curve y: F-> #, where F is a connected interval of Rl is
Sfuture-directed and non-spacelike if for every te F there is a neighbour-
hood G of ¢ in F and a convex normal neighbourhood % of y{t) in 4
such that for any t,e@, y(t)eJ(y(t),%)—y{t) if t, <t and
Y(t) e J*H(y(t), %) —y(t) if t < t,. We shall say that y is future-directed
and timelike if the same conditions hold with J replaced by I. Unless
otherwise specified, we will in future mean by a timelike or non-
spacelike curve such a continuous curve, and shall regard two curves
as equivalent if one is a reparametrization of the other. With this
generalization we can establish a result that will be used repeatedly
in the rest of this chapter. We first give a few more definitions.

A point p will be said to be a future endpoint of a future-directed
non-spacelike curve y: F -> 4 if for every neighbourhood %" of p there
isate F such that y(t,) e ¥ for every ¢, e F witht, > t. A non-spacelike
curve is future-inextendible (respectively, future-inextendible in o set &)
if it has no future endpoint (respectively, no future endpoint in ).
A point p will be said to be a limit point of an infinite sequence of non-
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spacelike curves A, if every neighbourhood of p intersects an infinite
number of the A,. A non-spacelike curve A will be said to be a limit
curve of the sequence A, if there is a subsequence A’,, of the A, such that
for every peA, A’,, converges to p.

Lemma 6.2.1

Let % be an open set and let A,, be an infinite sequence of non-spacelike
curves in.% which are future-inextendible in.%. If p €% is a limit point
of A,,, then through p there is a non-spacelike curve A which is future-
inextendible in % and which is a limit curve of the A,,.

It is sufficient to consider the case ¥ = 4 since & can be regarded as
a manifold with a Lorentz metric. Let %, be a convex normal co-
ordinate neighbourhood about p and let #(q, a) be the open ball of
coordinate radius a about ¢. Let b > 0 be such that %(p, b) is defined
and let A(1,0), be a subsequence of A, n %; which converges to p.
Since .Q?(p, b) is compact it will contain limit points of the A(1, 0),.
Any such limit point y must lie either in J—(p, %,) or J+(p, %,) since
otherwise there would be neighbourhoods #; of ¥ and %7, of p between
which there would be no non-spacelike curve in %,. Choose

2y, €J+(p, Uy) 0 B(p,b)

to be one of these limit points (figure 35), and choose A(1,1),, to be
a subsequence of A(1, 0),, which converges to z,,. The point z,; will be
a point of our limit curve A. Continue inductively, defining

gy € JH(p, Uy) n B(p,i-4b)

as a limit point of the subsequence A(z—1,:— 1), forj = 0, A(4,5— 1),
for i > j > 1, and defining A(i,7),, 88 a subsequence of the above
subsequence which converges to ;. In other words we are dividing
the interval [0, b] into smaller and smaller sections and getting points
. on our limit curve on the corresponding spheres about p. As any two
of the x,; will have non-spacelike separation, the closure of the union
of all the z;; (j > ¢) will give a non-spacelike curve A from p = z,, to
Z,y = Z. It now remains to construct a subsequence A’, of the A,, such
that for each ge A, A’,, converges to g. We do this by choosing A’,, to be
a member of the subsequence A(m,m), which intersects each of the
balls Z(x,,;, m1b) for 0 < j < m. Thus A will be a limit curve of the
A, from p to z,;. Now let %, be a convex normal neighbourhood about
zy; and repeat the construction using this time the sequence A’,.
Continuing in this fashion, one can extend A indefinitely. O
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F1eure 35. The non-spacelike limit curve A through p of & family of non-
spacelike curves A,, for which p is a limit point.

6.3 Achronal boundaries

From proposition 4.5.1 it follows that in a convex normal neighbour-
hood %, the boundary of I'+{p, %) or J*(p, %) is formed by the future-
directed null geodesics from p. To derive the properties of more general
boundaries we introduce the concepts of achronal and future sets.

A set & is said to be achronal (sometimes referred to as ‘semi-
spacelike’ in the hterature) if I*(%) 0 is empty, in other words if
there are no two points of & with timelike separation. & is said to be
a future set if & > IH(F). Note that if # isa fubure set, # — Fisa past
set. Examples of future sets include I+(.4") and J*+(A"), where /4" is
any set. Examples of achronal sets are given by the following
fundamental result.
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Proposition 6.3.1
If & is a future set then &, the boundary of &, is a closed, imbedded,
achronal three-dimensional CY~ submanifold.

If ge&, any neighbourhood of ¢ intersects & and A —&. If p e I+(g),
then there is a neighbourhood of g in I=(p). Thus I+(¢g) < & . Similarly
I-(q) < (H —-5). If re I*(q), there is a neighbourhood ¥ of 7 such
that ¥~ < I+(g) < &. Thus # cannot belong to &. One can introduce
normal coordinates (21, 22, 23, z4) in a neighbourhood %, about ¢ with
dfox* timelike and such that the curves {* = constant (¢ = 1,2, 3)}
intersect both I+{(q, %,) and I—(q, %,). Then each of these curves must
contain precisely one point of &. The zA-coordinate of these points
must be a Lipschitz function of the zi (i = 1, 2, 3) since no two points
of & have timelike separation. Therefore the one-one map
bo: S 1 U, R? defined by ¢.(p) = zi(p) (¢ = 1,2,8) for peSLnZ,

isa homeomorphlsm Thus (¥ N %,,¢,) is a C*~ atlas for &. o

We shall call a set with the properties of & listed in proposition 6.3.1,
an achronal boundary. Such a set can be divided into four disjoint
subsets %, &, &, &, as follows: for a point g€ there may or
may not exist points p, 7€ with peE—(q)—q, reE*(q)—gq. The
different possibilities define the subsets of & according to the scheme:

I
A AR
e % | #

If ge %, then reE+(p) since reJ+(p) and by proposition 6.3.1,
r¢ I*(p). This means that there is a null geodesic segment in & through
q. If g€ &, (respectively &) then q is the future (respectively, past)
endpoint of a null geodesic in &. The subset &, is spacelike (more
strictly, acausal). These divisions are illustrated in figure 36.

A useful condition for a point to lie in &%, &, or & is given in the
following lemma due to Penrose (Penrose (1968)):

Lemma 6.3.2
Let % be a neighbourhood of g% where % is a future set. Then
(i) IgcIHT—-¥) implies ge % U S,

(i) I~(q) < I(# ~S—¥) implies geSHU L.
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7 & %o s

Fi1oURE 36. An achronal boundary & can be divided into four sets: &, is space-

like, Py is null, and &, (respectively, &) is the future (respectively, past)
endpoint of a null geodesic in %,

It is sufficient to prove (i) since % can also be regarded as the boundary
of the past set (A4 —.%). Let {z,} be an infinite sequence of points in
It(g) n # which converge on ¢. If I+(q) = I*(S —#"), there will be
a past-directed timelike curve A,, to & —# from each z,. By lemma
6.2.1 there will be a past-directed limit curve A from g to (¥ —#"). As
I~(q)is open and contained in A —., I-(g) n % is empty. Thus A must
be a null geodesic and must lie in . o

As an example of the above results, consider J+(H") = 1+(o), the
boundary of the future of a closed set #". By proposition 6.3.1 it is an
achronal manifold and by the above lemma, every point of JAY-H
belongs to [J+(H )]y or [J+(H)]),. This means that J(A)—H is
generated by null geodesic segments which may have future end-
points in J+(')— " but which, if they do have past endpoints, can
have them only on X itself. As figure 34 shows, there may be null
geodesic generating segments which do not have past endpoints at all
but which go out to infinity. This example is admittedly rather
artificial but Penrose (1965a) has shown that similar behaviour
oceurs in something as simple as the plane wave solutions; the anti-
de Sitter (§5.2) and Reissner-Nordstrom (§5.5) solutions provide
other examples. We shall see in § 6.6 that this behaviour is connected
with the absence of a Cauchy surface for these solutions.

We shall say that an open set % is causally simple if for every
compact set A < %,

JHAYVNU = BHA YN % and J- (AU = E-(HA)n%.
This is equivalent to saying that J+{#") and J-(f") are closed in %.
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6.4 Causality conditions

Postulate (a) of § 3.2 required only that causality should hold locally;
the global question was left open. Thus we did not rule out the possi-
bility that on a large scale there might be closed timelike curves (i.e.
timelike S'’s). However the existence of such curves would seem to
lead to the possibility of logical paradoxes: for, one could imagine
that with a suitable rocketship one could travel round such a curve
and, arriving back before one’s departure, one could prevent oneself
from setting out in the first place. Of course there is a contradiction
only if one assumes a simple notion of free will; but this is not some-
thing which can be dropped lightly since the whole of our philosophy
of science is based on the assumption that one is free to perform any
experiment. It might be possible to form a theory in which there were
closed timelike curves and in which the concept of free will was modi-
fied (see, for example, Schmidt (1966)) but one would be much more
ready to believe that space-time satisfies what we shall call the
chronology condition: namely, that there are no closed timelike curves.
One must however bear in mind the possibility that there might be
points (maybe where the density or curvature was very high) of
space-time at which this condition does not hold. The set of all such
points will be called the chronology violating set of A and has the
following character:

Proposition 6.4.1 (Carter)

The chronology violating set of A is the disjoint union of sets of the
form It(g) n I-(q), g A .

If ¢ is in the chronology violating set of #, there must be a future-
directed timelike curve A with past and future endpoints at g. If
reI~(g) n It{g), there will be past- and future-directed timelike curves
sy and u, from g to 7. Then (p,)~* 0 A o p, will be a future-directed time-
like curve with past and future endpoints at ». Moreover if

re[I=(g) n I*(g)]1n [I~(p) n I*(p)]

then pel=(q)n Itg) = I-{p)n I+(p).
To complete the proof, note that every point » at which chronology is
violated is in the set I-(r) n I*(#). (m}

Proposition 6.4.2
If A is compact, the chronology violating set of 4 is non-empty.
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A can be covered by open sets of the form I+(q), ge A4 If the chrono-
logy condition holds at ¢, then g¢I+(g). Thus if the chronology
condition held at every point, 4 could not be covered by a finite
number of sets of the form I+(g). o

From this result it would seem reasonable to assume that space-time
is non-compact. Another argument against compactness is that any
compact, four-dimensional manifold on which there is a Lorentz
metric cannot be simply connected. (The existence of a Lorentz metric
implies that the Euler number y(.#) is zero (Steenrod (1951), p. 207).

Now y = }4_‘,0( —1)"B,, where B, > 0 is the nth Betti number of #. By
ne=

duality (Spanier (1966), p. 297) B,, = B,_,. Since B, = B, = 1, this
implies that B; # 0 which in turn implies 7,(.#) % 0 (Spanier (1966),
p- 398).) Thus a compact space-time is really a non-compact manifold
in which points have been identified. It would seem physically reason-
able not to identify points but to regard the covering manifold as
representing space-time.

We shall say that the causality condition holds if there are no closed
non-spacelike curves. Similar to proposition 6.4.1, one has:

Proposition 6.4.3
The set of points at which the causality condition does not hold is the
disjoint union of sets of the form J-{¢) n J+(g), ge .#£. g

In particular, if the causality condition is violated at ge.# but the
chronology condition holds, there must be a closed null geodesic
curve y through ¢. Let » be an affine parameter on y (regarded as a map
of an open interval of R1to .#) andlet...,v_y, 9y, ¥4, ¥y, . .. besuccessive
values of vat ¢. Then we may compare at ¢ the tangent vector 8/6v|,.,,,
and the tangent vector 9/dv|,..,,, obtained by parallelly transporting
88| ymy, Tound . Since they both point in the same direction, they
must jbe proportional: 8/dv|,.,, = @8/&v|y,- The factor a has the
following significance: the affine distance covered in the nth circuit of
YV, (0,41 —9,,), is equal to a="(v; — 9,). Thusif @ > 1, v never attains the
value (v;—9p) (1—a~1)"! and so ¥ is geodesically incomplete in the
future direction even though one can go round an infinite number of
times. Similarly if @ < 1, y is incomplete in the past direction, while if
a = 1, it is complete in both directions. In the two-dimensional model
of Taub-NUT space described in §5.7, there is a closed null geodesic
which is an example with a > 1. Since the factor a is a conformal in-
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variant, this incompleteness is independent of the conformal factor.
This kind of behaviour, however, can happen only if there is a violation
of causality in some sense; if the strong causality condition (see below)
holds, a suitable conformal transformation of the metric will make all
null geodesics complete (Clarke (1971)).

The factor a has a further significance from the following result.

Proposition 6.4.4

If v is a closed null geodesic curve which is incomplete in the future
direction then there is a variation of ¥ which moves each point of y
towards the future and which yields a closed timelike curve.

By §2.6, one can find on 4 a timelike line-element field (V, —V)
normalized so that g(V, V) = — 1. As we are assuming that .# is time-
orientable, one can consistently choose one direction of (V, — V) and
80 obtain a future-directed timelike unit vector field V. One can then
define a positive definite metric g’ by

g (X, Y) =g(X,Y)+29(X,V)g(Y, V).

Let ¢ be a (non-affine) parameter on y which is zero at some point
g€y and which is such that g(V, 8/ét) = — 2-}. Then ¢ measures proper
distance along v in the metric ¢’ and has the range —o0 < ¢t < c0. Con-
sider a variation of y with variation vector 8/du equal to 2V, where z is
a function z(t). By §4.5,

10 (68y_4d (20 2 Do
55&-"(&@ =a\wa) Nowaa
dz
— 2%
2 (dt xf)’

where fafét = (D]ot) (3/0t). Now suppose v were an affine parameter
on y. Then 8fov would be proportional to 8/dt: 8/dv = k 8fét, where
h-1dh/dt = —f. On going round one circuit of y, 8/dv increases by

afactor @ > 1. Thur -
§fdt =—loga £ 0.
Therefore if we take z(t) to be

exp (J.tf(t’) de’ + b“‘tloga) ,
)

where b = fdt, this will give a variation of y to the future and gives
a closed timelike curve. O
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Proposition 6.4.5
If (a) R, K°K® > 0 for every null vector K;

(b) the generic condition holds, i.e. every null geodesic contains a
point at which KRy, KKK¢ is non-zero, where K is the tangent
vector;

(¢) the chronology condition holds on .#,
then the causality condition holds on 4.

If there were closed null geodesic curves which were incomplete, then
by the previous result they could be varied to give closed timelike
curves. If they were complete, then by proposition 4.4.5 they would
contain conjugate points and so by proposition 4.5.12 they could
again be varied to give closed timelike curves. O

This shows that in physically realistic solutions, the causality and
chronology conditions are equivalent.

As well as ruling out closed non-spacelike curves, it would seem
reasonable to exclude situations in which there were non-spacelike
curves which returned arbitrarily close to their point of origin or
which passed arbitrarily close to other non-spacelike curves which then
passed arbitrarily close to the origin of the first curve~and so on. In
fact Carter (1971 a) has pointed out that there is a more than countably
infinite hierarchy of such higher degree causality conditions depending
on the number and order of the limiting processes involved. We shall
describe the first three of these conditions and shall then give the
ultimate in causality conditions.

The future (respectively, past) distinguishing condition (Kronheimer
and Penrose (1967)) issaid to hold at p € A if every neighbourhood of p
contains a neighbourhood of p which no future (respectively, past)
directed non-spacelike curve from p intersects more than once. An
equivalent statementis that I'+(q) = I+(p) (respectively, I=(g) = I~(p))
implies that ¢ = p. Figure 37 shows an example in which the causality
and past distinguishing conditions hold everywhere but the future
distinguishing condition does not hold at p.

The strong causality condition is said to hold at p if every neighbour-
hood of p contains a neighbourhood of » which no non-spacelike curve
intersects more than once. Figure 38 shows an example of violation of
this condition. '




6.4] Tdentify 193
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? qu f___—Remove strip
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Fioure 37. A space in which the causality and past distinguishing conditions
hold everywhere, but the future distinguishing condition does not hold at p or ¢
(in fact, I+(p) = I*(g)). The light cones on the cylinder tip over until one null
direction is horizontal, and then tip back up; a strip has been removed, thus
breaking the closed null geodesic that would otherwise occur.

s Remceve
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Fieure 38. A space-time satisfying the causality, future and past distinguish-
ing conditions, but not satisfying the strong causality condition at p. Two
strips have been removed from a cylinder; light cones are at + 45°.
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Proposition 6.4.6
If conditions (a) to (c) of proposition 6.4.5 hold and if in addition,
(d) A is null geodesically complete, then the strong causality condi-
tion holds on .#.

Suppose the strong causality condition did not hold at pe 4. Let %
be a convex normal neighbourhood of p and let ¥, © % be an infinite
sequence of neighbourhoods of p such that any neighbourhood of »
contains all the ¥, for » large enough. For each ¥, there would be a
future-directed non-spacelike curve A,, which left % and then returned
to V,. By lemma 6.2.1, there would be an inextendible non-spacelike
curve A through p which was a limit curve of the A,,. No two points of A
could have timelike separation as otherwise one could join up some A,,
to give a closed non-spacelike curve. Thus A must be a null geodesic.
But by (a), (b) and (d) A would contain conjugate points and therefore
points with timelike separation. 0

Corollary
The past and future distinguishing conditions would also hold on .#
since they are implied by strong causality.

Clogely related to these three higher degree causality conditions is
the phenomenon of imprisonment.

A non-spacelike curve ¥ that is future-inextendible can do one of
three things as one follows it to the future: it can

(i) enter and remain within a compact set %,

(ii) not remain within any compact set but continually re-enter
a compact set &,

(iii) not remain within any compact set & and not re-enter any
such set more than a finite number of times.

In the third case ¥ can be thought of as going off to the edge of
space—time, that is either to infinity or a singularity. In the first and
second cases we shall say that y is totally and partially future imprisoned
in &, respectively. One might think that imprisonment could occur
only if the causality condition was violated, but the example due to
Carter which is illustrated in figure 39 shows that this is not the case.
Nevertheless one does have the following result:
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Identify

—
9 z Identify after

-shifting an
irrational amount
(i) (i)
Ficure 39. A space with imprisoned non-spacelike lines but no closed non-
spacelike curves. The manifold is B! x S x S! described by coordinates (¢, ¥, z)
where (¢, y, z) and (¢, y, 2+ 1) are identified, and (¢, v, z) and (y, ¥+ 1, z+a) are
identified, where a is an irrational number. The Lorentz metric is given by
ds? = (cosht—1)2(de2—dy?) + dtdy —dz2.
(i) A section {z = constant} showing the orientation of the null cones.
(ii) The section ¢ = 0 showing part of a null geodesic.

Proposition 6.4.7

If the strong causality condition holds on a compact set ., there can
be no future-inextendible non-spacelike curve totally or partially
future imprisoned in &.

&% can be covered by a finite number of convex normal coordinate
neighbourhoods %; with compact closure, such that no non-spacelike
curve intersects any %, more than once. (We shall call such neighbour-
hoods, local causalsty neighbourhoods.) Any future-inextendible non-
spacelike curve which intersects one of these neighbourhoods must
leave it again and not re-enter it. 0

Proposition 6.4.8

If the future or past distinguishing condition holds on a compact
set &, there can be no future-inextendible non-spacelike curve
totally future imprisoned in %. (This result is included for its interest
but is not needed for what follows.)

Let {¥,}, (¢ =1,2,3,...), be a countable basis of open sets for .#
(i.e. any open set in .# can be represented as a union of the ¥7). As
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the future or past distinguishing condition holds on %, any point
pe will have a convex normal coordinate neighbourhood % such
that no future (respectively, past) directed non-spacelike curve from p
intersects % more than once. We define f(p) to be equal to the least
value of a such that ¥, contains p and is contained in some such
neighbourhood %.

Suppose there were a future-inextendible non-spacelike curve A
which was totally future imprisoned in &. Let geA be such that
A’ = AnJ+(g) is contained in .%. Define &, to be the closed, non-
empty set consisting of all points of & which are limit points of A. Let
Do €, be such that f(p,) is equal to the smallest value of f(p) on <,
Through p, there would be an inextendible non-spacelike curve ¥,
every point of which was a limit point of A’. No two points of ¥, could
have timelike separation since otherwise some segment of A’ could be
deformed to give a closed non-spacelike curve. Thus ¥, would be an
inextendible null geodesic which was totally imprisoned in % in both
the past and future directions. Let o be the closed set consisting of
all limit points of ¥, N J*(2,) (or, in the case that the past distinguishing
condition holds on &, ¥,n J=(p,)). As every such point would also be
a limit point of X', &/, < &7, Since ¥}, could contain no limit point
of v, n JH(p,) (respectively, y,n J~(p,)), & would be strictly smaller
than o/, We would thus obtain an infinite sequence of closed sets
Ay DAy ... od>.... Each o would be non-empty,
being the set of all limit points of the totally future (respectively, past)
imprisoned null geodesicy,_y NJ*(p;_;) (respectively, y5_, N J~(ps_y)).
Let X = {;].szlﬁ As & is compact, ¥ would be non-empty since the

intersection of any finite number of the &/, would be non-empty
(Hocking and Young (1961), p. 19). Suppose r€". Then f(r) = f(p,)
for some f. But ¥,,N o, would be empty so r could not be in
.1 and 80 could not be in " This shows that there can be no future-
inextendible non-spacelike curve totally future imprisonedin.%. 0O

The causal relations on (.#, g8) may be used to put a topology on .#
called the Alezandrov topology This is the topology in which a set is
defined to be open if and only if it is the union of one or more sets of the
form I*(p)n I=(q), p, ge . As I*(p)n I-(q) is open in the manifold
topology, any set which is open in the Alexandrov topology will be
open in the manifold topology, though the converse is not necessarily
true.

Suppose however that the strong causality condition holds on .
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Then about any point € 4 one can find a local causality neighbour-
hood #%. The Alexandrov topology of (%,g[s) regarded as a space—
time in its own right, is clearly the same as the manifold topology of %.
Thus the Alexandrov topology of .# is the same as the manifold
topology since .# can be covered by local causality neighbourhoods.
This means that if the strong causality condition holds, one can
determine the topological structure of space-time by observation of

causal relationships.

Cut out
<
~
e, .
2 N o Null geodesics
~
S
Cut out 7
/
/
L
Cut out

Identify

F1cure 40. A space satisfying the strong causality condition, but in which
the slightest variation of the metric would permit there to be closed timelike
lines through p. Three strips have been removed from a cylinder; light cones
are at + 45°.

Even imposition of the strong casuality condition does not rule out
all causal pathologies, as figure 40 shows one can still have a space-
time which is on the verge of violating the chronology condition in that
the slightest variation of the metric can lead to closed timelike curves.
Such a situation would not seem to be physically realistic since
General Relativity is presumably the classical limit of some, as yet
unknown, quantum theory of space-time and in such a theory the
Uncertainty Principle would prevent the metric from having an exact
value at every point. Thus in order to be physically significant, a
property of space-time ought to have some form of stability, that is
to say, it should also be a property of ‘nearby’ space-times. In order



198 CAUSAL STRUCTURE [6.4

to givea precise meaning to ‘ nearby’ one has to define a topology on the
set of all space-times, that is, all non-compact four-dimensional mani-
folds and all Lorentz metrics on them. We shall leave the problem of
uniting in one connected topological space manifolds of different
topologies (this can be done); and shall just consider putting a topology
on the set of all 0" Lorentz metrics (r > 1) on a given manifold. There
are various ways in which this can be done, depending on whether one
requires a ‘nearby’ metric to be nearby in just its values (C° topology)
or also in its derivatives up to the kth order (C* topology) and whether
one requires it to be nearby everywhere (open topology) or only on
compact sets (compact open topology).

For our purposes here, we shall be interested in the C° open topology.
This may be defined as follows: the symmetric tensor spaces Z;3(p) of
type (0,2) at every point pec.# form a manifold (with the natural
structure) 7x3(.#), the bundle of symmetric tensors of type (0, 2) over
A . A Lorentz metric g on .# is an assignment of an element of 7, 3(.#)
at each point p e .4 and so can be regarded as a map or cross-section
§: M—> T 9(A)such that mo§ = 1 wheresis the projection 7 3(A)—> A
which sends xe€7;3(p) to ». Let % be an open set in T 3(.#4) and let
O(%) be the set of all C° Lorentz metrics g such that §(.#) is contained
in % (figure 41). Then the open sets in the C° open topology of the Cr
Lorentz metrics on . are defined to be the union of one or more sets
of the form O(%).

We say that the stable causality condition holds on . if the space—
time metric g has an open neighbourhood in the C° open topology
such that there are no closed timelike curves in any metric belonging
to the neighbourhood. (It would not make any difference if one used
the C* topology here, but one could not use a compact open topology
since in that topology each neighbourhood of any metric contains
closed timelike curves.) In other words, what this condition means is
that one can expand the light cones slightly at every point without
introducing closed timelike curves.

Proposition 6.4.9

The stable causality condition holds everywhere on # if and only if
there is a function f on .# whose gradient is everywhere timelike.

Remark. The function f can be thought of as a sort of cosmic time in
the sense that it increases along every future-directed non-spacelike
curve.
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Proof. The existence of a function f with an everywhere timelike
gradient implies the stable causality condition since there can be no
closed timelike curves in any metric h which is sufficiently close to ¢
that for every point » € .4, the null cone of p in the metric h intersects
the surface {f = constant} through p only at ». To show that the con-
verse is true we introduce a volume measure g (unrelated to the volume
measure defined by the metric g) on .# such that the total volume of

T/s‘n’(p)

/TS 2(*’ )

N

r

Ficure 41. An open set % in the C° open topology on the space T)(#) of
symmetric tensors of type (0, 2) on .#.

A is one. One way of doing this is as follows: choose a countable atlas
(%, ¢,) for A such that ¢ (%,) is compact in R4, Let g, be the natural
Euclidean measure on R® and let f, be a partition of unity for the atlas
(Z,, $,)- Then p may be defined as X f, 2-*[po(% )] P * po-

Now if the stable causality condition holds one can find a family of
C" Lorentz metrics h(a), a€[0, 3], such that:

(1) h(0) is the space—time metric g;

(2) there are no closed timelike curves in the metric h(a) for each
a€[0,3];

(3) if a,, a, [0, 3] with a, < a,, then every non-spacelike vector in
the metric h(a,) is timelike in the metric h(ay).
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For pe .4, let 6(p, a) be the volume of I-(p, .#, h(a)) in the measure
u where we use I-(&, %, h) to denote the past of & relative to % in
the metric h. For a given value of a€ (0, 3), (p, @) will be a bounded
function which increases along every non-gpacelike curve. It may not,
however, be continuous: as figure 42 shows, it may be possible that
a slight alteration of position may allow one to see past an obstruction
and so greatly increase the volume of the past. One thus needs some
way of smearing out 6(p, @) so &8 to obtain a continuous function which

ast of ¢

Remove

F1ourE 42. A small displacement of a point from p to g results in a large change
in the volume of the past of the point. Light cones are at + 45°and a strip has
been removed as shown.

increases along every curve which is future-directed and non-spacelike
in the metric h(0). One can do this by averaging over a range of a: let

2
Op) = fl 6(p,a)da.

We shall show that 6(p) is continuous on 4.

First to show that it is upper semi-continuous: given € > 0, let # be
a ball about p such that the volume of & in the measure x is less than
3e. By property (3), for a,, a,€[0, 3] with a; < a, one can find a
neighbourhood £ (a,, a,) of 2 in # such that

[I~(F(ay, a5), B, h(a)) n B] < [I-(p, B, h(ay)) n F].

Let » be a positive integer greater than 2¢-1. Then we define the set ¢
tobe ¥=NFU+imn, 1+3(i+1)nY,i=0,1,..., 2n. F will be
i
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a neighbourhood of p and will be contained in % (a,a+n-1) for any
a€[1,2]. Therefore I-(q, #, h(a)) — Z will be contained in

I-(p, 4, hia+n1)—F for ge¥ and aell,2]
Thus 6(g,a) < 6(p,a+%e)+3e

and so 6(q) < 6(p)+¢, showing that 8 is upper semi-continuous. The
proof that it is lower semi-continuous is similar. To obtain a differenti-
able function one can average 8 over a neighbourhood of each point
with a suitable smoothing function. By taking the neighbourhood
small enough one can obtain a function f which has everywhere a time-
like gradient in the metric g. Details of this smoothing procedure are
given in Seifert (1968). 0

The spacelike surfaces {f = constant} may be thought of as surfaces
of simultaneity in space-time, though of course they are not unique.
If they are all compact they are all diffeomorphic to each other, but
this is not necessarily true if some of them are non-compact.

6.5 Cauchy developments

In Newtonian theory there is instantaneous action-at-a-distance and
80 in order to predict events at future points in space—time one has to
know the state of the entire universe at the present time and also to
assume some boundary conditions at infinity, such as that the
potential goes to zero. In relativity theory, on the other hand, it
follows from postulate (a) of §3.2 that events at different points of
space-time can be causally related only if they can be joined by a
non-spacelike curve. Thus a knowledge of the appropriate data on
a closed set & (if one knew data on an open set, that on its closure
would follow by continuity) would determine events in a region D+(5)
to the future of ¥ called the future Cauchy development or domain of
dependence of &, and defined as the set of all points p € .# such that
every past-inextendible non-spacelike curve through p intersects &
(N.B. DH&) > &).

Penrose (1966, 1968) defines the Cauchy development of & slightly
differently, as the set of all points pe.# such that every past-
inextendible timelike curve through p intersects &°. We shall denote
this set by D+(%). One has the following result:
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Proposition 6.5.1
D) = DHS).

Clearly D+(&) > D+(%). If g M — D+() there is a neighbourhood #
of ¢ which does not intersect . From ¢ there is & past-inextendible
curve A which does not intersect &. If re An I-(q, %) then I+(r, %) is
an open neighbourhood of g in A — D*(%). Thus A4 — D+(%) is open
and the set D+(%) is closed. Suppose there were a point pe D+(%)
which had a neighbourhood ¥~ which did not intersect D+(%). Choose
a point z € I~(p, ¥"). From  there would be a past-inextendible non-
spacelike curve y which did not intersect %. Let y,, be a sequence of
points on 7y which did not converge to any point and which were such
that y, ., was to the past of y,,. Let %/, be convex normal neighbour-
hoods of the corresponding points y,, such that #/,,, did not intersect
#,. Let z,, be a sequence of points such that

Zpn € I+(yn+1’W;u+1) n I_(zn’ ‘l—y)

There would be an inextendible timelike curve from p which passed
through each point z,, and which did not intersect &. This would con-
tradict p € D+(%). Thus D*(¥) is contained in the closure of D*(%),

and so DH(%) = D). o

The future boundary of D+(&), that is D+(%) — I-(D+(%)), marks the
limit of the region that can be predicted from knowledge of data on &,
We call this closed achronal set the future Cauchy korizon of & and
denote it by H*(S). As figure 43 shows, it will intersect & if & is null
or if & has an ‘edge’. To make this precise we define edge () for an
achronal set & as the set of all points g€ & such that in every neigh-
bourhood % of ¢ there are points pel—(q, %) and reI+(q, %) which
can be joined by a timelike curve in % which does not intersect .. By
an argument similar to that in proposition 6.3.1 it follows that if
edge (&) is empty for a non-empty achronal set &, then & is a three-
dimensional imbedded €'~ submanifold.

Proposition 6.5.2
For a closed achronal set .,
edge (H+(¥)) = edge (¥).
Let %, be a sequence of neighbourhoods of a point qcedge (H+(%))
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such that any neighbourhood of ¢ encloses all the %,, for n sufficiently
large. In each %, there will be points p,eI-(¢,%,,) and r, e I*(q,%,,)
which can be joined by a timelike curve A, which does not intersect
H+(&). This means that A, cannot intersect D+(%). By proposition
6.5.1, ge D+(&) and so I-(q) < I-(DH¥)) < I-(¥) v D+&). Thus p,
must lie in I-(&). Also every timelike curve from ¢ which is inextend-
ible in the past direction must intersect &. Therefore for each #n, there

H*(&) and &

H+(&) and 5

Edge (&) and /.9 and HH($)
edge H*(#)

5
¥
Edge (&) and
edge (H+(5))
F

F16URE 43. The future Cauchy development D+() and future Cauchy horizon
HHY) of a closed set & which is partly null and partly spacelike. Note that
HH(%) is not necessarily connected. Null lines are’at + 45° and a strip has been
removed.

must be a point of & on every timelike curve in %,, between ¢ and p,,
and so ¢ must lie in &. As the curves A, do not intersect &, ¢ lies in
edge (&). The proof the other way round is similar. 0

Proposition 6.5.3

Let & be a closed achronal set. Then H+(%) is generated by null
geodesic segments which either have no past endpoints or have past
endpoints at edge (¥).

The set & = DHF) v I~(¥) is a past set. Thus by proposition 6.3.1
# is an achronal C'- manifold. H+(%) s a closed subset of #. Let g be
a point of HH¥)—edge(¥). If ¢ is not in & then geI*+(¥) since
ge DH(&). As & is achronal one can find a convex normal neighbour-
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hood #” of ¢ which does not intersect I-(%). Alternatively if ¢ isin &,
let #” be a convex normal neighbourhood of ¢ such that no point of
I+(q, #") can be joined to any point in I—(g, #") by a timelike curve

in % which does not intersect .
In either case, if p is any point in
I+(g) there must be a past-directed time-
like curve from  to some point of
M —F — W since otherwise p would be
in D). Therefore by condition (i) of
lemma 6.3.2, applied to the future set
M—F, qeFyU F,. O

Corollary

If edge (&) vanishes, then H+(%), if non-
empty, is an achronal three-dimensional
imbedded C*- manifold which is gener-
ated by null geodesic segments which
have no past endpoint.

We shall call an acausal set & with no
edge, a partial Cauchy surface. That is, a
partial Cauchy surface is a spacelike
hypersurface which no non-spacelike
curve intersects more than once. Suppose
there were a connected spacelike hyper-
surface & (with no edge) which some non-
spacelike curve A intersected at points p,
and p,. Then one could join p, and p, by
a curve £in% and u U A would be a closed
curve which crossed & once only. This
curve couldnot be continuously deformed
to zero since such a deformation could
change the number of times it crossed &
by an even number only. Thus 4 could
not be simply connected. This means we
could ‘unwrap’ 4 by going to the simply

Y &)

Q

S—

¥4

Ficure 44. & is a connected
spacelike hypersurface without
edge in . It is not a partial
Cauchy surface; however each
image 71(%) of & in the uni-
versal covering manifold A of
M, is a partial Cauchy surface
in

connected universal covering manifold .# in which each connected
component of the image of & is a spacelike hypersurface (with no
edge) and is therefore a partial Cauchy surface in # (figure 44). How-
ever going to the universal covering manifold may unwrap 4 more
than is required to obtain a partial Cauchy surface and may result in
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the partial Cauchy surface being non-compact even though % was
compact. For the purposes of the following chapters we would like
a covering manifold which unwrapped .4 sufficiently so that each con-
nected component of the image of & was a partial Cauchy surface but
80 that each such component remained homeomorphic to . Such a
covering manifold may be obtained in at least two different ways.

Recall that the universal covering manifold may be defined as the
set of all pairs of the form (p,[A]) where pe .# and where [A] is an
equivalence class of curves in 4 from some fixed point ge 4 to p,
which are homotopic modulo ¢ and p. The covering manifold A, is
defined as the set of all pairs (p, [A]) where now [A] is an equivalence
class of curves from & to p homotopic modulo & and p (i.e. the end-
points on & can be slid around). .4, may be characterized as the
largest covering manifold such that each connected component of the
image of & is homeomorphic to &. The covering manifold .4
(Geroch (1967b)) is defined as the set of all pairs (p,[A]) where this
time [A] is an equivalence class of curves from a fixed point ¢ to »
which cross & the same number of times, crossings in the future direc-
tion being counted positive and those in the past direction, negative.
A may be characterized as the smallest covering manifold in which
each connected component of the image of & divides the manifold into
two parts. In each case the topological and differential structure of the
covering manifold is fixed by requiring that the projection which maps
(p, [A]) to p is locally a diffeomorphism.

Define D(&¥) = DH&) U D~(&). A partial Cauchy surface & is said
to be a global Cauchy surface (or simply, a Cauchy surface) if D(¥)
equals . That is, a Cauchy surface is a spacelike hypersurface which
every non-spacelike curve intersects exactly once. The surfaces
{x* = constant} are examples of Cauchy surfaces in Minkowski space,
but the hyperboloids

{(x*)?— (2)* — (2%)2— (#")? = constant}

are only partial Cauchy surfaces since the past or future null cones of
the origin are Cauchy horizons for these surfaces (see §5.1 and
figure 13). Being a Cauchy surface is a property not only of the surface
itself but also of the whole space—time in which it is imbedded. For
example, if one cuts a single point out of Minkowski space, the
resultant space-time admits no Cauchy surface at all.

If there were a Cauchy surface for .#, one could predict the state of
the universe at any time in the past or future if one knew the relevant
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data on the surface. However one could not know the data unless one
was to the future of every point in the surface, which would be impos-
sible in most cases. There does not seem to be any physically com-
pelling reason for believing that the universe admits a Cauchy surface;
in fact there are a number of known exact solutions of the Einstein
field equations which do not, among them the anti-de Sitter space,
plane waves, Taub-NUT space and Reissner-Nordstrom solution, all
described in chapter 5. The Reissner-Nordstrom solution (figure 25)
is a specially interesting case: the surface & shown is adequate for
predicting events in the exterior regions I where » > r,_ and in the
neighbouring region II where r_ < » < r,, but then there is a Cauchy
horizon at r = r_. Points in the neighbouring region III are not in
D+(&) since there are non-spacelike curves which are inextendible in
the past direction and which do not cross r = r_ but approach the
points i+ (which may be considered to be at infinity) or the singularity
at = 0 (which cannot be considered to be in the space—time; see § 8.1).
There could be extra information coming in from infinity or from the
singularity which would upset any predictions made simply on the
basis of data on & . Thus in General Relativity one’s ability to predict
the future is limited both by the difficulty of knowing data on the
whole of a spacelike surface and by the possibility that even if one did
it would still be insufficient. Nevertheless despite these limitations
one can still predict the occurrence of singularities under certain
conditions.

6.6 Global hyperbolicity

Closely related to Cauchy developments is the property of global
hyperbolicity (Leray (1952)). A set A is said to be globally hyperbolic
if the strong causality assumption holds on A" and if for any two points
p,qe N, JHp)nJ—(g) is compact and contained in A", In a sense this
can be thought of as saying that J*(p)n J-(g) does not contain any
points on the edge of space-time, i.e. at infinity or at a singularity.
The reason for the name ‘global hyperbolicity’ is that on A", the wave
equation for a §-function source at pe A" has a unique solution which
vanishes outside A" —J+(p, #") (see chapter 7).

Recall that ./ is said to be causally simple if for every compact set
A contained in A, JHH)n A and J-(H)n A are closed in A",
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Proposition 6.6.1
An open globaliy hyperbolic set .4 is causally simple.

Let p be any point of A", Suppose there were a point
ge(JHp)-JHp)n A

As A is open, there would be a point re(I*(g)nA"). But then
geJ+(p) n J(r), which isimpossible as J+(p) n J—(r) would be compact
and therefore cloged. Thus J+(p) n A and J~(p) n A are closed in A",

Now suppose there exists a point ge(J+(H)—J+ ) n A . Let g,
be an infinite sequence of points in I+(g) n A~ converging to ¢, with
@nt1€17(g,). For each n, J=(g,) n A would be a compact non-empty
set. Therefore N{J~(g,) N o} would be a non-empty set. Let p be a

n

point of this set. Then J+(p) would contain g, for all . But J+(p) is
closed. Therefore J+(p) contains g. 0

Corollary
If ; and X, are compact sets in A, J+H(H;) n J—(0F;) is compact.

One can find a finite number of points p;e A" such that
U} > %,
Similarly, there will be a finite number of points ¢; with 2%, contained in
EJ J=(g;)-
Then J+(#;) n J—(2f3) will be contained in

in{J Hp) 0 J(g;)}
and will be closed. ' !

Leray (1952) did not, in fact, give the above definition of global
hyperbolicity but an equivalent one which we shall present: for points
p,q€ A such that strong causality holds on J+(p)n J—(g), we define
C(p, q) to be the space of all (continuous) non-space-like curves from
P to g, regarding two curves y(f) and A(u) as representing the same
point of C(p, ¢) if one is a reparametrization of the other, i.e. if there is
a continuous monotonic function f(u) such that y(f(u)) = A(w).
(C(p, q) can be defined even when the strong causality condition does
not hold on J+(p) n J—(g), but we shall only be interested in the case in
which its does hold.) The topology of C(p, q) is defined by saying that
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a neighbourhood of ¥ in C(p,q) consists of all the curves in C(p, g)
whose points in . lie in a neighbourhood %" of the points of ¥ in .#
(figure 45). Leray’s definition is that an open set .4 is globally hyper-
bolic if C(p, g) is compact for all p,ge A". These definitions are equi-
valent, as is shown by the following result.

~ -

F1eure 45. A neighbourhood % of the points of 9 in . A neighbourhood of y
in C(p, g) consists of all non-spacelike curves from p to ¢ whose points lie in %",

Proposition 6.6.2 (Seifert (1967), Geroch (1970b)).
Let strong causality hold on an open set A" such that

N = TN JHA).

Then .4 is globally hyperbolic if and only if C(p, ¢) is compact for all
D, gefN.

Suppose first that C(p, g) is compact. Let 7,, be an infinite sequence of
points in J*(p) n J—(g) and let A, be a sequence of non-spacelike curves
from p to ¢ through the corresponding r,,. As C(p, ) is compact, there
will be a curve A to which some subsequence A’, converges in the
topology on C(p, q). Let % be a neighbourhood of A in# such that % is
compact. Then % will contain all A’, and hence all #*,, for » sufficiently
large, and so there will be a point » € % which is a limit point of the *,,.
Clearly 7 lies on A. Thus every infinite sequence in J*+(p)n J—(¢) has a
limit point in J*(p)n J—(g). Hence J+(p)n J—(g) is compact.
Conversely, suppose J*+(p)n J—(g) is compact. Let A, be an infinite
sequence of non-spacelike curves from p to ¢g. By lemma 6.2.1 applied
to the open set # —g, there will be a future-directed non-spacelike
curve A from p which is inextendible in .# — ¢, and is such that thereis
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a subsequence A’, which converges to » for every reA. The curve A
must have a future endpoint at ¢ since by proposition 6.4.7 it cannot be
totally future imprisoned in the compact set J*+(p)n J—(q), and it
cannot leave the set except at g.

Let % be any neighbourhood of Ain 4 and let 7, (1 < ¢ < k) be &
finite set of points on A such that ; = p, », = ¢ and each r; has a
neighbourhood ¥; with J+(¥3)n J=(¥,.) contained in %. Then for
sufficiently large n, A’,, will be contained in %. Thus A’,, converge to A
in the topology on-C(p, q) and so C(p, ¢) is compact. 0

The relation between global hyperbolicity and Cauchy developments
is given by the following results.

Proposition 6.6.3
If & is a closed achronal set, then int (D(¥)) = D(&) - D(&), if non-
empty, is globally hyperbolic.

We first establish a number of lemmas.

Lemma 6.6.4

If pe DH¥)—HH(¥), then every past-inextendible non-spacelike
curve through p intersects I-(%).

Let p be in DH&) - H*(¥) and let ¥ be a past-inextendible non-
spacelike curve through p. Then one can find a point g€ DH(&) n I+(p)
and a past-inextendible non-spacelike curve A through ¢ such that for
each point z € A there is a point y € ¥ with y e I—(x). As A will intersect
& at some point z, there will be a y, ey n I-(&). 0

Corollary

I p eint (D(%)) then every inextendible non-spacelike curve through
p intersects I-(%) and IH¥).

it (D(&)) = D(&)-{HHSL)VH-(£)}. If pelH¥) or I(¥) the
result follows immediately. If p € DH&) - IH(¥) then pe ¥ < D-(¥)
and the result again follows. a

Lemma 6.6.5
The strong causality condition holds on int D(%).
Suppose there were a closed non-spacelike curve A through

peint (D(&)). By the previous result there would be points
geAn I-(%) and re An IH(S). As reJ—(g), it would also be in I~(%)
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which would contradict the fact that & is achronal. Thus the causality
condition holds on int (D(%)). Now suppose that the strong causality
condition did not hold at . Then as in lemma 6.4.6 there would be an
infinite sequence of future-directed non-spacelike curves A, which
converged to an inextendible null geodesic ¢ through . There would
be points geyn I-(%¥) and reyn I+(S) and so there would be some
A,, which intersected I+(%) and then I-(%), which would contradict
the fact that & was achronal. a

Proof of proposition 6.6.3. We wish to show that C(p,q) is compact
for p, geint (D(#)). Consider first the case that p, geI-(%) and sup-
pose peJ—(q). Let A, be an infinite sequence of non-spacelike curves
from ¢ to p. By lemma 6.2.1 there will be a future-directed non-
spacelike limit curve from p which is inextendible in A4 — ¢. This must
have a future endpoint at g since otherwise it would intersect % which
would be impossible as gel—(%). Consider now the case that
ped=(&), geJ+H&)n JH(p). If the limit curve A has an endpoint at g,
it is the desired limit point in C(p, ¢). If it does not have an endpoint
at ¢, it would contain a point yeI+(&) since it is inextendible in
M — q.Let A’,, be a subsequence which converges to » for every point »
on A between p and y. Let A be a past-directed limit curve from ¢ of
the A’,. IfA has a past endpoint at p, it would be the desired limit point
in O(p, g). IfA passed througb y, it could be joined up with A to provide
a non-spacelike curve from p to ¢ which would be the desired limit
point in C(p, ). Suppose A does not have endpoint at p and does not
pass through y. Then it would contain some point ze I-(%). Let A", be
a subsequence of the A’,, which converges to r for every point  on A
between g and z. Let ¥ be an open neighbourhood of A which does not
contain y. Then for sufficiently large =, all A", n J+(&) would be con-
tained in ¥". This would be impossible as y is a limit point of the A”,,.
Thus there will be a non-spacelike curve from p to ¢ which is a limit
point of the A, in C(p, g).

The cases p, geI—~(¥) and peJ (&), geJHS) together with their
duals cover all possible combinations. Thus in all cases we get a non-
spacelike curve from p to ¢ which is a limit point of the A, in the
topology on C(p, ¢). a

By a similar procedure one can prove:

Proposition 6.6.6
If g eint (D(&)), then JH&) n J(q) is compact or empty. (m]
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To show that the whole of D(%) and not merely its interior is globally
hyperbolic, one has to impose some extra conditions.

Proposition 6.6.7
If & is a closed achronal set such that J+H&)n J—(&) is both strongly
causal and either
(1) acausal (this is the case if and only if & is acausal), or
(2) compact,
then D(%) is globally hyperbolic.

Suppose that strong causality did not hold at some point g€ D(¥).
Then by an argument similar to lemma 6.6.5, there would be an
inextendible null geodesic through ¢ at each point of which strong
causality did not hold. This is impossible, since it would intersect &.
Therefore strong causality holds on D(%).

Ifp, geI-(%), the argument of proposition 6.6.3 holds. If p e J-(&),
geJH(S) one can as in proposition 6.6.3 construct a future-directed
limit curve A from p and a past-directed limit curve A from ¢, and
choose a subsequence A", which converges to » for every point » on
Aor 2. In case (1), A would intersect & in & single point z. Any neigh-
bourhood of z would contain points of A", for n sufficiently large, and
so would contain ", defined as A", 1 &, since & is achronal. Therefore
z”, would converge to x. Similarly z”, would converge to 2 = An &.
Thus 2 = x and so one could join A and A to give a non-spacelike limit
curve in C(p, 9).

In case (2), suppose that A did not have a future endpoint at g.
Then A would leave J-(%) since it would intersect & and by proposi-
tion 6.4.7 it would have to leave the compact set JHF)n J~(&). Thus
one could find a point z on A which was not in J-(%). For each =,
choose a point 2",,e¥ n A",,. Since & is compact, there will be some
point y €% and a subsequence A", such that the corresponding points
x", converge to y. Suppose that y does not lie on A. Then for suffi-
ciently large » each 2" -would lie to the future of any neighbourhood
% of z. This would imply z e J~(&). This is imposgible as z is in J+(.#)
but is not in the compact set J+H&)n J~(&). Therefore A would pass
through y. Similarly X would pass through y. One could then join them
to obtain a limit curve. a

Proposition 6.6.3 shows that the existence of a Cauchy surface for an
open set ./~ implies global hyperbolicity of A4". The following result
shows that the converse is also true:
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Proposition 6.6.8 (Geroch (1970d))

If an open set A" is globally hyperbolic, then A4, regarded as a mani-
fold, is homeomorphic to R'x.% where & is a three-dimensional
manifold, and for each a € RY, {a} x & is a Cauchy surface for A",

As in proposition 6.4.9, put a measure x4 on A  such that the total
volume of A" in this measure is one. For pe.#" define f+(p) to be the
volume of J*(p, A#") in the measure y. Clearly f+(p) is a bounded
function on A~ which decreases along every future-directed non-
spacelike curve. We shall show that global hyperbolicity implies that
JH(p) is continuous on A" so that we do not need to ‘average’ the
volume of the future as in proposition 6.4.9. To do this it will be suffi-
cient to show that f+(p) is continuous on any non-spacelike curve A.

Let e A and let z,, be an infinite sequence of points on A strictly to
the past of . Let # be N J+(x,,, A”). Suppose that f+(p) was not upper

semi-continuous on A at 7. There would be a point geF —J+(r, A).
Then r¢J-(g, A'); but each z, eJ~(g,.#") and so reJ~(g, &), which
is impossible as J(g, A") is closed in A" by proposition 6.6.1. The
proof that it is lower semi-continuous is similar

As p is moved to the future along an inextendible non-spacelike
curve A in A" the value of f+(p) must tend to zero. For suppose there
were some point ¢ which lay to the future of every point of A. Then the
future-directed curve A would enter and remain within the compact
set JHr)n J~(g) for any r € A which would be impossible by proposition
6.4.7 as the strong causality condition holds on A".

Now consider the function f(p) defined on A" by f(p) = f~(p)/f *(p).
Any surface of constant f will be an acausal set and, by proposition
6.3.1, will be a three-dimensional C'~ manifold imbedded in A". It will
also be a Cauchy surface for 4" since along any non-spacelike curve,
f- will tend to zero in the past and f+ will tend to zero in the future.
One can put a timelike vector field V on 4" and define a continuous
mayp f which takes points of A" along the integral curves of V to where
they intersect the surface & (f = 1). Then (logf(»), 8(»)) is & homeo-
morphism of &/ onto R x&. If one smoothed f as in proposition 6.4.9,
one could improve this to a diffeomorphism. |

Thus if the whole of space-time were globally hyperbolic, i.e. if there
were a global Cauchy surface, its topology would be very dull.
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6.7 The existence of geodesics

The importance of global hyperbolicity for chapter 8 lies in the
following result:

Proposition 6.7.1

Let p and g lie in a globally hyperbolic set 4" with geJ*(p). Then there
is a non-spacelike geodesic from p to ¢ whose length is greater than or
equal to that of any other non-spacelike curve from p to gq.

Almost broken almost null
curve from p to g in %

Fieure 46. % is an open neighbourhood of the timelike curve A from p to g.
There exist in % timelike curves from p to ¢ which approximate broken nuil
curves and are of arbitrarily smali length.

We shall present two proofs of this result: the first, due to Avez (1963)
and Seifert.(1967), is an argument from the compactness of C(p, ¢), and
the second (applicable only when .4 is open) is a procedure whereby
the actual geodesic is constructed.

The space C(p,¢) contains a dense subset C’(p, ¢) consisting of all
the timelike C! curves from p to ¢. The length of one of these curves A is
defined (cf. §4.5) as

L = [ (~gtejor japi

where £ is a C! parameter on A. The function L is not continuous on
C'(p,q) since any neighbourhood of A contains a zig—zag piecewise
almost null curve of arbitrarily small length (figure 46). This lack of
continuity arises because we have used the C° topology which says that
two curves are close if their points in ., but not necessarily their
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tangent vectors, are close. We could put a C* topology on ((p, g) and
so make L continuous but we do not do this because C'(p,¢) is not
compact; one gets a compact space only when one includes all the
continuous non-spacelike curves. Instead, we use the C° topology and
extend the definition of L to C(p, q).

Because of the signature of the metric, putting wiggles in a timelike
curvereducesitslength. Thus Lisnot lower semi-continuous. However
one has:

Lemma 6.7.2
L is upper semi-continuous in the C° topology on C'(p, ¢).

Consider a C! timelike curve A(t) from p to g, where the parameter ¢ is
chosen to be the arc-length from p. In a sufficiently small neighbour-
hood % of A, one can find a function f which is equal to ¢t on A and is
such that the surfaces {f = constant} are spacelike and orthogonal to
ofet (i.e. g°f,,|a = (9[2t)®). One way to define such an f would be to
construct the spacelike geodesics orthégonal to A. For a sufficiently
small neighbourhood % of A, they will give a unique mapping of % to A,
and the value of f at & point in % can be defined as the value of £ at the
point on A into which it is mapped. Any curve g in % can be para-
metrized by f. The tangent vector (9/2f), to x4 can be expressed as

(@)) =t

where k is a spacelike vector lying in the surface {f = constant}, i.e.
kf., = 0. Then

NERC) E—
2 9% .afip

However on A, g°%f, . f., = — 1. Thus given any ¢ > 0, one can choose
%' < U sufficiently small that on %', g°°f. . f., > — 1+ €. Therefore for

any curve u in %’, L{u) < (1 + e}t L{A). =

We now define the length of a continuous non-spacelike curve A from
2 to ¢ as follows: let % be a neighbourhood of A in # and let {(%) be
the least upper bound of the lengths of timelike curves in % from p
to ¢. Then we define L[A] as the greatest lower bound of I(%) for all
neighbourhoods % of Ain .#. This definition of length will work for all
curves A from p to ¢ which have a C! timelike curve in every neighbour-
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hood, i.e. it will work for all points in C(p, ¢) which lie in the closure of
C'(p,q). By §4.5, a non-spacelike curve from p to ¢ which is not an
unbroken null geodesic curve can be varied to give a piecewise C!
timelike curve from p to ¢, and the corners of this curve can be
rounded off to give a C! timelike curve from p to ¢. Thus points in
C(p, q)—C’(p, ¢) are unbroken null geodesics (containing no conjugate
points), and we define their length to be zero.

This definition of L makes it an upper semi-continuous function on
the compact space C'(p, ¢). (Actually, as a continuous non-spacelike
curve satisfies a local Lipschitz condition, it is differentiable almost
everywhere. Thus the length could still be defined as

J (—g(2fet, ajot))t dt,

and this would agree with the definition above.) If C'(p, ¢) is empty
but C(p,¢) is non-empty, p and ¢ are joined by an unbroken null
geodesic and there are no non-spacelike curves from p to ¢ which are
not unbroken nulil geodesics. If C'(p, ¢) is non-empty, it will contain
some point at which L attains its maximum value, i.e. there will be
a non-spacelike curve y from p to g whose length is greater than or
equal to that of any other such curve. By proposition 4.5.3, ¥ must be
a geodesic curve as otherwise one could find points z, y €y which lay
in a convex normal coordinate neighbourhood and which could be
joined by a geodesic segment of greater length than the portion of
between z and y. |

For the other, constructive, proof, we first define d(p, ¢) for p,ge A
to be zero if g ¢ J*(p) and otherwise to be the least upper bound of the
lengths of future-directed piecewise non-spacelike curves from p to g.
(Note that d(p,¢) may be infinite.) For sets & and %, we define
d(S, %) to be the least upper bound of d(p, q), pe, ¢ €%.

Suppose ge I*+(p) and that d(p, ¢) is finite. Then for any 6 > 0 one
can find a timelike curve A of length d(p,¢)— 30 from p to q and a
neighbourhood % of ¢ such that A can be deformed to give a timelike
curve of length d(p, ¢) — é from p to any point r e %. Thus d(p, q), where
finite, is lower semi-continuous. In general d(p, ¢) is not upper semi-
continuous but:

Lemma 6.7.3
d(p, ¢) is finite and continuous in p and ¢ when p and ¢ are contained
in a globally hyperbolic set 4"
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Wae shall first prove d(p, ¢) is finite. Since strong causality holds on the
compact set J*(p)n J(g), one can cover it with a finite number of
local causality sets such that each set contains no non-spacelike curve
longer than some bound e. Since any non-spacelike curve from p to ¢
can enter each neighbourhood at most once, it must have finite length.

Now suppose that for p,ge.A", there is a § > 0 such that every
neighbourhood of ¢ contains a point r €.4” such that

d(p,f) > d(p,Q)+8.
Let z,, be an infinite sequence of points in A" converging to ¢ such that
d(p,z,) > d(p,q) + 6. Then from each z, one can find a non-spacelike
curve A, to 2 of length > d(p,q)+ 9. By lemma 6.2.1 there will be
a past-directed non-spacelike curve A through ¢ which is a limit curve
of the A,,. Let % be a local causality neighbourhood of ¢. Then A cannot
intersect I-(g) n % since if it did one of the A, could be deformed to
give a non-spacelike curve from p to ¢ of length > d(p,¢). Thus An %
must be a null geodesic from ¢ and at each point z of A n %, d{p, z) will
have a discontinuity greater than 4. This argument can be repeated
to show that A is a null geodesic and at each point zeA, d(p,z) has
a discontinuity greater than &. This shows that A cannot have an end-
point at p, since by proposition 4.5.3, d(p, x) is continuous on a local
causality neighbourhood of p. On the other hand, A would be inextend-
ible in 4 — p and so if it did not have an endpoint at p, it would have
to leave the compact set J*(p) n J—(g) by proposition 6.4.7. This shows
that d(p, ¢) is upper semi-continuous on A" ]

In the case that A" is open, one can easily construct the geodesic of
maximum length from p to ¢ by using the distance function. Let
% < A bealocal causality neighbourhood of p which does not contain
g and let zeJ*(p)n J—(g) be such that d(p,r) +d(r, q), r€ %, is maxi-
mized for r = z. Construct the future-directed geodesic ¥ from p
through z. The relation d(p, 7) +d(r, ¢) = d(p, ¢) will hold for all points
7 on y between p and x. Suppose there were a point y € J=(¢) — ¢ which
was the last point on y at which this relation held. Let ¥ < 4" be
a local causality neighbourhood of y which does not contain ¢ and
let zeJ*(y)n J(g)n ¥ be such that d(y,)+d(r,q), re ¥, attains its
maximum value d(y, ¢) forr = 2. If 2 did not lie on v, then

d(p,2) > d(p,y)+d(y,2) and d(p,2)+d(z,q) > d(»,q)
which is impossible. This shows that the relation
d(p,r)+d(r,q) = d(p,q)
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must hold for all reyn J—(g). As J*(p)n J—(g) is compact, ¥ must
leave J-(g) at some point y. Suppose y % ¢; then y would lie on a
past-directed null geodesic A from ¢. Joining 7y to A would give a non-
spacelike curve from p to ¢ which could be varied to give a curve
longer than d(p, ¢), which is impossible. Thus y is a geodesic curve
from p to ¢ of length d(p, g). O

Corollary

If & is a C? partial Cauchy surface, then to each point ge D)
there is a future-directed timelike geodesic curve orthogonal to & of
length d(¥,¢), which does not contain any point conjugate to &
between & and ¢.

By proposition 6.5.2, H+(¥) and H-(%) do not intersect & and so are
not in D(&). Thus D(&) = int D(¥) is globally hyperbolic by proposi-
tion 6.6.3. By proposition 6.6.6, ¥ n J—(g) is compact and so d(p, q),
peS, will attain its maximum value of d(%, ¢) at some point r €%
There will be a geodesic curve y from r to ¢ of length d(%, ¢) which by
lemma 4.5.5 and proposition 4.5.9 must be orthogonal to & and not
contain a point conjugate to % between .# and g. ]

6.8 The causal boundary of space-time

In this section we shall give a brief outline of the method of Geroch,
Kronheimer and Penrose (1972) for attaching a boundary to space-
time. The construction depends only on the causal structure of (4, g).
This means that it does not distinguish between boundary points at a
finite distance (singular points) and boundary points at infinity. In
§ 8.3 weshall describe a different construction which attaches a bound-
ary which represents only singular points. Unfortunately there does
not seem to be any obvious relation between the two constructions.

We shall assume that (#, g) satisfies the strong causality condition.
Then any point p in {.#, g) is uniquely determined by its chronological
past I-(p) or its future I+(p), i.e.

I(p) = IN(g) = I*(p) = I*@)=p = ¢.
The chronological past % = I-(p) of any point pe.# has the
properties:

(1) # is open;
(2) # is a past set, i.e. [-(#) < #;
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(8) # cannot be expressed as the union of two proper subsets

which have properties (1) and (2).
We shall call a set with properties (1), (2) and (3) an indecomposable
past set, abbreviated as IP. (The definition given by Geroch, Kron-
heimer and Penrose does not include property (1). However it is
equivalent to the definition given here, since by ‘a past set’ they mean
a set which equals its chronological past, rather than merely con-
taining it.) One can define an IF, or indecomposable future set, similarly.

One can divide IPs into two classes: proper IPs (PIPs) which are
the pasts of points in .4, and terminal IPs (TIPs) which are not the
past of any point in 4. The idea is to regard these TIPs and the
similarly defined TIFs as representing points of the causal boundary
(c-bounda~y) of (#,8). For instance, in Minkowski space one would
regard the shaded region in figure 47 (i) as representing the point p
on S+, Note that in this example, the whole of # is itself a TIP and
also a TIF. These can be thought of as representing the points ¢+ and i~
respectively. In fact all the points of the conformal boundary of
Minkowski space, except ¢°, can be represented as TIPs or TIFs. In
some cases, such as anti-de Sitter space, where the conformal boundary
is timelike, points of the boundary will be represented by both a TIP
and a TIF (see figure 47 (ii)).

One can also characterize TIPs as the pasts of future-inextendible
timelike curves. This means that one can regard the past I—(y) of
a future-inextendible curve y as representing the {uture endpoint of y
on the c-boundary. Another curve 7’ has the same endpoint if and
only if I-(y) = I-(y').

Proposition 6.8.1 (Qeroch, Kronheimer and Penrose)
A set #  is a TIP if and only if there is a future-inextendible timelike
curve ¥ such that I-(y) = %",

Suppose first that there is a curve y such that I—(y) = # . Let
W = YUY where % and ¥ are open past sets. One wants to show
that either % is contained in ¥”, or ¥” contained in %. Suppose that,
on the contrary, % is not contained in %" and %" not contained in %.
Then one could find & point ¢ in % —¥" and a point 7 in ¥"—%. Now
g,7€I~(y), so there would be points ¢’,7’ €7 such that ¢ge I-(¢') and
reI-(r'). But whichever of % or ¥ contained the futuremost of ¢’, 7’
would also contain both g and r, which contradicts the original defini-
tions of ¢ and r.
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10

TIP representing point p

(i)

TIF representiug
point p

TIP representing
point p

(i)

Fi1cure 47. Penrose diagrams of Minkowski space and anti-de Sitter space (cf.
figures 15 and 20), showing (i) the TIP representing & point p on £+ in Minkowski
space, and (ii) the TIP and the TIF representing a point p on J in anti-de Sitter
space.

Conversely, suppose % is a TIP. Then one must construct a time-
like curve y such that %" = I-(y). Now if p is any point of #”, then
W = I-(# n I*(p)) U I- (W — I*(p)). However #  is indecomposable,
80 either %" = I-(%'n It(p)) oxr W = I-(# —I*(p)). The point p is
not contained in I~(#" — I*(p)), so the second possibility is eliminated.
The conclusion may be restated in the following form: given any pair
of points of #7, then % contains a point to the future of both of them.
Now choose a countable dense family p,, of points of #”. Choose a point
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goin W to the future of p,. Since g, and p, are in %", one can choose
a point ¢, in % to the future of both of them. Since ¢, and p, are in #,
one can choose g, in %" to the future of both of them, and so on. Since
each point g, obtained in this way lies in the past of its successor, one
can find a timelike curve 7 in %" through all the points of the sequence.
Now for each point p e %, the set % n I*(p) is open and non-empty,
and so it must contain at least one of the p,, since these are dense.
But for each k, p;, lies in the past of g;, whence p itself lies in the past
of . This shows that every point of % lies to the past of ¥, and so
since y is contained in the open past set %", one must have
W = I-(y). m]

We shall denote by A the set of all IPs of the space (A, 8). Then A
represents the points of A plus a future c-boundary; similarly, .#, the
set of all IFs of (4, g), represents .4 plus a past c-boundary. One can
extend the causal relations I, J and E to . and . in the following
way. For each %, ¥ < A, we shall say

eJ-(v, M) f U<V,
Uel-(¥,H) if %< I-(g)for some point ge ¥,
UecE-(V, M) if UeJ-(¥V,H#) butnot Uel- (¥, H).

With these relations, the IP-space A is a causal space (Kronheimer
and Penrose (1967)). There is a natural injective map I-: .# —
which sends the point pe.# into I—(p) eA. This map is an igo-
morphism of the causality relation J~ as peJ—(g) if and only if
I=(pYe J~(I-(q), A ). The causality relation is preserved by I~ but not
by its inverse, ie. pel-(q)= I-(p)eI(I-(g), #). One can define
causal relations on A similarly.

The idea now is to write A and A in some way to form a space #4*
which has the form 4 U A where A will be called the c-boundary of
(4, g). To do so, ene needs a method of identifying appropriate IPs
and IFs. One starts by forming the space .## which is the union of
A and A, with each PIF identified with the corresponding PIP. In
other words, .## corresponds to the points of A together with the
TIPs and TIFs. However as the example of anti-de Sitter space shows,
one also wants to identify some TIPs with some TIFs. One way of
doing this is to define a topology on ##, and then to identify some
points of .## to make this topology Hausdorff.

As was mentioned in § 6.4, a basis for the topology of the topological
space .4 is provided by sets of the form I*(p)n I=(g). Unfortunately
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one cannot use a similar method to define a basis for the topology of
#A# as there may be some points of A## which are not in the chrono-
logical past of any points of .##. However one can also obtain a
topology of # from a sub-basis consisting of sets of the form I+(p),
I-(p), A —T*(p) and A4 —I—(p). Following this analogy, Geroch,
Kromheimer and Penrose have shown how one can define a topology
on A%, For an IF o € A, one defines the sets

A =y ¥V ek and V0oL + o),
and A=V Veh and ¥V = [-(#) > IH#) & o).

For an IP #e .4, the sets &'t and £ are defined similarly. The
open sets of ## are then defined to be the unions and finite inter-
sections of sets of the form 70t, ofext, ggint gnq Z#ext, The sets </t and
g3'nt gre the analogues in A # of the sets I+(p) and I-{g). If in particular
& = It(p) and ¥ = I-(g) then ¥ e &/ if and only if ge It(p).
However the definitions enable one also to incorporate TIPS into
/"t The sets &/°x* and #°** are the analogues of .4 —I*(p) and
A —I-(g).

Finally one obtains .4* by identifying the smallest number of points
in the space .## necessary to make it a Hausdorff space. More precisely
A* is the quotient space ##/R, where R, is the intersection of all
equivalence relations R < 4% x ## for which ##[R is Hausdorff.
The space 4 * has a topology induced from .## which agrees with the
topology of 4 on the subset .4 of 4 *. In general one cannot extend
the differentiable structure of A4 to A, though one can on part of A in
a special case which will be described in the next section.

6.9 Asymptotically simple spaces

In order to study bounded physical systems such as stars, one wants
to investigate spaces which are asymptotically flat, i.e. whose metrics
approach that of Minkowski space at large distances from the system.
The Schwarzschild, Reissner-Nordstrém and Kerr solutions are
examples of spaces which have asymptotically flat regions. As we saw
in chapter 5, the conformal structure of null infinity in these spaces is
similar to that of Minkowski space. This led Penrose (1964, 19655,
1968) to adopt this as a definition of a kind of asymptotic flatness. We
shall only consider strongly causal spaces. Penrose does not make the
requirement of strong causality. However it simplifies matters and im-
plies no loss of generality in the kind of situation we wish to consider.
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A time- and space-orientable space (#, g)is said to be asymptotically
simple if there exists a strongly causal space (4, §) and an imbedding
6: M4 — A which imbeds # as a manifold with smooth boundary 8.4
in .4, such that:

(1) there is a smooth (say C? at least) function Qon A such that on
6(A), Qis positive and Q28 = 6,(g) (i.e. g is conformal to g on 6(.#));

(2) on 24, Q = 0and AQ #* 0;

(3) every null geodesic in .4 has two endpoints on 2.4.

We shall write A U4 = A.

In fact this definition is rather more general than one wants since
it includes cosmological models, such as de Sitter space. In order to
restrict it to spaces which are asymptotically flat spaces, we will say
that a space (#, 8) is asymplotically empty and simple if it satisfies
conditions (1), (2), and (3), and

(4) Ry, = 0on an open neighbourhood of 2.4 in .#. (This condition
can be modified to allow the existence of electromagnetic radiation
near o.4).

The boundary 8.4 can be thought of as being at infinity, in the
sense that any affine parameter in the metric g on a null geodesic in .4
attains unboundedly large values near 2.4#. This is because an affine
parameter v in the metric g is related to an affine parameter 4 in the
metric § by dv/ds = Q2. Since Q = 0 at 2.4, [dv diverges.

From conditions (2) and (4) it follows that the boundary 2.# is a
null hypersurface. This is because the Ricci tensor B, of the metric
§.» is related to the Ricci tensor B, of g, by

B = Q2R>— 20 YQ), 5% + { — Q1Q g + 3Q72Q, Q, 5} §°%6,°
where | denotes covariant differentiation with respect to §,,. Thus
E = Q2R—6Q-1Q,;52+ 3Q2Q, Q350
Since the metric §,, is C3, B is 0! at 9.# where Q = 0. This implies
that Q,, Q,;9°¢ = 0. However by condition (2), Q,, + 0. Thus Q, ¢ is
a null vector, and the surface 0.4 (Q = 0) is a null hypersurface.

In the case of Minkowski space, 2.4 consists of the two null surfaces
S+ and -, each of which has the topology R x S2. (Note that it does
not include the points i ¢+ and ¢~ since the conformal boundary is not
a smooth manifold at these points.) We shall show that in fact 9.4 has
this structure for any asymptotically simple and empty space.

Since 9.4 is a null surface, # lies locally to the past or future of it.
This shows that 2.4 must consist of two disconnected components:
4+ on which null geodesics in .# have their future endpoints, and £~
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on which they have their past endpoints. There cannot be more than
two components of d.4#, since there would then be some point p e.#
for which some future-directed null geodesics would go to one com-
ponent and others to another component. The set of null directions
at p going to each component would be open, which is impossible,
since the set of future null directions at p is connected.

We next establish an important property.

Lemma 6.9.1
An asymptotically simple and empty space (#, g) is causally simple.

Let % be a compact set of 4. One wants to show that every null
geodesic generator of J+(%") has past endpoint at #". Suppose there
were a generator that did not have endpoint there. Then it could not
have any endpoint in .#, so it would intersect #—, which is im-
possible. ]

Proposition 6.9.2
An asymptotically simple and empty space (A4,8) is globally
hyperbolic.

The proof is similar to that of proposition 6.6.7. One puts a volume
element on .4 such that the total volume of .# in this measure is unity.
Since (#, g) is causally simple, the functions f+(p), f—(p) which are
the volumes of I+(p), I~(p) are continuous on .4 . Since strong causality
holds on #, f*(p) will decrease along every future-directed non-
spacelike curve. Let A be a future-inextendible timelike curve. Sup-
pose that# = ) I'+(p) was non-empty. Then & would be a future set

and the null gezljl:\rators of the boundary of # in 4 would have no past
endpoint in #. Thus they would intersect £, which again leads to
a contradiction. This shows that f+(p) goes to zero as p tends to the
future on A. From this it follows that every inextendible non-spacelike
curve intersects the surface # = {p: f+(p) = f~(p)}, which is therefore
a Cauchy surface for 4. o

Lemma 6.9.3

Let % be a compact set of an asymptotically empty and simple space
(-#, 8). Then every null geodesic generator of £+ intersects J+(¥%", .#)
once, where ° indicates the boundary in .#.

Let pe A, where A is a null geodesic generator of £+. Then the past set
(in A#) J~(p, #)n A must be closed in #, since every null geodesic
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generator of its boundary must have future endpoint on £+ at p.
Since strong causality holds on 7, 4 —J—(p, #) will be non-empty.
Now suppose that A were contained in J+(%#", #). Then the past set
N (J-(p, #)n A) would be non-empty. This would be impossible,

PEA
since the null generators of the boundary of the set would intersect £+.

Suppose on the other hand that A did not intersect J+(%”, /). Then
M~ (J(p,#)" A) would be non-empty. This would again lead
peA

to a contradiction, as the generators of the boundary of the past set
U (J~(p, #£)n A) would intersect £+. o
PEA

Corollary

S+ is topologically R x (J+(W , #)n o.4).

We shall now show that £+ (and #~) and .# are the same topologically
as they are for Minkowski space.

Proposition 6.9.4 (Geroch (1971))
In an asymptotically simple and empty space (A, g), £+ and F— are
topologically R! x 82, and .# is R%.
Consider the set IV of all null geodesics in .#. Since these all intersect
the Cauchy surface 5#°, one can define local coordinates on IV by the
local coordinates and directions of their intersections with 5#. This
makes NN into a fibre bundle of directions over 3# with fibre S2. How-
ever every null geodesic also intersects #+. Thus N is also a fibre
bundle over #£+. In this case, the fibre is S2 minus one point which
corresponds to the null geodesic generator of #+ which does not enter
A . In other words, the fibre is R2 Therefore N is topologically
S+ x R%. However £+ is R x (J*(W, #)n 8.#). This is consistent
with N = % 5% only if # ~ R® and £+ ~ R x 82, ]
Penrose (1965b) has shown that this result implies that the Weyl
tensor of the metric g vanishes on £+ and #~. This can be interpreted
as saying that the various components of the Weyl tensor of the
metric g ‘peel off’, that is, they go as different powers of the affine
parameter on a null geodesic near f+ or #~. Further Penrose (1963),
Newman and Penrose (1968) have given conservation laws for the
energy-momentum as measured from £+, in terms of integrals on £+,
The null surfaces £+ and £~ form nearly all the c-boundary A of
(A, g) defined in the previous section. To see this, note first that any
point pe S+ defines a TIP I-(p,#)n A. Suppose A is a future-
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inextendible curve in .. If A has a future endpoint at p € £+, then the
TIP I-(A) is the same as the TIP defined by p. If A does not have a
future endpoint on £+, then .4 — I-(A) must be empty, since if it were
not, the null geodesic generators of 1-(A) would intersect £+ which is
impossible as A does not intersect #+. The TIPs therefore consist of
one for each point of £+, and one extra TIP, denoted by i+, which is
A itself. Similarly, the TIFs consist of one for each point of #~, and
one, denoted by i~, which again is .# itself.

One now wants to verify that one does not have to identify any
TIPs or TIFSs, i.e. that 4% is Hausdorff. It is clear that no two TIPs
or TIFs corresponding to £+ or £~ are non-Hausdorff separated. If
peS+ then one can find ge# such that p¢I+(q,#). Then
(I*(q, #))°=t is a neighbourhood in A# of the TIP I-(p, #)n A, and
(I+(g, #))"t is a disjoint neighbourhood of the TIP i+. Thus i+ is
Hausdorff separated from every point of #+. Similarly it is Hausdorff
separated from every point of #—. Thus the c-boundary of any
asymptotically simple and empty space (#, 8) is the same as that of
Minkowski space-time, consisting of #+, #— and the two points i, i~.

Asymptotically simple and empty spaces include Minkowski space
and the asymptotically flat spaces containing bounded objects such as
stars which do not undergo gravitational collapse. However they do
not include the Schwarzschild, Reissner-Nordstrom or Kerr solutions,
because in these spaces there are null geodesics which do not have
endpoints on £+ or £ —. Nevertheless these spaces do have asympto-
tically flat regions which are similar to those of asymptotically empty
and simple spaces. This suggests that one should define a space (#, g8)
to be weakly asymptotically simple and empty if there is an asymp-
totically simple and empty space (#’, 8') and a neighbourhood %’ of
oM in A" such that %' n A4’ is isometric to an open set % of 4. This
definition covers all the spaces mentioned above. In the Reissner-
Nordstrém and Kerr solutions there is an infinite sequence of asymp-
totically flat regions % which are isometric to neighbourhoods %’ of
asymptotically simple spaces. There is thus an infinite sequence of
null infinities £+ and #—. However we shall consider only one asymp-
totically flat region in these spaces. One can then regard (4, g) as
being conformally imbedded in a space (.#, §) such that a neighbour-
hood % of 8.4 in . is isometric to %’. The boundary 2.4 consists of
a single pair of null surfaces #+ and Jf-.

We shall discuss weakly asymptotically simple and empty spaces
in §9.2 and §9.3.




7
The Cauchy problem in General Relativity

In this chapter we shall give an outline of the Cauchy problem in
General Relativity. We shall show that, given certain data on a space-
like three-surface &, there is a unique maximal future Cauchy
development D*(%) and that the metric on a subset % of D+%)
depends only on the initial data on J=(#)n &. We shall also show
that this dependence is continuous if % hasa compact closure in D+(5).
This discussion is included here because of its intrinsic interest,
because it uses some of the results of the previous chapter, and because
it demonstrates that the Einstein field equations do indeed satisfy
postulate (a) of § 3.2 that signals can only be sent between points that
can be joined by a non-spacelike curve. However it isnot really needed
for the remaining three chapters, and so could be skipped by the
reader more interested in singularities.

In §7.1, we discuss the various difficulties and give a precise formu-
lation of the problem. In §7.2 we introduce a global background
metric § to generalize the relation which holds between the Ricci
tensor and the metric in each coordinate patch to a single relation
which holds over the whole manifold. We impose four gauge conditions
on the covariant derivatives of the physical metric ¢ with respect to
the background metric §. These remove the four degrées of freedom
to make diffeomorphisms of a solution of Einstein’s equations, and
lead to the second order hyperbolic reduced Einstein equations for g
in the background metric §. Because of the conservation equations,
these gauge conditions hold at all times if they and their first deriva-
tives hold initially.

In §7.3 we show that the essential part of the initial data for g on
the three-dimensional manifold & can be expressed as two three-
dimensional tensor fields A%b, ¥% on &. The three-dimensional mani-
fold & is then imbedded in a four-dimensional manifold .# and a
metric g is defined on & such that A% and x*® become respectively the
first and second fundamental forms of & in g. This can be done in such
a way that the gauge conditions hold on &. In §7.4 we establish some

[ 226]
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basic inequalities for second order hyperbolic equations. These relate
integrals of squared derivatives of solutions of such equations to their
initial values. These inequalities are used to prove the existence and
uniqueness of solutions of second order hyperbolic equations. In §7.5
the existence and uniqueness of solutions of the reduced empty space
Einstein equations is proved for small perturbations of an empty space
solution. The local existence and uniqueness of empty space solutions
for arbitrary initial data is then proved by dividing the initial surface
up into small regions which are nearly flat, and then joining the
resulting solutions together.In § 7.6 we show there is a unique maximal
empty space solution for given initial data and that in a certain sense
thissolution depends continuously on theinitial data. Finally in §7.7 we
indicate how these results may be extended to solutions with matter.

7.1 The nature of the problem

The Cauchy problem for the gravitational field differs in several
important respects from that for other physic‘a,l fields.

(1) The Einstein equations are non-linear. Actually in this respect
they are not so different from other fields, for while the electromagnetic
field, the scalar field, etc., by themselvesobey linear equations in a given
space-time, they form a non-linear system when their mutual inter-
actions are taken into account. The distinctive feature of the gravita-
tional field is that it is self-interacting: it is non-linear even in the
absence of other fields. This is because it defines the space-time over
which it propagates. To obtain a solution of the non-linear equations
one employs an iterative method on approximate linear equations
whose solutions are shown to converge in a certain neighbourhood of
the initial surface.

(2) Two metrics g, and g,on a manifold .# are physically equivalent
if there is a diffeomorphism ¢: .# —.# which takes g, into g,
(P58, = 82), and clearly g, satisfies the field equations if and only if g,
does. Thus the solutions of the field equations can be unique only up to
a diffeomorphism. In order to obtain a definite member of the equiva-
lence class of metrics which represents a space-time, one introduces
a fixed ‘background’ metric and imposes four ‘gauge conditions’ on
the covariant derivatives of the physical metric with respect to the
background metric. These conditions remove the four degrees of
freedom to make diffeomorphisms and lead to a unique solution for
the metric components. They are analogous to the Lorentz condition
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which isimposed to remove the gauge freedom for the electromagnetic
field.

(8) Since the metric defines the space-time structure, one does not
know in advance what the domain of dependence of the initial surface
is and hence what the region is on which the solution is to be deter-
mined. One is simply given a three-dimensional manifold & with
certain initial data e on it, and is required to find a four-dimensional
manifold .#, an imbedding §: ¥ — .# and a metric ¢ on .# which
satisfies the Einstein equations, agrees with the initial values on 6(5)
and is such that 6(%) is a Cauchy surface for .#. We shall say that
(A,6,8), or simply 4, is a development of (&, w). Another develop-
ment (A',0,8') of (¥, w) will be called an extension of A if there is
a diffeomorphism & of 4 into 4’ which leaves the image of & point-
wise fixed and takes g’ into g (i.e. 6~1x~10’ = id on & and o, 8’ = 8).
We shall show that provided the initial data «w satisfies certain
constraint equations on &, there will exist developments of (¢, w) and
further, there will be a development which is maximal in the sense
that it is an extension of any development of (%, w). Note that by
formulating the Cauchy problem in these terms we have included the
freedom to make diffeomorphisms, since any development is an
extension of any diffeomorphism of itself which leaves the image of &
pointwise fixed.

72 The reduced Einstein equations

In chapter 2, the Ricci tensor was obtained in terms of coordinate
partial derivatives of the components of the metric tensor. For the
purposes of this chapter it will be convenient to obtain an expression
that applies to the whole manifold .# and not just to each coordinate
neighbourhood separately. To this end we introduce a background
metric § as well as the physical metric g. With two metrics one has to
be careful to maintain the distinction between covariant and contra-
variant indices. (To avoid confusion, we shall suspend the usual con-
ventions for raising and lowering indices.) The covariant and contra-
variant forms of g and g are related by

g°gy, = 8% = 90y, (7.1)

It will be convenient to take the contravariant form ge® of the metric
to be more fundamental and the covariant form g,, as derived from it
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by (7.1). Using the alternating tensor .4 defined by the background
metric, this relation can be expressed explicitly as

1
Gab = ‘ﬂgc dgelgti(det 8) ﬁmiﬁbdm (7.2)

i .
where (detg)! = 0 9°°9°%G* G G ces Doass

is the determinant of the components of g°® in a basis which is ortho-
normal with respect to the metric §.

The difference between the connection I’ defined by g and the con-
nection I defined by £ is a tensor, and can be expressed in terms of the
covarjant derivative of ¢ with respect to I (cf §3.3):

oTe,, = I'e, — [,
= 399, Gri0c; 9% — Gps 0%, 0% — §,:6%, 6%), (7.3)

where we have used a stroke to denote covariant differentiation with
respect to f* and the symbol & to denote the difference between
quantities defined from g and 8. Then from (2.20),

aRab = 8Fdab|d ad ar‘dadlb + 8Fdab (Hudc - 8Fdae 8F‘M. (7.4)
Thus

SR~ }g**R) = g°'g"I0R;; + 209" Ry; — dg-iogM R,
— 309t R — 3g°b(8g” R, ; + g*10Ry)
= 3g%16g°;; — g%YOy + 3°N (Vs — 9.0 9909°% )

+ (terms in 8g°¢,; and dg*/), (7.5)
PP = g%~ 36°94.9% = (det 8)~* ((det 8)g>),, = (det 8)'¢%, (7.6)
and ¢be = (det g) dge.

The plan is now as follows. We choose some suitable background
metric § and express the Einstein equations in the form

Reb— Ry = §(Reb — }Rgeb) + Rob — 390 R = 8aTe>.  (1.7)

One regards this as a second order non-linear set of differential equa-
tions to determine g in terms of the values of it and its first derivatives
on some initial surface. Of course to complete the system one has to
specify the equations governing the physical fields which make up the
energy-momentum tensor 7%, However even when this is done one
does not have a system of equations which uniquely determines the
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time development in terms of the initial values and first derivatives.
The reason for this is, as was mentioned above, that a solution of the
Einstein equations can be unique only up to a diffeomorphism. In
order to obtain a definite solution one removes this freedom to make
diffeomorphisms by imposing four gauge conditions on the covariant
derivatives of g with respect to the background metric §. We shall use
the so-called ‘harmonic’ conditions

Yo = =0
which are analogous to the Lorentz gauge conditions A% ;= 0 in
electrodynamics. With this condition one obtains the reduced Einstein
equations

g*¢,; + (terms in ¢°%, and ¢) = 16772 — 2Ra> 4 pabR.  (7.8)

We shall denote the left-hand side of (7.8) by £ ;(¢°%), where E®; is
the Einstesn operator. For suitable forms of the energy-momentum
tensor 7% these are second order hyperbolic equations for which we
shall demonstrate the existence and uniqueness of solutions in §7.5.
We still have to check that the harmonic conditions are consistent
with the Einstein equations. That is to say: we derived (7.8) from the
Einstein equations by assuming that ¢%, was zero. We now have to
verify that the solution that (7.8) gives rise to does indeed have this
property. To do this, differentiate (7.8) and contract. This gives an
equation of the form

g0+ B Y + OO Y = 16779, ,, (7.9)

where a semi-colon denotes differentiation with respect to g, and the
tensors B, and G, depend on §9, e, ,, g% and g#*,.. Equations (7.9)
may be regarded as second order linear hyperbolic equations for .
Since the right-hand side vanishes, one can use the uniqueness
theorem for such equations (proposition 7.4.5) to show that 1 will
vanish everywhere if it and its first derivatives are zero on the initial
surface. We shall see in the next section that this can be arranged by
a suitable diffeomorphism.

We still have to show that the unique solution obtained by imposing
the harmonic gauge condition is related by a diffeomorphism to any
other solution of the Einstein equations with the same initial data.
This will be done in § 7.4 by making a special choice of the background
metric.
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7.3 'The initial data

As (7.8) is a second order hyperbolic system it seems that to determine
the solution one should prescribe the values of g% and g* u° on the
initial surface 6(%°), where u¢ is some vector field which is not tangent
to 6(%). However not all these twenty components are significant or
independent: some can be given arbitrary initial values without
changing the solution by more than a diffeomorphism, and others have
to obey certain consistency conditions.

Consider a diffeomorphism p: # - .# which leaves 6(5) pointwise
fixed. This will induce a map g, which takes g% at p € (%) into a new
tensor p,g® at p. If n, € T*, is orthogonal to (%) (i.e. n, ¥ = 0 for
any VeeT, tangent to 6(5)) and normalized so that n,§%n, = —1
then, by suitable choice of u, n, s, g*° can be made equal to any vector
at p which is not tangent to (). Thus the components n,g* are not
significent. On the other hand as u leaves 6(%) pointwise fixed, the
induced metric k,, = 6*g,, on & willremain unchanged. It is therefore
only this part of ¢ which lies in (%) which need be given to determine
the solution. The other components n,g%® can be prescribed arbitrarily
without changing the solution by more than a diffeomorphism.
Another way of seeing this is to recall that we formulated the Cauchy
problem in terms of certain data on a disembodied three-manifold .
and then looked for an imbedding into some four-manifold .#. Now
on .% itself one cannot define a four-dimensional tensor field like g but
only a three-dimensional metric h, which we shall take to be positive
definite. The contravariant and covariant forms of h are related by

hth,, = 69, (7.10)
where now ¢2, is a three-dimensional tensor in &. The imbedding 8 will
carry h,, into a contravariant tensor field 6,A% on 6(%) which has
the property 710, k% = 0. (7.11)

As 7,g% is arbitrary, one may now define g on (%) by
g® = 6, k% —usu?, (7.12)

where u? is any vector field on 6(5°) which is nowhere zero or tangent
to 6(.%). Defining g,, by (7.1), one has:

by = 6%Ga, Mg = —n utul, g utu® = —1. (7.13)

Thus h,, is the metric induced on .% by g and «¢ is the unit vector
orthogonal to 6(&°) in the metric g.
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The situation with the first derivatives g% u° is similar: n, g% uc
can be given any value by suitable diffeomorphisms. However there is
now an additional complication in that g*,, depends not only on g but
also on the background metric § on .#. In order to give a description
of the significant part of the first derivative of g in terms only of tensor
fields defined on %, we proceed as follows. We prescribe a symmetric
contravariant tensor field x** on .%°. Under the imbedding % is
mapped into a tensor field 6, x*® on 6(%). We require that this is
equal to the second fundamental form (see §2.7) of the submanifold
6(%) in the metric g. This gives

04 x™ = 0, b0, ¥ (u’q,.), 4
= B*hace*hbd((uegec)ld - 6chd ucgef)' (7' 14)
Using (7.3), one has
04 X% = 30, B0  BPH(— 939459 5> + Gpy uhic + G %) (7.15)
This may be inverted to give g%, u° in terms of 8, x**:
39U = — O, X% + 0,556 L B2 ' gy + u@ W, (7.16)

where W? is some vector field on 6(5). It can be given any required
value by a suitable diffeomorphism x.

The tensor fields ke and x®® cannot be prescribed completely
independently on &. For multiplying the Einstein equations (7.7) by
74, one obtains four equations which do not contain g°? ;uu3, the
second derivatives of g out of &. Thus there must be four relations
between g2, g° u¢ and n,7%. Using (2.36) and (2.35), they can be
expressed as equatlons in the three-manifold %:

X%abce— X% eheq = 81O (Ty,ud), (7.17)
HE' + (x%hge)® — x2xhg bra) = BmOM(Ty,udu), (7.18)

where a double stroke | denotes covariant differentiation in % with
respect to the metric h, and R’ is the curvature scalar of h.

The data w on & that is required to determine the solution therefore
consists of the initial data for the matter fields (in the case of a scalar
field ¢ for example, this would consist of two functions on % repre-
senting the value of ¢ and its normal derivative) and two tensor fields
he® and x* on & which obey the constraint equations (7.17-18). These
contraint equations are elliptic equations on the surface % which
impose four constraints on the twelve independent components of
(h?®, x%). In such situations, one can show one can prescribe eight of
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these components independently and then solve the constraint equa-
tions to find the other four, see e.g. Bruhat (1962). We shall call a pair
(&, w) satisfying these conditions, an initial data set. We then imbed .
in some suitable four-manifold .# with metric g8 and define g® on
6(%) by (7.12) for some suitable choice of u%. We shall take u2 to be
g°n,. Thus it will be the unit vector orthogonal to 6(.%) in both the
metric g and 8. We shall also exploit our freedom of choice of W@ in
the definition of 2%, u° by (7.16) to make yr® zero on 8(). This requires

W = — 0300004 2% + 49,0 9°% O B
+uP(Gea0 u X0 — 91c U0 0, 1%%).  (7.19)

(Note that all the derivativesin (7.19) are tangent to 6(-%) asis required
by the fact that the fields involved have been defined only on 8(%).) To
ensure that ¥* vanishes everywhere one also needs %, u¢ to be zero
on 8(%). However this now follows from the constraint equations
providing the reduced Einstein equations (7.8) hold on 6(%). One
may therefore proceed to solve (7.8) as & second order non-linear
hyperbolic system on the manifold 4 with metric 8.

(Note that there are 10 such equations for the ¢’s; in proving the
existence of solutions of these 10 equations we do not split them into
a set of constraint equations and a set of evolution equations, and so
the question as to whether the constraint equations are conserved does
not arise.)

7.4 Second order hyperbolic equations

In this section we shall reproduce some results on second order
hyperbolic equations given in Dionne (1962). They will be generalized
to apply to a whole manifold, not just one coordinate neighbourhood.
These results will be used in the following sections to prove the exist-
ence and uniqueness of developments for an initial data set (&, w).
We first introduce a number of definitions. We use Latin letters to
denote multiple contravariant or covariant indices; thus a tensor of
type (r, s) will be written as K7, and we denote by |I| = r the number
of indices that the multiple index I represents. We introduce a positive
definite metric e,, on 4 and define
eld = etbecd || ¢PY,

N’
r times 7 times

€1y = €ap€q .-+ €pgs
e
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where |I| = |J| = r. We then define the magnitude | K7,| (or simply,
|K|) as (KI,KZye;e’M)} where repeated multiple indices imply
contraction over all the indices they represent. We define | D™KZ, |
(or simply, |D™K]|) to be |KZ; .| where |L| = m and as before, | indi-
cates covariant differentiation with respect to .

Let A" be an imbedded submanifold of # with compact closure
in . Then ||KZ;, A |j,, is defined to be

(5. wmrerf

where do is the volume element on .4~ induced by e. We also define
K, A4 ﬁm to be the same expression where the derivatives are taken

only in directions tangent to A4". Clearly, [K, A, > |K, A |

The Sobolev spaces W™(r, s, A”) (or simply Wm(A4")) are then defined
to be the vector spaces of tensor fields K7, of type (r, s) whose values
and derivatives (in the sense of distributions) are defined almost every-
where on A~ (i.e. except, possibly, on & set of measure zero; for the
rest of this section ‘almost everywhere’ is to be understood almost

everywhere) and for which ||KI,, A ifm is finite. With the norms

WA ﬂm the Sobolev spaces are Banach spaces in which the C™ tensor
fields of type (r, 8) form dense subsets. If e’ is another continuous posi-
tive definite metric on 4 then there will be positive constants C, and

C, such that
G| KL, < [KL| < G|KT,| on &,

end CU KLy, M < 1B N ' < Col\BEy N e

Thus || , A4, will be an equivalent norm. Similarly another C™
background metric 8’ will give an equivalent norm. In fact it follows
from two lemmas given below that if §”e W™(A") and 2m is greater
than the dimension of A4, then the norm obtained using the covariant
derivatives defined by £” is again equivalent.

We now quote three fundamental results on Sobolev spaces. The
proofs can be derived from results given in Sobolev (1963). They
require a mild restriction on the shape of 4. A sufficient condition wilt
be that for each point p of the boundary &.4” it should be possible to
imbed an n-dimensional half cone in 4 with vertex at p, where n is
the dimension of .#". In particular this condition will be satisfied if
the boundary 84" is smooth.
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Lemma 7.4.1

There is & positive constant P, (depending on 4", e and 8) such that
for any field K1, € Wm(A") with 2m > n, wheren is the dimension of A",

K| < B |K, A ], on At

From this and the fact that the vector space of all continuous fields
KI, on A4 is a Banach space with norm sup |K|, it follows that if
#

KI, e Wn(A") where 2m > n, then K, is continuous on A4". Similarly
if KT,e Wrte(4"), then K1, is CPon A,

Lemma 7.4.2

There is a positive constant P, (depending on .4, e and 8) such that
for any fields K1, L¥ o€ W™(A") with 4m > =,

K2y LP gy # o < Bl K, A Y fLs A )i

From this and the previous lemma it follows that if n € 4 and 2m > =,
then for any two fields K7, LFye W™(A4"), the product KT, L? is
also in Wm(A").

Lemma 7.4.3
If 4" is an (n— 1)-dimensional submanifold smoothly imbedded in A",

there is a positive constant P, (depending on A", 4", e and 8) such
that for any field KT, e Wm+l(4"),

“K,.I’“m < PslIK:‘A/“n&l'

We shall prove the existence and uniqueness of developments for
(&, w) when ke W3(F) and x°*e W) where a is any non-
negative integer. (If & is non-compact, we mean by h% € Wn(S¥) that
hate Wm™(4") for any open subset A" of & with compact closure.)
A sufficient condition for this is that k% be C4+2 and 2 be C?+2 on &;
by lemma 7.4.1, & necessary condition is that h%® be C**2 and x% be
C'+e. The solution obtained for g2 will belong to W4+a(5#) for each
smooth spacelike surface 5 and so the (2 +a)th derivatives will be
bounded, i.e. g2® will be C2+%~ on .

These differentiability conditions can be weakened to cases such as
shock waves where the solution departs from W* behaviour on well-
behaved hypersurfaces; see Choquet~Bruhat (1968), Papapetrou and
Hamoui (1967), Israel (1966), and Penrose (1972 a). However no proof
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is known for cases in which such departures occur generally. The W4
condition for the existence and uniqueness of developments is an
improvement on previous work (Choquet-Bruhat (1968)) but it is
somewhat stronger than one would like since the Einstein equations
can be defined in a distributional sense if the metric is continuous and
its generalized derivatives are locally square integrable (i.e. if g is C°
and W1). On the other hand any W7 conditions for p less than 4 would

N

>(t')

RS % ”
¥, R

(L)

/ N S LR (0

2 4

F16URE 48. 4 is an open set with compact closure in the manifold M=H xR
%, is the region of 4 for which ¢ > 0 and /() is the region of % between t = 0
andt=1¢>0.

not guarantee the uniqueness of geodesics, or, for p less than 3, their
existence. Our own view is that these differences of differentiability
conditions are not important since as explained in § 3.1, the model for
space-time may as well be taken to be C*.

In order to prove the existence and uniqueness of developments we
now establish some fundamental inequalities (lemmas 7.4.4 and 7.4.6)
for second order hyperbolic equations, in & manner similar to that of
the conservation theorem in §4.3.

Consider & manifold . of the form 3 x B! where 5 is a three-
dimensional manifold. Let % be an open set of .# with compact closure
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which has boundary 0% and which intersects 5#(0), where #(t)
denotes the surface # x {t}, e R'. Let %, and %(t') denote the parts
of % for which ¢t > 0 and t’ > ¢ > O respectively (figure 48). On %, let
£ be a C%- background metric and let e be a C!~ positive definite
metric. We shall consider tensor fields K, which obey second order
hyperbolic equations of the form

L(K) = A®KT i+ BTy ; Kpip + CF1o ; KOp = F1,;, (7.20)

where A is a Lorentz metric on %, (i.e. & symmetric tensor field of
signature + 2), B, G and F are tensor fields of type indicated by their
indices, and | denotes covariant differentiation with respect to the
metric 8.

Lemma 7.4.4
If(1) 8% n %, is achronal with respect to A,

(2) there exists some §, > 0 such that on 7,
A% by < -Gy
and AW, W, > Qe®W, W,

for any form W which satisfies 49% W, = 0,
(3) there exists some @, such that on %,

|A| <@, [DA| <@, [B|<@, [C|<Q,

then there exists some positive constant F; (depending on %, e, 8,
@, and @,) such that for all solutions K7 of (7.20),

IK, 000 2,1, < B{K, #(0)n 2, ]+ [F, 2()] o).

One forms the ‘energy tensor’ S for the field KI; in analogy to the
energy—-momentum tensor of a scalar field of unit mass (§3.2):

The tensor S% obeys the dominant energy condition (§4.3) with
respect to the metric A (i.e. if W, is timelike with respect to A then
S|, W, > 0 and S®W, is non-spacelike with respect to A). Moreover
by conditions (2) and (3) there will be positive constants @, and @,

such that
Qs(|K|2+|DK|?) < 8,4, < Q(|K|*+|DK[?3).  (7.22)

We now apply lemma 4.3.1 to 8%, taking %, as the compact region &
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and using the volume element d# and covariant differentiation defined
by the metric §:

f — Sabtla dab < f — Sabt,a da’b
E {OLL 2?3 HO)nH,
t
+ f { f _ (P8t +.8%0,) da,,} dr' (7.23)
olJwrna,

where P is a positive constant independent of S%. (The sign has been
changed in the first term on the right-hand side since the surface
element d&, of the surface #(t) is taken to have the same orientation
a8 t,, i.e. d8, = t,d& where d& is a positive definite measure on 3#(t).)
Since e and g are continuous there will be positive constants Qg and Qg

such that on %, Qgdo < 47 < Qgdo, (7.24)

where do is the area element on 3 (¢) induced by e. Thus by (7.22)
and (7.23) there is some @, such that

1K, £ n Z,],% < Q,{IIK, FAONTAR

+ f:“K, YN U 2+ f: (89t do) dt'}. (7.25)
By (7.20), ‘
Sab, = A*K1, FF,e’;p+ (terms quadratic in KT, and
K, . with coefficients involving 44, A%,
Reyy, BePI,, and CFL,,). (7.26)
Since the coefficients are all bounded on %, there is some Qg such that
8%t < Qf|[F|2+ [K[?+ [DK|2}. (7.27)
Thus there is some @, such that, from (7.25) and (7.27),

1K, #0)0 2,41* < O IK, £(0)0 2,2
+[ 1K A0 2 g o +IF, 201).
This is of the form dz/dt < Qi{z+y}, (7.28)
where z(t) = f : 1K, () n %, ]|,2d¢".

t
Therefore x € et f e~ Dty () dt’. (7.29)
0
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Since y is a monotonically increasing function of ¢ and since ¢ is
bounded on %, there is some Q,, such that

z < Qroy-
Thus K, #(t)n .|, < B{|K, #(0)n %}, +|F, %(t)||¢}, where
Rx = (Qo+ Qlo)*- O

With this inequality one can immediately prove the uniqueness of
solutions of second order hyperbolic equations which are linear, i.e.
for which A, B, C and F do not depend on K. For suppose K; and
K2, were solutions of the equation L(K) = F which had the same
initial values and first derivatives on 3#(0)n %. Then one can apply
the above result to the equation L(K!—K?) = 0 and obtain

K —K2, () n %, ], = O.
Therefore K! = K2 on %,. One has thus

Proposition 7.4.5

Let A be a C'~ Lorentz metric on A and let B, G, and F be locally
bounded. Let ¥ < .4 be a three-surface which is spacelike and acausal
with respect to A. Then if 7" is a set in D+(5#, A), the solution on ¥ of
the linear equation (7.20) is uniquely determined by its values and
the values of its first derivatives on 0 J—(¥, A).

By proposition 6.6.7, D+(5#, A) is of the form 5 x R If ge¥", then
by proposition 6.6.6, J—(g) n J*+(3f) is compact and so may be taken
for % . o

Thus a physical field obeying & linear equation of the form (7.20) will
satisfy the causality postulate (a) of §3.2 provided the null cone of A
coincides with or lies within the null cone of the space—time metric g.

In order to prove the existence of solutions of the equations (7.20)
we shall need inequalities for higher order derivatives of K. We shall
now take the background metric § to be at least C5+% where a is a non-
negative integer and we shall take % to be such that 3(0)n % has
a smooth boundary and such that there is a diffeomorphism

A: (£(0)0 ) x [0, t,] > %,
which has the property that for each t€[0,t,],
MN(#(0)n ), 8y = )0 Z,.

We do this so that there shall be upper bounds 2,, &, and B, to the
constants B}, F; and Pyin lemmas 7.4.1-7.4.3 for the surface 5#(t)n %, .
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Lemma 7.4.6
If conditions (1) and (2) of lemma 7.4.4 hold and if
(4) there is some @3 such that

1A, oo < Qo 1B Zillasa < @ |G %lls1a < @5
(by lemma 7.4.1, this implies condition (3)), then there exist positive
constants F; , (depending on %, e, 8, a, @, and Q) such that

1K, ()0 %yJlasa < B ofl K, HO)0 %yl + [F 251 (7.30)

From lemma 7.4.4 one has an inequality for | K, 5£(t) n %, ],. To obtain
an inequality for ||K, s£(t)n %, |, one forms the ‘energy’ tensor S
for the first derivatives K7, and proceeds as before. The divergence
S5, can now be evaluated by differentiating equations (7.20):

8, = A®KI, ,FP,, e*e’%;p + (terms quadratic in K1,
KI,.and KI; , with coefficients involving A4,
Aed,, Be et Be seigr BF gs BFI 110 CPlg ;
and CPIQJ'd). (7.31)

With the possible exceptions of B**/g, ;13 and CF! ; 4, these coefficients
are all bounded on %, in the case a = 0. When integrated over the
surface H#(t') n %, the term in (7.31) involving B°F1,;,, is

_ f oo, A 5 B g Koy ee0ep 4B, (1.32)
There is some @, such that for all ¢, (7.32) is less than or equal to
Q f |DB| |DK| [D*K| do
O,

£ %QJ‘ (|DK|2+ |DB|*|DK|?)do. (7.33)
PGLL
By lemma 7.4.2,

f,(,,, ». [PBI*[DK[*do < B2|B, ()0 U2 K, () 2, ]|,
Ny

where, by condition (4) and lemma 7.4.3, |B, #(t')n .|, < P;Q,.
The term involving CF1, ;,, can be bounded similarly. Thus by lemma,,
4.3.1 there is some constant @, such that

f ([D*K| + |DK[?) do < Qa{ f ([D*K[2 + |DK[?) do
F{OLT 2 HO)n 4

t
+f IK, #¢')n ai/+||,2dt'+f |DF|=da}. (7.34)
0 ()
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By lemma 7.4.4,

[ ... IKitdo < I, 2200 2],
H()n U,
< 2B K, £ (0)n |2+ | F, %(t)]o%}- (7-85)
Adding this to (7.34), one obtains
IK, 00 2,14 < Q{IK, #(0)0 ]2
¢
+ f IK, o2(t')n %, || ,2dt’ +||F, ai/(t)||1=}. (7.36)
0
where Q4 = Qg+ 2F;. By a similar argument to that in lemma 7.4.4,
there is some constant ¢, such that
I, ()0 2], < GlIK, #(0)0 s +|F. 20l (737
From lemma 7.4.1 it now follows that on %,,
IK| < P, QAIK, 5£(0)n %] +||F, 2(t)]o}- (7.38)

Using this one may proceed in a similar way to establish an inequality
for | K, £(t)n %,||a- The divergence of the ‘energy’ tensor now gives
a term of the form

Qs f (|D*K|? + |D?B|2 |DK|?) dor. (7.39)
H)nd 4

By lemma 7.4.2 the second term above is bounded by
Qa Pﬁz "B) ‘#(t’) n %+“32 "Kr x(t,) n %4‘“22)

where by condition (4), [|B, 3£(t)n %,}|; is defined for almost all
values of ¢’ and is square integrable with respect to ¢'. Thus one can
obtain an inequality for [|[K, 3£(t)n %, ||, in the same manner as for
1K, s#¢)n %, |, The procedure for higher order derivatives is
similar. ]

Corollary
There exist constants Py , and F, , such that

"K’ ‘#(t) n %+|I4+a < P&. a{"K’ -#(0)0 %"4+a
+ K y1qu?, H(0) 0 Y30+ [|F, Zyflsra}s
and 1K, . Josa < B, ditto},

where 4® is some C%+2 vector field on 3#(0) which is nowhere tangent

to 3£(0).
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By (7.20), the second and higher derivatives of K out of the surface
J#(0) may be expressed in terms of F and its derivatives out of 3#(0),
KI, u® and derivatives of K in the surface 3°(0). By lemma 7.4.3,

A, £0)n X3 < Pz;Qaa
IB, 32(0)n %344 < P,Q,
G, £(0)n #|gs0 < PyQ,,
IF, #(0)0 X|zsa < B5|F, %, 310
Thus there will be some constant @, such that
IK, #(0)n %} < QufJK, £(0)0 Xy,
+| KL 0w, #(0) 0 Usia+ |F, Y, flasa).  (7.41)

The second result follows immediately, since { is bounded on %,. O

(7.40)

We can now proceed to prove the existence of solutions of linear
equations of the form (7.20). We first suppose that the components of
A, B, G, F, u and g are analytic functions of the local coordinates
x!, 23, 2% and 2% (2% = t) on & coordinate neighbourhood ¥~ and take the
initial data KI; = (KI, and K%, u® = K%, to be analytic functions
of the coordinates z1, x2 and 2® on 3 (0)n ¥". Then from (7.20) one can
calculate the partial derivatives 0%(K71,)/ot, 03(K* ;) [ot® oxt, 03( K1 ;) [013,
etc. of the components of K out of the surface 5#(0) in terms of
derivatives of (K and ,K in 5#(0). One can then express K7 ag a formal
power series in x!, 22, 2% and t about the origin of coordinates p. By the
Cauchy-Kowaleski theorem (Courant and Hilbert (1962), p. 39) this
series will converge in some ball ¥"(r) of coordinate radius r to give a
solution of (7.20) with the given initial conditions. One now selects
an analytic atlas from the C* atlas of A, covers 3#(0)n % with co-
ordinate neighbourhoods of the form #7(r) from this atlas, and in each
coordinate neighbourhood constructs a solution as above. One thus
obtains a solution on a region %(t,) for some ¢, > 0. One then repeats
the process using #(t,). By the Cauchy—Kowaleski theorem, the ratio
of successive intervals of t for which the power series converges is
independent of the initial data and so the solution can be extended to
the whole of %, in a finite number of steps. This proves the existence
of solutions of linear equations of the form (7.20) when the coefficients,
the source term and the initial data are all analytic. We shall now
remove the requirement of analyticity.
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Proposition 7.4.7
If conditions (1), (2) and (4) hold and if

(5) Fe Wta(a ),
(6) JKeWota(s(0)n %), ,KeW3a(o#(0)n %),

then there exists a unique solution K e W4+a(% ) of the linear equation
(7.20) such that on 5#(0), KT; = (K, and K1, u® = KT,.

We prove this result by approximating the coefficients and initial data
by analytic fields and showing that the analytic solutions obtained
converge to a field which is a solution of the given equations with the
given initial conditions. Let A, (n = 1,2,3,...) be a sequence of
analytic fields on %, which converge strongly to A in W4+a(%,). (A, is
said to converge strongly to A in W™ if A, — A],, converges to zero.)
Let B,, G, and F,, be analytic fields on %, which converge strongly
to B, Cand Frespectively in W3+¢(%,),and let (K, and | K, be analytic
fields on 3£(0)n % which converge strongly to (K and ,K in
Wata(#(0)n %) and Wa+a(3#(0)n %) respectively. For each value
of n there will be an analytic solution K, to (7.20) with the initial
values K, 1, = K, 1,, K, 1;.u* = K,I, By the corollary to lemma
7.4.8, |K,,, %, 44, Will be bounded as n—c0. Therefore by a theorem
of Riesz (1955) there will be a field K e W4+%(%, ) and a subsequence
K, of the K, such that for each b, 0 < b < 4+a, DK, converges
weakly to DPK. (A sequence of fields 1,1, on A4 is said to converge
weakly to I7; if for each C= field J7,,

f InIJJJIdO'»J‘ IIJJJIdO'.)
ks N

Since A,, B, and C, converge strongly to A, B and Cin W3%,),
sup |[A—A, |, sup|B-B,| and sup |G—C,| will converge to zero.
Thus L,.(K,.)will converge weakly to L(K). But L (K .)isequal to F,,.
which converges strongly to F. Therefore L(K) = F. On 3£(0)n %
K,1; and K1 ;4% will converge weakly to K!, and K, u* which
must therefore be equal to (K7, and ,KI; respectively. Thus K is a
solution of the given equation with the given initial conditions. By
proposition 7.4.5 it is unique. Since each K, satisfies the inequality in
lemma 7.4.6, K will satisfy it also. o
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7.5 The existence and uniqueness of developments for the
empty space Einstein equations
We shall now apply the results of the previous section to the Cauchy
problem in General Relativity. We shall first deal with the Einstein
equations for empty space (7% = 0), and shall discuss the effect of
matter in §7.7.
The reduced Einstein equations

B 4(¢%) = 8nTab— (Rob— 3 Rge) (7.42)

are quasi-linear second order hyperbolic equations. That is, they have
the form (7.20) where the coefficients A, B and G are functions of
K and DK (actually, in this case 4% = g2 ig a function of ¢*® and
not of ¢2, ). To prove the existence of solutions of these equations we
proceed as follows. We take some suitable trial field ¢’3® and use this
to determine the values of the coefficients A, B and Cin the operator £.
Using these values we then solve (7.42) as a linear equation with the
prescribed initial data and obtain & new field ¢“?>. We thus have a
map & which takes ¢’ into ¢”, and we show that under suitable condi-
tions this map has a fixed point (i.e. there is some ¢ such that
a(p) = ¢). This fixed point will be the desired solution of the quasi-
linear equation.

We shall take the background metric 8 to be a solution of the empty
space Einstein equations and choose the surfaces #(f)n %, and
% n %, to be spacelike in §. Then by lemma 7.4.1 there will be some
positive constants §, such that if for some value of @ > 0

" % llara < @as (7.43)

then the coefficients A’, B’ and C’ determined by ¢’ satisfy conditions
(1), (2) and (4) of lemma 7.4.6 for given values of @, and Q,. From
(7.41) one then has

16", Zilara < B ol #(0)0 Tasa+ 15, H1(0) 0 Z3.c)-

Thus the map a: W4a(% ) > W4te(% ) will take the closed ball W (r)
of radius r (r < {,) in W4e(%,) into itself provided that

o, 5#(0) 0 @HAHz <R
and 16, H£(0) N Xasq < 2 (7.44)

We shall show that « has a fixed point if (7.44) holds and if r is
sufficiently small.
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Suppose ¢, and ¢, are in W(r). The fields ¢,” = a(¢p,’) and
@b,” = a(¢p,’) satisfy E,'(¢,") =0, E)(¢hp,") =0 where E,” is the
Einstein operator with coefficients A,’, B," and C,’ determined by ¢,’.
Th ’ 4 [ 4 ’ ’ ”

n E\($) "~ ") = — By — By) (¢5"). (7.46)

Since the coefficients A,’, B, and C,’ depend differentiably on ¢, and
Dgp,’ for ¢b, in W(r), there will be some constant Q, such that on %,

|A'y— A% < QulP'1— 4l
B’y —B%| < Qul|éps— '] + D", — Deb'y)), (7.46)
|G~ C'a| < Qul|@'1~ @3] + D'y —Dgp’,)).

Therefore by lemmas 7.4.1 and 7.4.6,

[(B'\~E') (") < 3rQuP\PiL Py o(|@',— D] + [Dep’y — D).
We now apply lemma 7.4.4 to (7.45) to obtain the result

"1~ D2 U, |, < rQsllp' s — D2 Usl1s (7.47)

where @ is some constant independent of r. Thus for sufficiently
small r, the map o« will be contracting in the || [, norm (ie.
lle(hy) — (b 1 < [|P1— P-ll1) and the sequence a(¢p’,) will converge
strongly in W(% ) to some field ¢b. But by the theorem of Riesz some
subsequence of the am(¢p’;) will converge weakly to some field
& € W(r). Thus ¢ must equal ¢ and so be in W(r). Therefore a(¢p) will
be defined. Now

() — am ("), %Ly € rQsllPp—a™(')), % x-
As n->o0, the right-hand side tends to zero. This implies that

lec(p) — b, %, ||, = O and so that () = ¢. Since the map « is con-
tracting the fixed point is unique in W(r). We have therefore proved:

Proposition 7.5.1

If 8 is a solution of the empty space Einstein equations, the reduced
empty space Einstein equations have a solution ¢pe Wita(%,) if
[op> (00 X pye 8nd |y, H#(0)0 Z,,, are sufficiently small.
I, #£(0)n Z,|| 1o Will be bounded and so ¢ will be at least C2+a-. O

This solution will be locally unique even among solutions which are
not in W4%,).
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Proposition 1.5.2

Let ¢ be a C'—solution of the reduced empty space Einstein equations
with the same initial data on an open set ¥~ < J#(0)n %. Then = ¢
on a neighbourhood of ¥" in %,.

Since ¢ is continuous one can find a neighbourhood %’ of ¥ in % such
that the conditions of lemma 7.4.4 hold for A, B and C. As before one

has BE-¢) =~ (E-E)($). (7.48)
Similarly there will be some Qg such that
WE-E) (), £ )0 %illo < Qelld — P, ()0 X' ]
Applying lemma. 7.4.4 to (7.48) one obtains an inequality of the form
dz/dt < @, =,
where z= f : |-, )0 X, ], d.

Therefore ¢ = ¢ on %', . O

Proposition 7.5.1 shows that if one makes a sufficiently small
perturbation in the initial data of an empty space solution of the
Einstein equations one obtains a solution in a region %,. What one
wants however is to prove the existence of developments for any initial
data h® and y*t which satisfy the constraint equations on & three-
manifold &. To do this we proceed as follows. We take .# to be R4,
e to be the Euclidean metric and g to be the flat, Minkowski metric
(this is a solution of the empty space Einstein equations). In the usual
Minkowski coordinates z!, 22, 2® and 4 (2% = t) we take % to be such
that 8% n %, is spacelike and 3#(0)n % consists of the points for
which (21)2+ (22)2 + (22)% £ 1, 2% = 0. The idea now is that any metric
appears nearly flat if looked at on a fine enough scale. Therefore if one
maps & sufficiently small region of & onto J#(0)n %, one can use
proposition 7.5.1 and obtain a solution on %,. We then repeat this for
other portions of &% and join up the resulting solutions to form a
manifold # with metric ¢ which is a development of (&, w).

Let ¥] be a coordinate neighbourhood in & with coordinates #2, 32
and ¥ such that at p, the origin of the coordinates, the coordinate
components of % equal 8%, Let ¥,(f,) be the open ball of coordinate
radius f, about p. Define an imbedding 6,: ¥;(f,) > % by a* = f,"1y
(¢ = 1,2, 3), 2* = 0. By the usual law of transformation of a basis, the
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components of 6, k2 and 6, x*® with respect to the coordinates {z} are
Ji~2 times the components of A% and y*® with respect to the co-
ordinates {y}. We define new fields A’#> and x'?® on ¥} by h'® = f,2h%
and y'® = f,3x%. Then since h is continuous (in fact C**2) on & one
can make ¢g'®®—§ and g’ u° arbitrarily small on 3#(0)n % by
taking f, sufficiently small, where g’®® and g'® u° are defined from
h'e® and x'® in the manner of §7.3. The derivatives of g’® and g’® u°
in the surface 5#°(0) will also become smaller as f, is made smaller,
Thus [o’, #(0) n %][Ha and |,¢’, #(0)n Z[,, cen be made small
enough that proposition 7.5.1 can be applied and a solution for ¢’
obtained on %, . Then gf* = f,~2¢'?® will be a solution of the reduced
Einstein equations with the initial data determined by h%® and y®.
Similarly one can obtain a solution on %_, the part of % on whicht < 0.

One can now cover & by coordinate neighbourhoods ¥,(f,) of the
form #}(f,), map them by imbeddings 8, to neighbourhoods %, of the
form % and obtain solutions g, on %,. The problem now is to
identify suitable points in the overlaps to make the collection of the
%, into a manifold with a metric g¢. To do this we make use of the
harmonic gauge condition

¢bclc = gbclc'— %gbcgdegdclc =0. (7'49)

By the definition (7.3) of éI'%,, this is equivalent to g2 4%, = 0.
Therefore for any function z,

2.ap 9% = 25 g® — 013 2,9% = 2,4,9%°. (7.50)

If the background metric is the Minkowski metric and z is one of the
Minkowski coordinates 21, 22, z® and z#, the right-hand side of (7.50)
will vanish. Suppose now one has an arbitrary W4t+¢ Lorentz metric g
on & manifold . In some neighbourhood % < .# one can find four
solutions 21, 2%, z® and 2% of the linear equation

2,09% =0 (7.51)

which are such that their gradients are linearly independent at each
point of %. We may then define a diffeomorphism px: % Ny by
22=2% (a=1,2,3,4). Thm diffeomorphism will have the property
that the metric p, g% on A will satisfy the harmonic gauge condition
with respect to the Minkowski metric § on A, Thus if the metric gis
a solution of the Einstein equations on ., the metric 4, g will be
asolution of the reduced Einstein equations on #with the background
metric §.
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The procedure to identify points in the overlap between two neigh-
bourhoods %, and %, is therefore to solve (7.51) on %, for the coordi-
nates x4, 2% 2,° and z4* using the initial values for z;® and z4%,u®
determined by the overlap of the coordinate neighbourhoods 7, and
Y5 on . In fact xp‘,au“ =0 (=1, 2, 3) and zz4,u® = 1 where
u® = 9[dz,%is the unit vector in %, orthogonal to 5#(0) in the metric §.
Thus z,* = z,4though x4 willnot in general be equal to x, . By proposi-
tion 7.4.7. the coordinates z,* will be C'*+@- functions on %,. (In
proposition 7.4.7 the background metric with respect to which the
covariant derivatives are taken has to be C®+®—, Thus it cannot be
applied directly to (7.51), since the covariant derivatives are taken
with respect to g, which is only W4+%. However one can introduce
a 5+ background metric § and express (7.51) in the form

a9 + 2, B = 0,

where || indicates covariant differentiation with respect to . Proposi-
tion 7.4.7 can then be applied to this equation.)

Since the gradients of z,* are linearly independent ons#(0)n %,,
they will be linearly independent on some neighbourhood #”, of
H#(0) in %,. The metric p,g?* will be at least C1~ on u(%",) in
. Since it will obey the reduced empty space Einstein equations
on % 4in the background metric § and since it has the same initial data
on 6,4(¥, N ¥}), it must coincide with g, on some neighbourhood %4’ of
04(¥ N ¥}) in Uj. This shows that one may join together %", and %',
to obtain a development of the region ¥, U7, of &. Taking the
covering {7,} of & to be locally finite, one may proceed in a similar
fashion to join together the subsets of the other neighbourhoods (%}
to obtain a development of &, i.e. & manifold . with a metric g and
animbedding 6: & -> .4 such that g satisfies the empty space Einstein
equations and agrees with the prescribed initial data « on (%), which
is a Cauchy surfacefor A.If (#’, g’) is another development of (¥, w)
one can by a similar procedure establish a diffeomorphism x between
some neighbourhood of 6'(#”) in 4’ and some neighbourhood of 6(%)
in .4 such that u, g’ = gb. We have therefore proved:

The local Cauchy development theorem

If hev e Wi+e(F) and % e W3+3(&) satisfy the empty space constraint
equations there exist developments (4,g) for the empty space
Einstein equations such that g e W4+e(.#) and g € W4+3(5#) for any
smooth spacelike surface 3#. These developments are locally unique
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in that if (#', 8') is another W4+ development of (¥, w) then (4, 8)
and (', g’) are both extensions of some common development of
(&, w).

That ge Wi+e(5#) follows from lemma 7.4.6 since the surfaces of
constant f can be chosen arbitrarily. a

7.6 The maximal development and stability

We have shown that if the initial data satisfied the empty space
constraint equations one can find a development, i.e. one can construct
a solution some distance into the future and past of the initial surface.
In general, this development can be extended further into the future
and past to give a larger development of (¥, w). However we shall
show by an argument similar to that of Choquet-Bruhat and Geroch
(1969) that there is a unique (up to a diffeomorphism) development
(A, 8) of (¥,w) which is an extension of any other development
of (¥, w).

Recall that (), g,) is an extension of (,, 8,) if there is an imbed-
ding u: #,— M, such that u,g8, = ¢,, and such that 6,140, is the
identity map on &. Given a point ge.%, and a distance s one can
uniquely determine points p, € .4, and p, € .#, by going a distance s
along the geodesics orthogonal to 6,(%) and 6,(%) through 6,(g) and
6,(q) respectively. Since p(p,) must equal p,, the imbedding x must be
unique. One can therefore partially order the set of all developments
of (¥, w), writing (,, 8,) < (A, 8,) if (A, 8,) is an extension of
(Mo, 8,). If now {(A,, 8,)} is a totally ordered set (a set & is said to be
totally ordered if for every pair a, b of distinct elements of =, either
a €< borb < a) of developments of (&, w), one can form the manifold
A’ as the union of all the .#, where for (#,,8,) < (4}, 8,) each
P.€ M, is identified with p,4(p,)€#, where u.;: M, > #, is the
imbedding. The manifold .4’ will have an induced metric g’ equal to
Pox B, On each u.(A,) where p,: M, #' is the natural imbedding.
Clearly (', g’) will also be a development of (&, w); therefore every
totally ordered set has an upper bound, and so by Zorn’s lemma (see,
for example, Kelley (1965), p. 33) there is a maximal development
(A, 8) of (&, w) whose only extension is itself.

We shall now show that (.#, ) is an extension of every development
of (&, w). Suppose (4, g’) is another development of (&, w). By the
local Cauchy theorem, there exist developments of (<, w) of which
(A, 8) and (', ¢’) are both extensions. The set of all such common
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developments is likewise partially ordered and so again by Zorn’s
lemma there will be & maximal development (#”, g8”) with the imbed-
dings : M"—>.M and p': M"—>M', otc. Let A+ be the union of
M, A’ and A", where each p” €.4" is identified with j(p")e A and
W(p")e A If one can show that the manifold .+ is Hausdorff, the
pair (#+, g+) will be a development of (&, w). It will be an extension
of both (A, ) and (A’, 8"). However the only extension of (., g) is
(A, ) itself, and so (A, 8) must equal (#+, g*) and be an extension
of (A, 8").

Suppose that #+ were not Hausdorff. Then there exist points
pe(i(A") < M andp’e(u'(A")) < A’ such that every neighbour-
hood % of  has the property that x'(Z~Y(%)) contains p’. Now since
(A", 8") is a development, it will be globally hyperbolic as will its
image fi(#") in . Therefore the boundary of ji(.#") in A must be
achronal. Let ¥ be a timelike curve in ./ with future endpoint at 3.
Then p’ must be a limit point in #" of the curve 'i~}(y). In fact it
must be a future endpoint, since strong causality holds in (#’,8’).
"Thus the point p’ is unique, given #. Further, by continuity vectors
at p’ can be uniquely associated with vectors at . Thus one can find
normal coordinate neighbourhoods % of in # and %’ of p’ in 4" such
that under the map u’fi~! points of & n fi(.#") are mapped into points
of %' n u'(A") with the same coordinate values. This shows that the
set F of all ‘non-Hausdorff’ points of (i(.#"))" is open in (#(.#"))".
We shall suppose that.% is non-empty, and so obtain a contradiction.

If A is a past-directed null geodesic in A through pe &, then since
one can associate directions atp with directionsatp’, one can construct
a past-directed null geodesic A’ through »" in #” in the corresponding
direction. To each point of A n (f(#")) there will correspond & point
of X' n (' (-#"))" and so every point of A n (#(.#4"))" will be in& . Since
() is a Cauchy surface for .#, A must leave (ii(.#"))" at some point §.
There will be some point # €% in a neighbourhood of § such that there
is & spacelike surface 5# through # which has the property that
(37 —#) < ji(#"). There will be a corresponding spacelike surface
H' = (Wi H# —F)ur in A through the corresponding point r’.
The surfaces s and ' may be regarded as images of a three-
dimensional manifold 3 under imbeddings V:#—>.# and
y': o —> A such that y~1jiu'~1y is the identity map on J# — —1(3).
The induced metrics 7, (§) and ¥ ,(g’) on # will agree since 57 — 3
and 5’ —p’ are isometric. By the local Cauchy theorem, they will be
in W4+a(5#). Similarly the second fundamental forms will agree and
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be in Wa+a(3#). Neighbourhoods of 57 in .# and H#”’ in .4’ would be
W4+e developments of . By the local Cauchy theorem they must be
extensions of the same common development (4*,g*). Joining
(A*, 8% to (A", 8") one would obtain a larger development of (&, w),
of which (#, ) and (#’, 8’) would be extensions. This is impossible,
since (A", ") was the largest such common development. This shows
that .4+ must be Hausdorff, and so that (4, ) must be an extension
of (A, 8).
We have therefore proved:

The global Cauchy development theorem

If hot € WiHe(S) and x® € W) satisfy the empty space constraint
equations, there exists & maximal development (.#, 8) of the empty
space Einstein equations with g € W4+2(.#) and g € W4+e(5#) for any
smooth spacelike surface 3#°. This development is an extension of any
other such development.

We have so far only proved that this development is maximal among
W4tae developments. If a is greater than zero, there will also be
Wiate-l Wita—2 W4 developments which are extensions of the
W4+a dJevelopment. However, Choquet-Bruhat (1971) has pointed out
that these developments must all coincide with the W* development.
This is because one can differentiate the reduced Einstein equations
and then regard them as linear equations on the W* development, for
the first derivatives of g2°. Then using proposition 7.4.7 one can show
that go® is W2 on the W* development, if the initial data is W5. By
continuing in this way, one can show that if the initial data is C=, there
will be a C° development which will in fact coincide with the W*
development.

We have proved the existence and uniqueness of maximal develop-
ments only for W* or higher metrics. In fact, it is possible to prove the
existence of developments for W3 initial data, but we have not been
able to prove the uniqueness in this case. It may be possible to extend
the W4 maximal development either so that the metric does not remain
in W4, or so that 6(%) does not remain a Cauchy surface. In the latter
case, a Cauchy horizon occurs; examples of this were given in
chapter 6. On the other hand it may be that some sort of singularity
occurs, in which case the development cannot be extended with a
metric which is sufficiently differentiable to be interpreted physically.
In fact, theorem 4 of the next chapter will show that if & is compact
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and x%h,, is negative everywhere on %, then the development cannot
be extended to be geodesically complete with a C?~ metric, i.e. with
locally bounded curvature.

‘We have shown there is a map from the space of pairs of tensors
(heb, ¥2) on & which satisfy the constraint equations to the space of
equivalence classes of metrics g on a manifold .#, which, by proposi-
tion 6.6.8, is diffeomorphic to & x R, If two pairs (A%, ¥*®) and
(W', ¥'%) are equivalent under a diffeomorphism A: ¥ > (i.e.
Ay h® = B’ and A, x® = x'%) they will produce equivalent metrics g.
We thus have a map from equivalence classes of pairs (A%, ¥®) to
equivalence classes of metrics 8. Now h%? and x°° together have twelve
independent components. The constraint equations impose four rela-
tions between these, and the equivalence under diffeomorphisms may
be regarded as removing a further three arbitrary functions, leaving
five independent functions. One of these functions may be regarded as
specifying the position of 6(%) within the development (4, g). There-
fore maximal developments of the empty space Einstein equations
are specified by four functions of three variables.

One would like to show that the map from equivalence classes of
(h??, x°?) to equivalence classes of g is continuous in some sense. The
appropriate topology on the equivalence classes for this is the
Wr compact-open topology (cf. §6.4). Let 8 be a C” Lorentz metric on 4
and % be an open set with compact closure. Let ¥ be an open set in
Wr(%) and let O(%, V) be the set of all Lorentz metrics on .# whose
restrictions to % lie in V. The open sets of the W* compact open
topology on the space Z(#) of all W* Lorentz metrics on .4 are
defined to be the unions and finite intersections of sets of the form
O(U, V). The topology of the space Z,*(.#) of equivalence classes of
W* metrics on 4 is then that induced by the projection

n: L(M) > LHM)

which assigns a metric to its equivalence class (i.e. the open sets of
Z,x(A) are of the form 7(Q) where @ is open in Z,(#)). Similarly the
W7 compact open topology on the space Q,(¥) of all pairs (h%?, y2%)
which satisfy the constraint equations is defined by sets of the form
O, V, V') consisting of the pairs for which k%€ V and y® e V’ where
V and V' are open sets in W7(¥) and Wr—(¥) respectively. The C*
metrics on 4 form a subspace % () of the space & (A) of all
Lorentz metrics on 4. Since a C® metric is W7 for any r, one has the
W topology on %, (4). One can then define the C* or W* topology
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on %, («#) as that given by all the open sets in the W* topologies on
Z.(M) for every r. The C® topology on £ *(.#) and on Q. (&) are
defined similarly.

One would like to show that the map A, from the space Q,*(%) of
equivalence classes of pairs (h?, x®) to the space .%,*(A#) of equiva-
lence classes of metrics is continuous with the W* compact open
topology on both spaces. In other words, suppose one has initial data
kot e Wr(&) and yo*e Wr1(%) which givesrise to a solution g € Wr(.#)
on .#. Then if ¥ is a region of # with compact closure, and € > 0, one
would like to show there was some region % of & with compact closure
and some § > Osuch that |g'— 8, ¥ |, < eforallinitial data (h'e®, x'o?)

such that |h'—h, ‘Zyﬁ, < 46 and |}’ — %, |, < §6. This result may
be true, but we have been unable to prove it. What we can prove is
that this result holds if the metric is C+Y—, This follows immediately
from proposition 7.5.1, taking g to be the background metric and %
to be some suitable neighbourhood of J~(¥") n J*+(6(5)). In fact if one
examines lemma 7.4.6, one sees that the condition on the background
metric can be weakened from Cr+9~to W¢+D, but not to W*, since the
(r — 1)th derivatives of the Riemann tensor of the background metric
appear. (By the background metric being Wr+! we mean that it is
WrH+ with respect to a further C7+! background metric.) Thus the map
A, Q*(F)-—> L*(A) from the equivalence classes of initial data to
the equivalence classes of metrics will be continuous in the W’ compact
open topology at every W+! metric. Although the Wr+! metrics form
a dense set in the Wr metrics, there is a possibility that the map might
not be continuous at a W metric which was not also a W+ metric.
However oo+ 1 = o0 and so the map A,: Q* (F)—>L*(A) will be
continuous in the C* topology on both spaces.
One can express this result as:

The Cauchy stability theorem

Let (4, g) be the W5+ (0 < a < o0) maximal development of initial
data he W5te(%) and y € W4t3(5), and let ¥ be a region of J+(6(5))
with compact closure. Let Z be a neighbourhood of g in %, (¥") and
% be an open neighbourhood in 6(%) of J=(¥")n 6(&) with compact
closure. Then there is some neighbourhood Y of (h, %) in Qg (%) such
that for all initial data (h’, %) € Y satisfying the constraint equations,
there is a diffeomorphism u:.#' > .# with the properties

(1) 6-'ub' is the identity on 6-Y(%),




254 THE CAUCHY PROBLEM [7.6

(2) pr8’€Z,

where (', ') is the maximal development of (h’, ). O
Roughly speaking what this theorem says is that if the perturbation
of initial data on the Cauchy surface 6(%) is small on J ~¥)n 0(S),
then one gets a new solution which is near the old solution in ¥". In
fact the perturbation of the injtial data has to be small on a slightly
larger region of the Cauchy surface than J—(¥") n 6(), since the null
cones will be slightly different in the new solution and so ¥~ may not
lie in the Cauchy development of J~(¥") n 6(F).

7.7 The Einstein equations with matter
For simplicity we have so far considered the Einstein equations only
for empty space. However similar results hold when matter is present
providing that the equations governing the matter fields W,!; obey
certain physically reasonable conditions. The idea is to solve the
matter equations with the prescribed initial conditions in a given
space~time metric g’. One then solves the reduced Einstein equations
(7.42) as linear equations with the coefficients determined by g’ and
with the source term 7"2* determined by g’ and by the solution for the
matter fields. One thus obtains a new metric g” and repeats the
procedure with g” in place of g’. To show that this converges to a
solution of the combined Einstein and matter equations one has to
impose certain conditions on the matter equations. We shall require:
(a) if (¥} € WH(3) and {{¥} € We+e(3#’) are the initial data on
an achronal spacelike surface #° in a W4t metric g, there exists a
unique solution of the matter equations in a neighbourhood of 4 in
DH(#) with {¥)} € Wite(#') for any smooth spacelike surface #”,

and Wy = ¥ Yolyuw® =Yy onit;

() if {¥y} is a W5+ solution in the W5+ metric g on the set %,
then there exist positive constants ¢, and §, such that

z "‘I’({)-‘I’(i)» +"4+a QZ{"g -8, +"4+a

+ Z 0¥ )= 0¥ (0) N %II4+G+Z ¥ — 1 Fen (00 %Ham}

for any W4+a solution {¥'(;} in the metnc g’ such that
8 —8 %, )0 < ¢,

and

ga{"o‘l"m — 0¥, H(0) N %o+ [1¥ 00— 1F0» H(0)N q’ﬁam} <@y
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(¢c) the energy-momentum tensor 7}, is polynomial in
Yoy, Yo'y, and g®

Condition (a) is the local Cauchy theorem for the matter field in
a given space-time metric. Condition (b) is the Cauchy stability
theorem for the matter field under a variation of the initial conditions
and under a variation of the space-time metric g. If the matter
equations are quasi-linear second order hyperbolic equations, these
conditions may be established in a similar manner to that for the
reduced Einstein equations, providing that the null cones of the
matter equations coincide with or lie within the null cone of the space—
time metric g. In the case of the scalar field or the electromagnetic
potential which obey linear equations, these conditions follow from
proposition 7.4.7. One can also deal with a scalar field coupled to the
electromagnetic potential; one fixes the metric and the electro-
magnetic potential, solves the scalar field as a linear equation in that
metric and potential, and then solves the electromagnetic field in the
given metric with the scalar field as the source. Iterating this procedure
one can show that one converges on a set of the form %, to a solution
of the coupled scalar and electromagnetic equations in the given
metric, providing that the initial data are sufficiently small. One then
shows, by rescaling the metric and the fields, that for %, sufficiently
small (as measured by the space—time metricg) one can obtain asolution
for any suitable initial data. The same procedure willwork forany finite
number of coupled quasi-linear second order hyperbolic equations,
where the coupling does not involve derivatives higher than the first.

The equations of a perfect fluid are not second order hyperbolic, but
form a quasi-linear first ofder system. (For the definition of a first order
hyperbolic system, see Courant and Hilbert (1962), p. 577.) Similar
results can be obtained for such systems providing that the ray cone
coincides with or lies within the null cone of the space-time with
metric 8. The requirement that the matter equations should be second
order hyperbolic equations or first order hyperbolic systems with their
cones coinciding with or lying within that of the space-time metric g,
may be thought of as a more rigorous form of the local causality
postulate of chapter 3.

With the conditions (a), (b) and (¢) one can establish propositions
7.5.1 and 7.5.2 for the combined reduced Einstein’s equations and the
matter equations; from these, the local and global Cauchy develop-
ment theorems and the Cauchy stability theorem follow.




8
Space-time singularities

In this chapter, we use the results of chapters 4 and 6 to establish some
basic results about space-time singularities. The astrophysical and
cosmological implications of these results are considered in the next
chapters.

In §8.1, we discuss the problem of defining singularities in space~
time. We adopt b-incompleteness, a generalization of the idea of
geodesic incompleteness, as an indication that singular points have
been cut out of space-time, and characterize two possible ways in
which b-incompleteness can be associated with some form of curvature
singularity. In §8.2, four theorems are given which prove the existence
of incompleteness under a wide variety of situations. In §8.3 we give
Schmidt’s construction of the b-boundary which represents the
singular points of space~time. In §8.4 we prove that the singularities
predicted by at least one of the the theorems cannot be just a dis-
continuity in the curvature tensor. We also show that there is not only
one incomplete geodesic, but a three-parameter family of them. In
§8.5 we discuss the situation in which the incomplete curves are totally
or partially imprisoned in a compact region of space-time. This is
shown to be related to non-Hausdorff behaviour of the b-boundary.
We show that in a generic space~time, an observer travelling on one of
these incomplete curves would experience infinite curvature forces.
We also show that the kind of behaviour which occurs in Taub-NUT
space cannot happen if there is some matter present.

8:1 The definition of singularities

By analogy with electrodynamics one might think it reasonable to

define a space-time singularity as a point where the metric tensor was

undefined or was not suitably differentiable. However the trouble with

this is that one could simply cut out such points and say that the

remaining manifold represented the whole of space~time, which would

then be non-singular aceording to this definition. Indeed, it would seem
[ 256 ]
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inappropriate to regard such singular points as being part of space-
time, for the normal equations of physics would not hold at them and
it would be impossible to make any measurements. We therefore
defined space-time in §3.1 as a pair (., 8) where the metric g is
Lorentzian and suitably differentiable and we ensured that no regular
points were omitted from the manifold .# along with the singular
points by requiring that (#,g) could not be extended with the
required differentiability.

The problem of defining whether space~time has a singularity now
becomes one of determining whether any singular points have been
cut out. One would hope to recognize this by the fact that space—time
was incomplete in some sense.

In the case of a manifold .# with a positive definite metric g, one
can define a distance function p(z, ¥) which is the greatest lower bound
of the length of curves from x to y. The distance function p(z,y) is
a metric in the topological sense; that is, a basis for the open sets of A
is provided by the sets #(x, r) consisting of all points y € 4 such that
p(,y) < r. The pair (A, g) issaid to be metrically complete (m-complete)
if every Cauchy sequence with respect to the distance function p
converges to a point in . (A Cauchy sequence is an infinite sequence
of points z,, such that for any ¢ > 0 there is a number N such that
p(&,,x,) < e whenever n and m are greater than IV.) An alternative
formulation is that (.#, g) is m-complete if every C! curve of finite
length has an endpoint in the sense of §6.2 (note that the curve need
not be C! at the endpoint). It therefore follows that m-completeness
implies geodesic completeness (g-completeness), that is every geodesic
can be extended to arbitrary values of its affine parameter. In fact it
can be shown (see Kobayashi and Nomizu (1963)) that g-completeness
and m-completeness are equivalent for a positive definite metric.

A Lorentz metric, on the other hand, does not define a topological
metric and so one is left only with g-completeness. One can distinguish
three kinds of g-incompleteness: that of timelike, null and spacelike
geodesics. If one cuts a regular point out of space-time, the resulting
manifold is incomplete in all three ways and so one might hope that
a space—time which was complete in one of the above senses would also
be complete in the other two. Unfortunately this is not necessarily so
(Kundt (1963)), as is shown by the following example given by Geroch
(1968b). Consider two-dimensijonal Minkowski space with coordinates
z and ¢t and metric g,;,. Define a new metric §,, = Q?%,, where the
positive function Q has the properties:
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(1) Q = 1 outside the region between the vertical lines x = — 1 and
x=+1;

(2) Q is symmetric about the t-axis, that is, Q(t, %) = Q(, —x);

(3) on the t-axis, t2Q 0 as t->co.

By (2) the t-axis is a timelike geodesic which by (3) is incomplete as
t- 0. However every null and spacelike geodesic must leave and not
re-enter the region between = — 1 and 2 = + 1. Therefore by (1) the
space is null and spacelike complete. In fact one can construct
examples which are incomplete in any of the three possible ways and
complete in the remaining two.

Timelike geodesic incompleteness has an immediate physical signifi-
cance in that it presents the possibility that there could be freely
moving observers or particles whose histories did not exist after (or
before) a finite interval of proper time. This would appear to be an
even more objectionable feature than infinite curvature and so it
seems appropriate to regard such a space as singular. Although the
affine parameter on a null geodesic does not have quite the same
physical significance as proper time does on timelike geodesics, one
should probably also regard a null geodesically incomplete space-time
as singular both because null geodesics are the histories of zero rest-
mass particles and because there are some examples (such as the
Reissner-Nordstrom solution, §5.5) which one would think of as
singular but which are timelike but not null geodesically complete.
As nothing moves on spacelike curves, the significance of spacelike
geodesic incompleteness is not so clear. We shall therefore adopt the
view that timelike and null geodesic completeness are minimum condsi-
tions for space~time to be considered singularity-free. Therefore if a
space-time is timelike or null geodesically incomplete, we shall say
that it has a singularity.

The advantage of taking timelike and/or null incompleteness as
being indicative of the presence of a singularity is that on this basis
one can establish a number of theorems about their occurrence. How-
ever, the class of timelike and for null incomplete space-times does not
include all those one might wish to consider as singular in some sense.
For example Geroch (1968b) has constructed a space—time which is.
geodesically complete but which contains an inextendible timelike
curve of bounded acceleration and finite le'ngth. An observer with
a suitable rocketship and a finite amount of fuel could traverse this
curve. After a finite interval of time he would no longer be represented
by a point of the space-time manifold. If one is going to say that there




8.1] THE DEFINITION OF SINGULARITIES 259

is a singularity in & space—time in which a freely falling observer comes
to an untimely end, one should presumably do the same for an
observer in a rocketship. What one needs is some generalization of the
concept of an affine parameter to all C! curves, geodesic or non-
geodesic. One could then define a notion of completeness by requiring
that every C? curve of finite length as measured by such a parameter
had an endpoint. The idea we are going to use seems to have been first
suggested by Ehresman (1957), and has been reformulated in an
elegant manner by Schmidt (1971).

Let A() be a C! curve through pe 4 and let {E;} (¢ = 1, 2,3,4) be
& basis for 7},. One can parallelly propagate {E;} along A(¢) to obtain
a basis for 7)q for each value of . Then the tangent vector
V = (8/0t), can be expressed in terms of the basis as V = Vi(t) E;, and
one can define a generalized affine parameter u on A by

u=| (S Vivhtar
P i

The parameter u depends on the point p and the basis {E,;} at p. If {E,.)}
is another basis at p, then there is some non-singular matrix 4,7 such

that E,= 3 A/E,.
yz

As {E.} and {E,} are parallelly transported along A(t), this relation is
maintained with constant 4. Thus

Vi) = SAF V).
i
Since 4,7 is a non-singular matrix, there is some constant C > 0 such
that CX ViVi < 3 VIV < Oy Vi,
i v 7

Thus the length of a curve A is finite in the parameter « if and only if
itis finite in the parameter «’. If A is & geodesic curve then u is an affine
parameter on A, but the beauty of the definition is that u can be defined
on any C? curve. We shall say that (#,g) is b-complete (short for
bundle complete, see §8.3) if there is an endpoint for every C! curve
of finite length as measured by a generalized affine parameter. If the
length is finite in one such parameter it will be finite in all such
parameters, so one loses nothing by restricting the bases to be ortho-
normal bases. If the metric g is positive definite, the generalized affine
parameter defined by an orthonormal basis is arc-length and so
b-completeness coincides with m-completeness. However b-complete-
ness can be defined even if the metric is not positive definite; in fact it
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can be defined providing there is a connection on .#. Clearly
b-completeness implies g-completeness, but the example quoted
shows that the converse is not true.

We shall therefore define a space-time to be singularity-free if it is
b-complete. This definition conforms with the requirement made
above, that timelike and null geodesic completeness are minimum
conditions for a space-time to be considered singularity-free. One
might possibly wish to weaken this condition slightly, to say that
space-time i8 singularity-free it it is only non-spacelike b-complete,
i.e. if there is an endpoint for all non-spacelike C! curves with finite
length as measured by a generalized affine parameter. However this
definition would appear rather awkward in the bundle formulation of
b-completeness which we shall give in §8.3. In fact each of the theorems
we give in § 8.2 implies that (., g) is timelike or null g-incomplete and
hence has a singularity by both the above definitions.

One feels intuitively that a singularity ought to involve the curva-
ture becoming unboundedly large near a singular point. However
since we have excluded singular points from dur definition of space-
time, difficulty arises in defining both ‘near’ and ‘unboundedly large’.
One can say that points on a b-incomplete curve are near the singu-
larity if they correspond to values of a generalized affine parameter
which is near the upper bound of that parameter. ‘Unboundedly
large’ is more difficult, since the size of components of the curvature
tensor depend on the basis in which it is measured. One possibility is
to look at scalar polynomials in g, 7,404, a0d Bg.q- We shall say that
a b-incomplete curve corresponds to a scalar polynomial curvature
singularity (s.p. curvature singularity) if any of these scalar poly-
nomials is unbounded on the incomplete curve. However, with a
Lorentz metric these polynomials do not fully characterize the
Riemann tensor since, as Penrose has pointed out, in plane-wave
solutions the scalar polynomials are all zero but the Riemann tensor
does not vanish. (This is similar to the fact that a non-zero vector may
have zero length.) Thus the curvature might become very large in
some sense even though the scalar polynomials remained small.
Alternatively one might measure the components of the curvature -
tensor in a basis that was parallelly propagated along a curve. We shall
say that a b-incomplete curve corresponds to a curvature singularity
with respect to a parallelly propagated basis (a p.p. curvature singu-
larity) if any of these components is unbounded on the curve. Clearly
an 8.p. curvature singularity implies a p.p. curvature singularity.
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One might expect that in any physically realistic solution, a
b-incomplete curve would correspond both to an s.p. and a p.p.
curvature singularity. However an example of a solution where this
does not seem to be true is provided by Taub-NUT space (§5.8). Here
the incomplete geodesics are totally imprisoned in a compact neigh-
bourhood of the horizon. As the metric is perfectly regular on this
compact neighbourhood, the scalar polynomials in the curvature
remain finite. Because of the special nature of this solution, the com-
ponents of the curvature in a parallelly propagated basis along the
imprisoned geodesics remains bounded. Since the imprisoned geo-
desics are contained in a compact set, one could not extend the
manifold 4 to a larger four-dimensional Hausdorff paracompact
manifold ’, in which the incomplete geodesics could be continued.
Thus there is no possibility of the incompleteness having arisen from
the cutting out of singular points. Nevertheless it would be unpleasant
to be moving on one of the incomplete timelike geodesics for although
one’s world-line never comes to an end and would continue to wind
round and round inside the compact set, one would never get beyond
a certain time in one’s life. It would, therefore, seem reasonable to say
that such a space-time was singular even though there is no p.p. ors.p.
curvature singularity. By lemma 6.4.8, such totally imprisoned in-
completeness can only occur if strong causality is violated. In §8.5 we
shall show that in a generic space-time, a partially or totally im-
prisoned b-incomplete curve will correspond to a p.p. curvature
singularity. We shall also show that the Taub—-NUT kind of totally
imprisoned incompleteness cannot occur if there is some matter
present.

8.2 Singularity theorems

In §5.4 it was shown that there would be singularities in spatially
homogeneous solutions under certain reasonable conditions. Similar
theorems can be obtained for a number of other types of exact sym-
nmetry. Such results, although suggestive, do not necessarily have any
physical significance because they depend on the symmetry being
exact and clearly in any physical situation this will not be the case. It
was therefore suggested by a number of authors that singularities
were simply the result of symmetries and that they would not occur in
general solutions. This view was supported by Lifshitz, Khalatnikov
and co-workers who showed that certain classesof solutions with space-
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like singularities did not have the full number of arbitrary functions
expected in a general solution of the field equations (see Lifshitz and
Khalatnikov (1963) for an account of this work). This presumably
indicates that the Cauchy data which gave rise to such singularities
is of measure zero in the set of all possible Cauchy data and so should
not occur in the real universe. However more recently Belinskii,
Khalatnikov and Lifshitz (1970) have found other classes of solutions
which seem to have the full number of arbitrary functions and to
contain singularities. They have therefore withdrawn the claim that
singularities do not occur in general solutions. Their methods are
interesting for the light they shed on the possible structure of singu-
larities but it is not clear whether the power series which are used will
converge. Neither does one obtain general conditions which imply that
a singularity is inevitable. Nevertheless we may take their results as
supporting our view that the singularities implied by the theorems of
this section involve infinite curvature in general.

The first theorem about singularities which did not involve any
assumption of symmetry was given by Penrose (1965c). It was
designed to prove the occurrence of a singularity in a star which
collapsed inside its Schwarzschild radius. If the collapse were exactly
spherical, the solution could be integrated explicitly and a singularity
would always occur. However it is not obvious that this would be the
case if there were irregularities or a small amount of angular
momentum. Indeed in Newtonian theory the smallest amount of
angular momentum could prevent the occurrence of infinite density
and cause the star to re-expand. However Penrose showed that the
situation was very different in General Relativity: once the star had
passed inside the Schwarzschild surface (the surface » = 2m) it could
not come out again. In fact the Schwarzschild surface is defined only
for an exactly spherically symmetric solution but the more general
criterion used by Penrose is equivalent for such a solution and is
applicable also to sclutions without exact symmetry. It is that there
should exist a closed trapped surface J . By this is meant a C? closed
(i.e. compact, without boundary) spacelike two-surface (normally, S?)
such that the two families of null geodesics orthogonal to I are con--
verging at J (i.e. 18,59 and ,9,,9% are negative, where ,{,, and .9,
are the two null second fundamental forms of 7. In the following
chapters we shall discuss the circumstances under which such a surface
would arise.) One may think of  as being in such a strong gravita-
tional field that even the ‘outgoing’ light rays are dragged back and
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are, in fact, converging. Since nothing can travel faster than light, the
matter within J is trapped inside a succession of two-surfaces of
smaller and smaller area and so it seems that something must go
wrong. That this is so is shown rigorously by Penrose’s theorem:

Theorem 1
Space-time (4, g8) cannot be null geodesically complete if:

(1) R,,K2K® > 0 for all null vectors K¢ (cf. §4.3);
(2) there is a non-compact Cauchy surface 5 in #;
(3) there is a closed trapped surface 7 in 4.

Note: the method of proof is to show that the boundary of the future
of 7 would be compact if .# were null geodesically complete. This is
then shown to be incompatible with 5# being non-compact.

Progf. The existence of a Cauchy surface implies that .# is globally
hyperbolic (proposition 6.6.3) and therefore causally simple (proposi-
tion 6.6.1). This means that the boundary of J+(7") will be E+(7") and
will be generated by null geodesic segments which have past endpoints
on J and which are orthogonal to . Suppose .# were null geo-
desically complete. Then by conditions (1) and (3) and proposition
4.4.6 there would be a point conjugate to J along every future-
directed null geodesic orthogonal to J within an affine distance 2¢c!
where c is the value of ,£,,9% at the point where the null geodesic
intersects 7. By proposition 4.5.14, points on such a null geodesic
beyond the point conjugate to J would lie in I+(7). Thus each
generating segment of J+(7") would have a future endpoint at or
before the point conjugate to J. At J one could assign, in a con-
tinuous manner, an affine parameter on each null geodesic orthogonal
to . Consider the continuous map f:.7 x[0,b] x @—>.# (Q is the
discrete set 1, 2) defined by taking a point p€J an affine distance
v€[0,b] along one or other of the two future-directed null geodesics
through p orthogonal to 7. Since J is compact, there will be some
minimum value ¢, of (—;£,,9%) and (—84,9%%). Then if by = 2¢,71,
BT x[0,by]x Q) would contain J+(Z). Thus J+(Z) would be
compact being a closed subset of a compact set. This would be possible
if the Cauchy surface # were compact because then J+(7) could
meet up round the back and form a compact Cauchy surface homeo-
morphic to J# (figure 49). However there is clearly going to be trouble
if one demands that 5# is non-compact. To show this rigorously one
can use the fact (see §2.6) that .# admits a past-directed C! timelike
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FIGURE 49. A two-dimensional section of a geodesically complete space with
a compact Cauchy surface #. The two-sphere J has a compact boundary
JHT) to its future J+(T), as the outgoing null geodesics from J meet up
round the back of the cylinder.

vector field. Each integral curve of this field will intersect J# (as it is
a Cauchy surface) and will intersect J+(") at most once. Thus they
will define a continuous one-to-one map a: J+(7)-»> . If JHT ) were
compact, its image a(J+(7")) would also be compact and would be
homeomorphic to J+(7"). However as ## is non-compact, a(J+(7))
could not contain the whole of 5# and would therefore have to have
a boundary in #. This would be impossible since by proposition 6.3.1,
JHT), and therefore a(J+(7)), would be a three-dimensional mani-
fold (without boundary). This shows that the assumption that .4 is
null geodesically complete (which we made in order to prove J+(7)
compact) is incorrect. a

Condition (1) of this theorem (that B, K2K? > 0for any null vector K)
was discussed in §4.3. It will hold no matter what value the value of
the constant A, provided that the energy density is positive for every
observer. It will be shown in chapter 9 that condition (3) (that there is
a closed trapped surface) should be satisfied in at least some region
of space~time. This leaves condition (2) (that there is a non-compact
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spacelike surface S# which is a Cauchy surface) to be discussed. By
proposition 6.4.9, the existence of spacelike surfaces is guaranteed
provided one assumes stable causality. That the spacelike surface 5#
be non-compact is not too serious a restriction since the only place it
was used was to show that a(J+(7)) could not be the whole of .
This could also be shown if, instead of taking 4# to be non-compact,
one required that there exist a future-directed inextendible curve
from 5 which did not intersect J+(7"). In other words, the theorem
would still hold even if # were compact, provided there was some
observer who could avoid falling into the collapsing star. This might
not be possible if the whole universe were collapsing also, but in such
a case one would expect singularities anyway as will be shown
presently. The real weakness of the theorem is the requirement that
 be a Cauchy surface. This was used in two places: first, to show that
A was causally simple which implied that the generators of J*+(J")
had past endpoints on .7, and second, to ensure that under the map o
every point of J+(7") was mapped into a point of #°. That the Cauchy
surface condition is necessary is shown by an example due to Bardeen.
This has the same global structure as the Reissner—~Nordstrém solution
except that the real singularities at r = 0 have been smoothed out so
that they are just the origins of polar coordinates. The space-time
obeys the condition R, K®K? > 0 for any null but not timelike vector
K, and contains closed trapped surfaces. The only way in which it fails
to satisfy the conditions of the theorem is that it does not have
a Cauchy surface.

It therefore seems that what the theorem tells us is that in a col-
lapsing star there will occur either a singularity or a Cauchy horizon.
This is a very important result since in either case our ability to pre-
dict the future breaks down. However it does not answer the question
of whether singularities occur in physically realistic solutions. To
decide this we need a theorem which does not assume the existence of
Cauchy surfaces. One of the conditions of such a theorem must be that
R, K°K? > 0 for all timelike as well as null vectors, since failure to
obey this condition is the only way in which Bardeen’s example is
unreasonable. The theorem we shall give below requires this condition
and also the chronology condition that there be no closed timelike
curves. On the other hand it is applicable to a wider class of situations
since the existence of a closed trapped surface is now only one of three
possible conditions. One of these alternative conditions is that there
should be a compact partial Cauchy surface, and the other is that there
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Past light cone

F1GUrE 50. A point p whose past light cone starts reconverging.

should be a point whose past (or future) light cone starts converging
again (figure 50). The first of these other conditions is satisfied in
a spatially closed solution while the second is closely related to the
existence of a closed trapped surface but is in & form which is more
convenient for some purposes; for in the case in which the light cone
is our own past light cone, one can directly determine whether this
condition is satisfied. In the last chapter it will be shown that recent
observations of the microwave background indicate that it is.
The precise statement is:

Theorem 2 (Hawking and Penrose (1970))
Space-time (A, g) is not timelike and null geodesically complete if:

(1) R, KeK® > 0 for every non-spacelike vector K (cf. §4.3).

(2) The generic condition is satisfied (§4.4), i.e. every non-spacelike
geodesic contains a point at which K, Ry.;. K K°Ké + 0, where K is
the tangent vector to the geodesic.

(3) The chronology condition holds on 4 (i.e. there are no closed
timelike curves).

(4) There exists at least one of the following:

(i) & compact achronal set without edge,
(ii) a closed trapped surface,




8.2] SINGULARITY THEOREMS 267

(iii) & point p such that on every past (or every future) null geodesic
from p the divergence 8 of the null geodesics from p becomes negative
(i.e. the null geodesics from p are focussed by the matter or curvature
and start to reconverge).

Remark. An alternative version of the theorem is that the following
three conditions cannot all hold:

(a) every inextendible non-spacelike geodesic contains a pair of
conjugate points;

(b) the chronology condition holds on #;

(c) thereis an achronal set%” such that E+(%) or E—(%) is compact.
(We shall say that such a set is, respectively, future trapped or past
trapped).

In fact it is this form of the theorem that we shall prove. The other
version will then follow since if # were timelike and null geodesically
complete, (1) and (2) would imply (a) by propositions 4.4.2 and 4.4.5,
(3) is the same as (b), and (1) and (4) would imply (c), since in case (i)
& would be the compact achronal set without edge and

EHS) = E~(¥) =

in cases (ii) and (ili) & would be the closed trapped surface and the
point p respectively, and by propositions 4.4.4, 4.4.6, 4.5.12 and
4.5.14 E+(&) and B-(%) would be compact respectively, being the
intersections of the closed sets J+(%) and J—(&) with compact sets
consisting of all the null geodesics of some finite length from .

Proof. As the proof is rather long, we shall break it up by first estab-
lishing a lemma and corollary. We note that by an argument similar
to that of proposition 6.4.6, (a) and (b) imply that strong causality
holds on 4.

Lemma 8.2.1

If & is a closed set and if the strong causality condition holds on
J+&) then H+(E+(&)) is non-compact or empty (figure 51).

By lemma 6.3.2, through every point g€J+(%) ~& there is a past-
directed null geodesic segment lying in J+(%) which has a past end-
point if and only if g€ E+{&). (Note that as we no longer assume the
existence of a Cauchy surface, # may not be causally simple and so
JH+(&) — E+(&) may be non-empty.) Therefore if ge HF)— —EX&),
there is a past-inextendible null geodesic through ¢ which liesin JHS)
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Identify

Identify

HHEYS)

FIcURE 51. A future trapped set % ; null lines are at + 45°, three lines have been
identified and the points g are at infinity. The achronal sets E+.%), JHS) and
HY(E+)) are shown. A future-inextendible timelike curve y € DH E+(5)) is
shown.

and so does not intersect I—(J+(%)). From lemma, 6.6.4 it then follows
that g is not in D+(J+(%))— H+(J+(¥)). Hence

DHEHS))~ HHEHS)) = DHJH)) - HHJ +¥))
and 'HHYE+(&)) < HHJHP)).

Now suppose that H+(E*($)) was non-empty and compact. Then
it could be covered by a finite number of local causality neighbour-
hoods ;. Let p, be a point of J+(&)n (%, — D+(J*+(%))]. Then from
2, there would be a past-inextendible non-spacelike curve A, which did
not intersect either J+() or D+(E+(¥)). Since the %, have compact
closure, A; would leave %,. Let ¢, be a point on A, not in %;. Then since
g, €J () there would be a non-spacelike curve u, from ¢, to %. This
curve would intersect D+(E+(%)) and hence would intersect some %,
other than %, (say, %,). Then let p, be a point of u,  [#, — DHJ+(S))]
and continue as before.

This leads to a contradiction since there were only a finite number
of the local causality neighbourhoods #,, and one could not return to
an earlier %; because no non-spacelike curve can intersect a %, more
than once. Thus H+(E+(%)) must be non-compact or empty. O

Corollary

If & is a future trapped set, there is a future-inextendible timelike
curve y contained in DHEH5)).
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Put a timelike vector field on 4. If every integral curve of this field
which intersected B+(5’) also intersected HHE+(%¥)) they would
define a continuous one-one mapping of E+(%) onto H+(E+()) and
hence H+(E+(%)) would be compact. The intersection of I+(%) with
a curve which does not intersect H+(E+(%)) gives the desired curve y
(figure 51 indicates one possible situation). O

Now consider the compact set # defined as E+(%)n J-(¥). Since
v was contained in int I+(E+(%)), E~(¥) would consist of & and
a portion of J-(y). Since ¥ was future inextendible, the null geodesic
segments generating J ~(y) could have no future endpoints. But by (a)
every inextendible non-spacelike geodesic contains a pair of conjugate
points. Thus by proposition 4.5.12, the past-inextendible extension »’
of each generating segment » of J~(y) would enter I—(y). There would
be a past endpoint for v at or before the first point p of "0 I—(y).
As I-(y) would be an open set, a neighbourhood of p would contain
pointsin J—(y) on neighbouring null geodesics. Thus the affine distance
of the points p from & would be upper semi-continuous, and E—(%)
would be compact being the intersection of the closed set J—(y) with
a compact set generated by null geodesic segments from % of some
bounded affine length. It would then follow from the lemma that
there would be a past-inextendible timelike curve A contained in
int D—(E~(%)) (figure 52). Let a,, be an infinite sequence of points on A
such that:

@) ap1€l7(ay),

(IT) no compact segment of A contains more than a finite number
of the a,,.

Let b, be a similar sequence on ¥ but with I+ instead of I~ in (I) and
with b, € I*+(a,).

As y and A were contained in the globally hyperbolic set
int D(E—(#)) (proposition 6.6.3), there would be a non-spacelike geo-
desic x,, of maximum length between each a, and the corresponding
b, (proposition 6.7.1). Each would intersect the compact set E+(%).
Thus ‘there would be a ge E+(%”) which was a limit point of the
#.0 E+(%) and a non-spacelike direction at g which is a limit of the
directions of the x,,. (The point g and the direction at g define a point
of the bundle of directions over .#. Such a limit point exists because
the portion of the bundle over E+(5) is compact.) Let x4, be a
subsequence of the y, such that ', n E+(&) converges to g and such
that the directions of the x', at E+(5) converge to the limit direction.
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Fieure 52. As figure 51, but with three further lines identified. & is the set
EHZ)nT-{y); the points p are past endpoints of null geodesic generating
segments of E~(5). The curve A is a past-inextendible timelike curve contained
in int D~(E~(%)).

(More precisely, the points defined by the ', in the bundle of directions
over E+($) converge to the limit point.) Let % be the inextendible
geodesic through ¢ in the limit direction. By (a) there would be
conjugate points 2 and y on g with y € I+(z). Let ’ and %’ be on x to
the past and future of x and y respectively. By proposition 4.5.8, there
is some ¢ > 0 and some timelike curve o« from z’ to ' whose length
is € plus the length of 4 from 2’ to y'. Let % and ¥” be convex normal
coordinate neighbourhoods of ' and g’ respectively, each of which
contains no curve of length }e. Let 2" and y” be ne and ¥na
respectively. Let 2',, and ¢, be points on z’, converging to =’ and y’
respectively. For n sufficiently large, the length 4, from z’,, to %', will
be less than e plus the length of x from 2’ to y’. Also for » sufficiently
large, ', and y’,, would be in I-(z”", %) and I*(y",¥") respectively.
Then going from z’, to 2", along « to y”, and from y” to y’, would
give a longer non-spacelike curve than x’, from ', to ¥ . But by
property (II), a’, would lie to the past of 2',, on 4, and b’,, would lie
to the future of ', on x’,, for » large enough. Therefore 4, ought to
be the longest non-spacelike curve from z',, to %',,. This establishes the
desired contradiction. o
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While this theorem establishes the existence of singularities under
very general conditions, it has the disadvantage of not showing
whether the singularity is in the future or the past. In case (ii) of
condition (4), when there is a compact spacelike surface, one has no
reason to believe that it should be in the future rather than in the past,
but in case (i) when there is a closed trapped surface, one would expect
the singularity to be in the future, and in case (iii) when the past null
cone starts reconverging, one would expect the singularity to be in the
past. One can show that there is a singularity in the past if condition
(i1i) is strengthened somewhat to say that all past-directed timelike
as well as null geodesics from p start to reconverge within a compact
region in J~(p).

Theorem 3 (Hawking (1967))
If (1) R, K2K® > 0 for every non-spacelike vector K (cf. §4.3);

(2) the strong causality condition holds on (., g);

(3) there is some past-directed unit timelike vector W at a point »
and a positive constant b such that if V is the unit tangent vector to
the past-directed timelike geodesics through p, then on each such
geodesic the expansion 6 = V., of these geodesics becomes less than
— 3cfb within a distance bjc from p, where ¢ = — W*},
then there is a past incomplete non-spacelike geodesic through p.

Let K¢ be the parallelly propagated tangent vector to the past-
directed non-spacelike geodesics through p, normalized by KeW, = — 1.
Then for the timelike geodesics through p, K% =c"1V2 and so
Ke., = c71V4, .. Since K¢, , is continuous on the non-spacelike geo-
desics, it will become less than — 3/b on the null geodesics through p
within an affine distance b. If Y,, Y,, Y, and Y, are a pseudo-ortho-
normal tetrad on these null geodesics with Y, and Y, spacelike unit
vectors and Y, and Y, null with ¥,2Y,, = —1 and Y, = K, the expan-
sion 8 of the null geodesics through p is defined as

6= Ka;b(yla YP+Y2Y)
= Ka: ot Ka;b(yaa de + Yda Yab)-
The second term is zero because K¢ is parallelly propagated. The third
term can be expressed as #(K,K*?).,Y;, which is less than zero as
K, K¢ is zero on the null geodesics and negative for timelike geodesics.

This shows that § will become less than — 3/b within an affine distanceb
along each null geodesic from p. Thus if all past-directed null geodesics
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from p were complete, E~(p) would be compact. Any point
geJ~(E-(p))—E-(p) would be in I-(p). Thus it could not be in
JH(E~(p)) since E~(p) is achronal. Therefore
JHE~(p))n J~(E~(p)) = E~(p)

and so would be compact. Then by proposition 6.6.7, D—(E—(p)) would
be globally hyperbolic. By proposition 6.7.1, each point r € D~(E~(p))
would be joined to p by a non-spacelike geodesic which did not contain
any point conjugate to p between r and p. Thus by proposition 4.4.1,
D~(E-(p)) would be contained in exp, (¥) where F is the compact
region of 7, consisting of all past-directed non-spacelike vectors K@
such that KW, < —2b. If all past non-spacelike geodesics from p were
complete, exp,, (K?) would be defined for every K° € F, and 50 exp,, (F)
would be compact being the image of a compact set under a continuous
map. However by the corollary to lemma 8.2.1, D~(E~(p)) contains
a past-inextendible timelike curve. By proposition 6.4.7 this could not
be totally imprisoned in the compact set exp,(F), therefore the
assumption that all past-directed non-spacelike geodesics from p are
complete must be false. a

Theorems 2 and 3 are the most useful theorems on singularities since
it can be shown that their conditions are satisfied in a number of
physical situations (see next chapter). However it might be that what
occurred was not a singularity but a closed timelike curve, violating
the causality conditions. This would be much worse than the mere
breakdown of prediction which was the alternative after theorem 1,
and it is our personal opinion that it would be physically more objec-
tionable than a singularity. Nevertheless one would like to know
whether such causality violations would prevent the occurrence of
singularities. The following theorem shows that they cannot in certain
situations. This means that we have to take singularities seriously and
it gives us confidence that, in general, causality breakdowns are not
the way out.

Theorem 4 (Hawking (1967))
Space-time is not timelike geodesically complete if:

(1) R, K2K? > 0 for every non-spacelike vector K (cf. §4.3);

(2) there exists a compact spacelike three-surface .%° (without
edge);

(3) the unit normals to % are everywhere converging (or every-
where diverging) on.%.
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Remarks. Condition (2) may be interpreted as saying that the universe
is spatially closed and condition (3) as saying that it is contracting
(or expanding). As explained in §6.5 one may take a covering manifold
A in which each connected component of the i image of ¥ is dlﬂeo-
morphic to & and is a partial Cauchy surfacein A . We shall work in 4
and shall denote by & one connected component of the image of .
Considering the Cauchy evolution problem in A one sees that the
occurrence of singularities (though not necessarily their nature) is a
stable property of the Cauchy data on & since a sufficiently small
variation of the data on & will not violate condition (3). This is a
counterexample to the conjecture by Lifshitz and Khalatnikov that
singularities occur only for a set of Cauchy data of measure zero,
though it must be remembered that the definition of a singularity
adopted here is not that used by Lifshitz and Khalatnikov

Proof. By conditions (2) and (3) the contraction x2, of the second
fundamental form of & has a negative upper bound on &. Thus if 4
(and hence 47) was timelike geodesically complete there would be
a point conjugate to & on every future-directed geodesic orthogonal
to & within a finite upper bound b of distance from & (proposition
4.4.3). But by the corollary to proposition 6.7.1, to every point
g€ D+(P) there is a future-directed geodesic orthogonal to & which
does not conta,m any point conjugate to & between & and g. Let
B: P %[0, b]—).A/ be the differentiable map which takes a point pe$
a distance s€[0,b] up the future-directed geodesic through p ortho-
gonal to . Then (< x [0,b]) would be compact and would contain
DH&). Thus D*($) and hence H*($) would be compact. If one
assumed the strong causality condition the desired contradiction
would follow from lemma 8.2.1. However even without strong
causality one can obtain a contradiction. Consider a point g€ H+(%).
Since every past-directed non-spacelike curve from ¢ to & would
consist of a (possibly zera) null geodesic segment in H+(<) and then
a non-spacelike curve in D), it follows that d(%, q) would be less
than or equal to b. Thus, as d is lower semi-continuous, one could find
an infinite sequence of points r, € D+(%) converging to ¢ such that
(2, ) converged to (s, ). To each r, there would correspond at
least one element f-(r,,) of &% % [0,b] Since P x [0, b]is compact there
would be an element (p, s) which was a limit point of the g-(r,). Bv
continuity s = d(,¢) and f(p,s) = ¢. Thus to every point ge H*(¥)
there would be a timelike geodesic of length d($, g) from L. Now let
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qeH +(&) lie to the past of g on the same null geodesic generator A of
H+($). Joining the geodesic of length d(,¢,) from & to ¢, to the
segment of A between g, and ¢, one would obtain a non-spacelike curve
of length d(, ¢;) from & to ¢ which could be varied to give a longer
curve between these endpoints (proposition 4.5.10). Thus &<, q),
g € H+(), would strictly decrease along every past-directed generator
of H+(#). But by proposition 6.5.2, such generators could have no
past endpoints. This leads to a contradiction since as d(f ,q) is lower
semi-continuous in ¢, it would have a minimum on the compact
set H+(%). O

Condition (2) that & is compact is necessary, since in Minkowski space
(+#,7m) the non-compact surface &: (x1)2 4 (x2)2+ (2)2— (2%)% = — 1,
24 < 0, is a partial Cauchy surface with y2, = — 3 at all points. If one
took the region of Minkowski space defined by

24 <0, (21)2+(2?)%+(28)2—(z%)% < O,

one could identify points under a discrete group of isometries @ such
that &[G was compact (Lobell (1931)). As required by theorem 4, the
space (A |G, 7)) would be timelike geodesically incomplete because one
could not extend the identification under G to the whole of 4 (neither
conditions (1) nor (2) of §5.8 would hold at the origin). In this case the
incompleteness singularity arises from bad global properties and is not
accompanied by a curvature singularity. This example was suggested
by Penrose.
Conditions (2) and (3) can be replaced by:

(2') & is a Cauchy surface for M ;
(3') x%,is bounded away from zero on %;

since in this case there cannot be a Cauchy horizon, yet all the future-
directed timelike curves from % must have lengths less than some
finite upper bound.

Geroch (1966) has shown that if condition (2) holds, and if conditions
(1) and (3) are replaced by:

(1") Rg, KeK® > 0 for every non-spacelike vector, equality holding
only if R,, = 0;

(3") there is a point p €% such that any inextendible non-spacelike
curve which intersects % also intersects both J+(p) and J —(p);

then either the Cauchy development of & is flat, or 7 is timelike
geodesically incomplete.
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Condition (3”) requires that an observer at 2 can see, and be seen by,
every particle that intersects &. The method of proof is to consider all
spacelike surfaces without edge which contain . One can form a
topological space S(p) out of all these surfaces, in & manner analogous
to that in which one forms a topological space out of all the non-
spacelike curves between two points. Conditions (2) and (3”) then
imply that S(p) is compact. One can show that the area of the surfaces
is an upper semi-continuous function on S(p) and so there will be some
surface &’ through » which has an area greater than or equal to that
of any other surface. By a variation argument similar to that used for
non-spacelike curves, one can show that x?, vanishes everywhere on
&’ except possibly at p, where the surface may not be differentiable.

Consider a one-parameter family of spacelike surfaces & (u) where
&(0) = &', The variation vector W = §/du can be expressed as fn
where n is the unit normal to the surfaces and f is some function. One
can apply the Raychaudhuri equation to the congruence of integral
curves of W to show

aa/au = f{ - %Bz — 202~ Rab nond +f—lf; ab hab}’
where O=x% Ou=~Xa—%6ks, hop= gab+n;nb’
and o? = }o,0%.

If there is some point g%’ at which R ,n%n® % 0 or x,, + 0 one can
find an f such that 86/0u is negative everywhere on 8'. If R, #n*n° and
Xap Were zero everywhere on &', but there was some point ¢ on %’ at
which C,, ;7n°n% was not equal to zero, then do/éu + 0 and one could
find an f such that 96/6u = 0 and ?6/6u?® < 0 everywhere on &’. In
either case, one would obtain a surface %" on which ¥?, < 0 every-
where, and so .# would be timelike geodesically incomplete by
theorem 4. If R,;, ¥, and C,; ;772 were zero everywhere on %, then
the Ricei identities for ¢ show that C,,.4 = 0 on$’. Hence space-time
is flat in D(#). An example in which conditions (17, (2) and (3”) hold
and in which D(%) is flat is Minkowski space with {z!,22, 23 2%}
identified with {2! + 1, 22, 28, 24}, {2, 22 + 1, 2%, 2%}, and {2, 22, 2%+ 1, 2%}.
This is geodesically complete. However the example given previously
also satisfies these conditions and shows that D(&) can be both
geodesically incomplete and flat.
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8.3 The description of singularities

The preceding theorems prove the occurrence of singularitiesin a large
class of solutions but give little information as to their nature. To
investigate this in more detail, one would need to define what one
meant by the size, shape, location and so on of a singularity. This would
be fairly easy if the singular points were included in the space-time
manifold. However it would be impossible to determine the manifold
structure at such points by physical measurements. In fact there
would be many manifold structures which agreed for the non-singular
regions but which differed for the singular points. For example, the
manifold at the t = 0 singularity in the Robertson-Walker solutions
could be that described by the coordinates
{t,r cos 6, rsin O cos @, r sin Osin P}
or that described by
{t, Sr cos 6, Srsin 6 cos @, Srsin fsin ¢}.

In the first case the singularity would be a three-surface, in the second
case 8 single point.

What is needed is a prescription for attaching some sort of boundary
2 to .# which is uniquely determined by measurements at non-
singular points, i.e. by the structure of (.#, g). One would then like to
define at least a topology, and possibly a differentiable structure and
metric, on the space A4+ = .4 U 8. One possibility would be to use the
method of indecomposable infinity sets described in §6.8. However
since this depends only on the conformal metric, it does not distinguish
between infinity and singular points at a finite distance. To make this
distinction it would seem one should base one’s construction for £+
on the criterionthat hasbeen adopted for the existence of a singularity:
namely b-incompleteness. An elegant way of doing this has been
developed by Schmidt. This supersedes earlier constructions by
Hawking (1966b) and Geroch (1968a) which defined the singular
points as equivalence classes of incomplete geodesics. These construc-
tions did not necessarily provide endpoints for all b-incomplete curves,
such as incomplete timelike curves of bounded acceleration. There was
also a certain ambiguity in their definition of equivalence classes.
Schmidt’s construction does not suffer from thése weaknesses.

Schmidt’s procedure is to define a positive definite metric e on the
bundle of orthonormal frames 77: O(A)->.#. Here O(A) is the set of
all orthonormal four-tuples of vectors {E_}, E €7, for each pe#
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(a ranges from 1 to 4), and 7 is the projection which maps a basis at
a point p to the point . It turns out that O() is m-incomplete in
the metric e if and only if 4 is b-incomplete. If O(#) is m-incomplete,
one can form the metric space completion O(.#) of O(#) by Cauchy
sequences, The projection 7 can be extended to O(4), and the
quotient of O(A ) by 7 is defined to be .#+ which is the union of 4 with
a set of additional points . The set @ consists of the singular points
of A in the sense that it is the set of endpoints for every b-incomplete
curve in ..

To perform this construction, we recall (§2.9) that the connection on
A given by the metric g defines a four-dimensional horizontal subspace
H, of the ten-dimensional tangent space 7, at the point ueO(4).
Then 7, is the direct sum of H, and the vertical subspace V¥, consisting
of all the vectors in 7}, which are tangent to the fibre 7-1(7r(u)). We now
construct a basis {G,} = {E,, F,} for T, where 4 runs from 1 to 10,
a runs from 1 to 4 and ¢ runs from 1 to 6; {E,} is a basis for H,, and
{F.} is a basis for ¥,

Given any vector X € 7,,,,(-#) there is a unique vector X € H,(O(#))
such that 7, X = X. Thus on O(#) there are four uniquely defined
horizontal vector fields E, which are the horizontal lifts of the ortho-
normal basis vectors E, for each point u € O(A4 ). The integral curves of
the field E, in O(4) represent parallel propagation of the basis {E_}
along the geodesic in . in the direction of the vector E,.

The group O(3, 1), the multiplicative group of all non-singular 4 x 4
real Lorentz matrices A, acts in the fibres of O(4) sending a point
u={p E,}eO(A) to the point A(u) = {p, A,, E,}€O0(4). One can
regard O(3, 1) as a six-dimensional manifold and represent the tangent
space T3(0(3, 1)) to O(3, 1) at the unit matrix I by the vector space of
all 4 x 4 matrices a such that a, @, = —a,,Gy,. Then if ae T;(0(3, 1)),
one can define a curve in O(3, 1) by 4, = exp (ta) where

@ n

exp (b) = ol

Thus if u€O(A4) one can define a curve through « in #7~(7(u)) by
Agu(t) = A,(u). As the curve A, (f) lies in the fibre, its tangent vector
(0/2t),,, is vertical. For each ae T, one can therefore define a vertical
vector field F(a) by F(a)|, = (9[2t),,|, for each uecO(A). If {a;}
(1= 1,2,...,6) are a basis for T}, then F,; = F(a;) will be six vertical
vector fields on O(4) which will provide a basis for ¥, at each point
ueO(A).




278 SPACE-TIME SINGULARITIES [8.3

A matrix BeO(3, 1) defines a mapping O(A)—~O(#) by u— B(u).
Under the induced map B, : T, — Ty, the vertical and horizontal
vector fields transform as follows:

B*(Ea) = &l Eb’
B*(Fi) = Cij Fj;

where Cf = B,,a,,. B~1,,a7;, and {a’} are the basis for T*; dual to the

basis {a;} for Tj(thus a’,,a;, = 6%, a/,a,,; =10,.0,5). The property

of these induced maps which will be important for what follows is not

their actual form but the fact that they are constant over O(.4).
One now has a basis {G} = {E,, F;} (4 = 1,...,10) for T, at each

point u € O(4). One can thus define a positive definite metric e on

O(#) by ¢X,Y) = 3 X4Y4 where X,YeT(u) and X4, Y4 are the

4

components of X, Y respectively in the basis {G }.

Using the metric e, one can define a distance function p(u,v),
u,ve0(H), as the greatest lower bound of lengths (measured by e)
of curves from « to ». One can then ask whether O(#) is m-complete
with the distance function p.

Proposition 8.3.1
(O(A#), e) is m-complete if and only if (4, g) is b-complete.

Suppose y(t) is & curve in 4. Then 